1 Appendix: Supporting Information Drake Et Al SI Text 1
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Redacted for Privacy
AN ABSTRACT OF THE THESIS OF Ian B. Edwards for the degