Frozen Ground
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Hydrographic Approach to the Alps
• • 330 A HYDROGRAPHIC APPROACH TO THE ALPS A HYDROGRAPHIC APPROACH TO THE ALPS • • • PART III BY E. CODDINGTON SUB-SYSTEMS OF (ADRIATIC .W. NORTH SEA] BASIC SYSTEM ' • HIS is the only Basic System whose watershed does not penetrate beyond the Alps, so it is immaterial whether it be traced·from W. to E. as [Adriatic .w. North Sea], or from E. toW. as [North Sea . w. Adriatic]. The Basic Watershed, which also answers to the title [Po ~ w. Rhine], is short arid for purposes of practical convenience scarcely requires subdivision, but the distinction between the Aar basin (actually Reuss, and Limmat) and that of the Rhine itself, is of too great significance to be overlooked, to say nothing of the magnitude and importance of the Major Branch System involved. This gives two Basic Sections of very unequal dimensions, but the ., Alps being of natural origin cannot be expected to fall into more or less equal com partments. Two rather less unbalanced sections could be obtained by differentiating Ticino.- and Adda-drainage on the Po-side, but this would exhibit both hydrographic and Alpine inferiority. (1) BASIC SECTION SYSTEM (Po .W. AAR]. This System happens to be synonymous with (Po .w. Reuss] and with [Ticino .w. Reuss]. · The Watershed From .Wyttenwasserstock (E) the Basic Watershed runs generally E.N.E. to the Hiihnerstock, Passo Cavanna, Pizzo Luceridro, St. Gotthard Pass, and Pizzo Centrale; thence S.E. to the Giubing and Unteralp Pass, and finally E.N.E., to end in the otherwise not very notable Piz Alv .1 Offshoot in the Po ( Ticino) basin A spur runs W.S.W. -
Recent Debris Flow Occurrences Associated with Glaciers in the Alps ⁎ Marta Chiarle A, , Sara Iannotti A, Giovanni Mortara A, Philip Deline B
Global and Planetary Change 56 (2007) 123–136 www.elsevier.com/locate/gloplacha Recent debris flow occurrences associated with glaciers in the Alps ⁎ Marta Chiarle a, , Sara Iannotti a, Giovanni Mortara a, Philip Deline b a CNR‐IRPI, Strada delle Cacce, 73–10135 Torino, Italy b Laboratoire EDYTEM, CNRS‐Université de Savoie, 73376 Le Bouget‐du‐Lac, France Received 12 August 2005; accepted 21 July 2006 Available online 9 January 2007 Abstract Debris flows from glacier forefields, triggered by heavy rain or glacial outbursts, or damming of streams by ice avalanches, pose hazards in Alpine valleys (e.g. the south side of Mount Blanc). Glacier‐related debris flows are, in part, a consequence of general glacier retreat and the corresponding exposure of large quantities of unconsolidated, unvegetated, and sometimes ice‐cored glacial sediments. This paper documents glacier‐related debris flows at 17 sites in the Italian, French, and Swiss Alps, with a focus on the Italian northwest sector. For each case data are provided which describe the glacier and the instability. Three types of events have been recognized, based on antecedent meteorological conditions. Type 1 (9 documented debris flows) is triggered by intense and prolonged rainfall, causing water saturation of sediments and consequent failure of large sediment volumes (up to 800000 m3). Type 2 (2 debris flows) is triggered by short rainstorms which may destabilize the glacier drainage system, with debris flow volumes up to 100000 m3. Type 3 (6 debris flows) occurs during dry weather by glacial lake outbursts or ground/buried ice melting, with debris flow volumes up to 150000 m3. -
a Pleistocene Ice Sheet in the .' Northern Boulder Mountains
, A Pleistocene Ice Sheet in the .' Northern Boulder Mountains .< Jefferson, Powell, and Lewis and Clark Counties, Montana By EDWARD T. RUPPEL CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY BULLETIN 1141-G A descriptive report of the glacial geology in the northern part of the Boulder Mountains, Montana UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Abstract- _______-_-______-__-_--____--___________--____-_-_-______ G-1 Introduction. _ _____________________________________________________ 1 Summary of bedrock geology.___-___-____.____._-___._.__--__--_.___ 4 Surficial geology.._________________________________________________ 5 Northern Boulder Mountains ice sheet- ___-____-___.----_-_--_-__ 5 Glacial erosion.___________________________________________ 7 Glacial deposits.-______--_^______-________________________ 9 Age and regional relations of glaciation.___:______.____________ 11 Postglacial erosion.---___-_--________-___---___-_-------__---__ 13 Creep-and-solifluction deposits and stone-banked terrace deposits. 14 Frost-wedged rock waste and boulders of disintegration........ 15 Landslides._______________________________________________ 19 Bog and swamp deposits. _______________________________"___ 20 Age of mass-wasting deposits--....----...--___---__---_--_. 20 References cited..____________________________ _____________________ 21 ILLUSTRATIONS [Plates in pocket] PLATE 1. Ice coverage and flow, Basin quadrangle, Jefferson, Lewis and Clark, and Powell Counties, Mont. 2. Interpretations of Pleistocene and Recent history, Montana and adjacent areas. FIGURE 1. Inferred limits of northern Boulder Mountains ice sheet, G-2 2. Typical rounded topography along Continental Divide in northern part of Boulder Mountains---.-,-.------ ------- 3 3. -
A MODEL for BIOMASS ASSESSMENT E-023 SUBMITTED BY: Dr
• A MODEL FOR BIOMASS ASSESSMENT E-023 SUBMITTED BY: Dr. Stephen J. Walsh Associate Professor Dr. George p. Malanson Assistant Professor Dr. John D. Vitek Associate Professor Dr. David R. Butler Assistant Professor Department of Geography Oklahoma State University & in conjunction with USDA/Agricultural Research Service SUBMITTED TO: Dr. Norman N. Durham, Director Water Research Center Oklahoma State University March 14, 1983 Introduction The surface of the earth is a complex system responding to the input of energy, natural and human. Human use of the surface for maximum agricultural efficiency requires knowledge of the interactions of all variables involved in the system. Broad categories of phenomena, including the atmosphere (weather and climate), biosphere (vegetation, fauna, and human activity), hydrosphere (precipitation, runoff, infiltration, fluvial erosion, and evapotranspiration), and the lithosphere (soil, topography, and parent material), can be identified as the major variables in any assessment. Assessment of interactions requires data from various sources. The emergence of remote sensing as a source of data for assessments in the last decade permits the development of more accurate predictive models. Refinements in data acquisition, such as improved resolution, the use of radar, and the correlation of detailed surface observations with satellite overpasses, provide researchers with the capability to assess inter relationships and create accurate models. A conceptual model, Figure 1, illustrates the interaction of the Department of Geography/CARS and the USDA/Agricultural Research Service with components of the natural system for the purpose of creating a predictive model for biomass assessment~~CARS, the remote sensing center at Oklahoma State University, plus ARS of the USDA bring different skills to this joint research effort. -
Summits on the Air – ARM for USA - Colorado (WØC)
Summits on the Air – ARM for USA - Colorado (WØC) Summits on the Air USA - Colorado (WØC) Association Reference Manual Document Reference S46.1 Issue number 3.2 Date of issue 15-June-2021 Participation start date 01-May-2010 Authorised Date: 15-June-2021 obo SOTA Management Team Association Manager Matt Schnizer KØMOS Summits-on-the-Air an original concept by G3WGV and developed with G3CWI Notice “Summits on the Air” SOTA and the SOTA logo are trademarks of the Programme. This document is copyright of the Programme. All other trademarks and copyrights referenced herein are acknowledged. Page 1 of 11 Document S46.1 V3.2 Summits on the Air – ARM for USA - Colorado (WØC) Change Control Date Version Details 01-May-10 1.0 First formal issue of this document 01-Aug-11 2.0 Updated Version including all qualified CO Peaks, North Dakota, and South Dakota Peaks 01-Dec-11 2.1 Corrections to document for consistency between sections. 31-Mar-14 2.2 Convert WØ to WØC for Colorado only Association. Remove South Dakota and North Dakota Regions. Minor grammatical changes. Clarification of SOTA Rule 3.7.3 “Final Access”. Matt Schnizer K0MOS becomes the new W0C Association Manager. 04/30/16 2.3 Updated Disclaimer Updated 2.0 Program Derivation: Changed prominence from 500 ft to 150m (492 ft) Updated 3.0 General information: Added valid FCC license Corrected conversion factor (ft to m) and recalculated all summits 1-Apr-2017 3.0 Acquired new Summit List from ListsofJohn.com: 64 new summits (37 for P500 ft to P150 m change and 27 new) and 3 deletes due to prom corrections. -
Preliminary Evaluation of Potential Acecs---Royal
Preliminary Evaluation of Potential ACECs—Royal Gorge Field Office Relevance and Importance Criteria Prepared by U.S. Department of the Interior Bureau of Land Management Royal Gorge Field Office Cañon City, CO February 2017 This page intentionally left blank Preliminary Evaluation of Potential iii ACECs—Royal Gorge Field Office Table of Contents Acronyms and Abbreviations ....................................................................................................... ix Executive Summary ...................................................................................................................... xi _1. Introduction .............................................................................................................................. 1 _1.1. Eastern Colorado Resource Management Plan ............................................................... 1 _1.2. Authorities ....................................................................................................................... 1 _1.3. Area of Consideration ..................................................................................................... 1 _1.4. The ACEC Designation Process ..................................................................................... 1 _2. Requirements for ACEC Designation .................................................................................... 3 _2.1. Identifying ACECs .......................................................................................................... 5 _2.2. Special Management -
Reidentifying Depositional, Solifluction, “String Lobe” Landforms As Erosional, Topographic, Steps & Risers Formed by Paleo-Snowdunes in Pennsylvania, USA
Earth Sciences 2021; 10(3): 136-144 http://www.sciencepublishinggroup.com/j/earth doi: 10.11648/j.earth.20211003.19 ISSN: 2328-5974 (Print); ISSN: 2328-5982 (Online) Reidentifying Depositional, Solifluction, “String Lobe” Landforms as Erosional, Topographic, Steps & Risers Formed by Paleo-Snowdunes in Pennsylvania, USA Michael Iannicelli Brooklyn College (C. U. N. Y.), Department of Earth and Environmental Sciences, Brooklyn, N. Y., USA Email address: To cite this article: Michael Iannicelli. Reidentifying Depositional, Solifluction, “String Lobe” Landforms as Erosional, Topographic, Steps & Risers Formed by Paleo-Snowdunes in Pennsylvania, USA. Earth Sciences. Vol. 10, No. 3, 2021, pp. 136-144. doi: 10.11648/j.earth.20211003.19 Received: May 13, 2021; Accepted: June 9, 2021; Published: June 30, 2021 Abstract: A controversy arises concerning relict, ubiquitous, depositional, solifluction, “string lobe” landforms in the Ridge and Valley province of Pennsylvania, reported by other investigators. A distinguishment is made here by defending an original interpretation of the particular landforms which identified these as snowdune meltwater-eroded depressions formed within colluvium during cold phases of the Pleistocene Epoch. Hence, the landforms are reassessed as “steps & risers” in this study which is jargon associated with nival erosion. The reidentification is warranted in the study because of multiple lines of evidence including: the landforms’ detailed geomorphology and sedimentology; the landforms having a highly, unusual, very repetitive, NE-SW orientation; and the landforms incurring a striking, gravity-defying, characteristic of running-water erosion repeatedly occurring irrespective of the steepest part of the general slope. Besides the evidence offered here, the study also gives insight, resolutions and re-confirmations in order to establish absolute identification while differentiating between discussed, periglacial, relict landforms. -
2010 Country Report.Pdf
1 / 32 Argentine and South American Association of 1 Argentina (and South Permafrost). Other courses held were "Processes and American Partners) Geodynamic Risks" at the Universidad Nacional de Cuyo, Mendoza as part of the Master program in One of the outstanding tasks of the Geocryology Unit territorial planning. Another course on Geocryology, of Mendoza (D. Trombotto, J. Hernández) were the “Permafrost and Ice in Caves” was held during a thermogeomorphological monitoring campaigns at the workshop on speleology in Malargüe. Peteroa volcano (35º15´S and 70º35´W) in a joint research project with the Comisión Nacional de There have been joint initiatives of Chile and Argentina Energía Atómica (P. Penas, Buenos Aires) and the under the international project: "Dinámica de glaciares International Center for Earth Sciences (A. Ramires, rocosos en el Chile Semiárido" (Dynamics of rock Malargüe). glaciers in Semiarid Chile) in cooperation with the University of Waterloo, Ontario, Canada, the Daytime as well as nighttime flights with a Cessna 180 Universidad Católica de Chile, Santiago and the for four passengers with thermo-cameras a AGEMA Geocryology Unit IANIGLA, CONICET Mendoza, TVH 550 or a sophisticated FLIR P660 made it Argentina. In the framework of a project funded by the possible to identify hot (active craters with fumaroles) Dirección General de Aguas (DGA), F. Herrera and cold (with permafrost and glaciers) sites of the (Pontificia Universidad Católica de Chile), G. Azócar volcano caldera and to compare this information with and A. Brenning, with additional help from F. Rojas former data obtained in 2009. Changes of geoforms, and F. Lobos (Pontificia Universidad Católica de Chile) glaciers, permafrost and of the thermal spectrum as an built an exhaustive inventory of rock glaciers in the alert of the eruption registered later on in September Choapa, Limari and Elqui watersheds. -
2017 Colorado Sheep & Goat
C OLORADO PARKS & WILDLIFE 2017 Colorado Sheep & Goat APPLICATION DEADLINE: APRIL 4 online brochure cpw.state.co.us 2017 Colorado Sheep & Goat Hunting Online Features Watch more Colorado Parks and Wildlife videos on our VIMEO & YOUTUBE VIDEO CHANNELS VIDEOS: WHAT’S NEW: 2017 BIG GAME GET UPDATED on the new, general regulatory changes to the 2017 Sheep & Goat and Big Game brochures. See this brochure for species- and unit- specific changes. THE FUTURE OF CONSERVATION LEARN HOW your license dollars contribute directly to the conservation of wildlife species and outdoor recreation in Colorado. HUNTER PINK GET INFORMED about the new hunter pink cloth- ing alternative to fluorescent orange. There’s a link MORE ONLINE to the fact sheet in the video too! QUIZ AND RESOURCES: MOUNTAIN GOAT IDENTIFICATION HUNTING COLORADO’S If you are hunting mountain goats, it is difficult — but extremely impor- tant — that you identify female goats properly. Read the CPW online PUBLIC LANDS guide and take the quiz to ensure you know your target and avoid fines once you are hunting in the field. CLICK TO TAKE THE QUIZ HEAR THE DETAILS about big game, small game Rocky Mountain Bighorn Sheep and waterfowl hunting on Colorado’s public lands, © Wayne Lewis, CPW 2 including State Wildlife Areas, State Trust Lands and State Parks. 2017 Colorado Sheep & Goat Hunting 2017 Colorado Sheep & Goat Hunting TABLE OF CONTENTS 2017 What’s New ...................................................1 CPW OFFICE LOCATIONS cpw.state.co.us License Fees & Information ................................. 1 ADMINISTRATION Watch more Colorado Parks and Wildlife videos on our VIMEO & YOUTUBE VIDEO CHANNELS • Fees and surcharges 1313 Sherman St., #618 • Hunter education requirements Denver, 80203 303-297-1192 In the Field & Special License Information ......... -
Passo Del Tonale ITALY January 15-21 Stochastic Programming with Applications in Energy, Logistics and Finance
PhD Winter school 2017 Passo del Tonale ITALY January 15-21 Stochastic programming with applications in energy, logistics and finance Topics • Applications of stochastic optimization and robust optimization • Modeling in energy, logistics and finance • Multistage stochastic programming: methods and algorithms • Risk management Preliminary list of speakers (to be completed with 5-6 more) Endre Bjørndal, NHH Mette Bjørndal, NHH Francesca Maggioni, University of Bergamo Registration Giorgio Consigli, University of Bergamo Limited number of places: Asgeir Tomasgard, NTNU Stein-Erik Fleten NTNU A) PhD students: 380 euro Maria-Teresa Vespucci, University of Bergamo Shared double room and 3 meals per day included B) Other participants: 660 euro Shared double room and 3 meals per day included Please register by sending an email to us indicating category as soon as possible to: [email protected] We will then send confirmation and payment information. Places are allocated at a first come basis. Location and arrival Marking the boundary between the regions of Lom- bardy and Trentino, the Passo del Tonale is a natural amphitheatre linking the Val di Sole with the Valca- monica, a sunny, panoramic spot that climbs from 1884 metres above sea level up to 3100 metres, between the Ortler Alps and the Adamello-Presanella range. It offers over 100 km of downhill pistes and some 50 km of cross-country trails. The main airport used to get to Passo del Tonale is Bergamo Orio al Serio. The best way to arrive to Passo del Tonale from the Orio al Serio Airport is by bus Ori- Schedule Credits oshuttle. Tickets are available at the box Of- Arrival: Sunday January 15 There will be in total 30 hours of lectures in the fice Orioshuttle at the Orio al Serio Airport. -
151 3Rd Issue 2009
ISSN 0019–1043 Ice News Bulletin of the International Glaciological Society Number 151 3rd Issue 2009 Contents 2 From the Editor 40 International Glaciological Society 3 Recent work 40 Journal of Glaciology 3 Italy 41 Annals of Glaciology, Volume 51(54) 3 Alpine glaciers 41 Annals of Glaciology, Volume 51(55) 14 Ice cores 42 Report from the Nordic Branch Meeting 16 Alpine inventories 43 Notes from the production team 17 Apennine glaciers 44 Meetings of other societies: 18 Tropical glaciers 44 Northwestern Glaciologists meeting 18 Himalaya–Karakoram glaciers 2009 20 Polar glaciers and ice sheets 47 Sapporo symposium 2nd circular 23 Glacier hydrology 52 Ohio symposium 2nd circular 24 The Miage Lake project 57 Future meetings of other societies: 25 Applied glaciology 11th International Circumpolar 28 Remote sensing Remote Sensing Symposium 30 Permafrost 57 Books received 33 Ice caves 58 News 33 Ecological studies 58 Obituary: Hans Röthlisberger 37 Snow and avalanches 60 Glaciological diary 66 New members Cover picture: River Skeiðará flowing along the terminus of the outlet glacier Skeiðarárjökull from southern Vatnajökull ice cap. The river changed course in July 2009. Until then the river flowed directly to the south from the outlet on the eastern side of the terminus and under the longest bridge in Iceland, the ~900 m long Skeiðará bridge. The river now flows to the west along the terminus and merges with the river Gígjukvísl near the centre of the glacier and the Skeiðará bridge is more or less on dry land. Photo: Oddur Sigurðsson. Scanning electron micrograph of the ice crystal used in headings by kind permission of William P. -
The Impact of Temperature, Elevation, and Aspect on The
THE IMPACT OF TEMPERATURE, ELEVATION, AND ASPECT ON THE POTENTIAL DISTRIBUTION OF PERMAFROST IN SAN JUAN MOUNTAINS, COLORADO A Dissertation by MUHAMMAD IRHAM Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, John R. Giardino Committee Members, John D. Vitek Hongbin Zhan Chris Houser Head of Department, Michael Pope May 2016 Major Subject: Geology Copyright 2016 Muhammad Irham ABSTRACT A portions of San Juan Mountains are located in the alpine critical zone, which extends from the boundary layer between the atmosphere and the surface of Earth. In this zone, atmospheric and geomorphic processes drive all interactions. The focus of this research is on changes associated with the location of potential permafrost in the San Juan Mountains of Colorado. Study of potential permafrost can provide important information regarding the distribution and stability of permafrost under warming climatic conditions. Understanding patterns of temperature and aspect are vital steps in understanding the distribution of potential permafrost in alpine environments, its current stability, and such changes that might occur in the future. To study this question, three objectives were assessed. First, historical climate records, standard adiabatic rate, and ArcGIS methods were applied to analyze the impact of temperature on the climate change. Second, aerial photographs and field investigations were applied to classify the spatial extent of permafrost in a selected region of the San Juan Mountains. Digital Elevation Models (DEM) in ArcGIS were created to evaluate elevation, slope, and aspect relative to the elevations of permafrost.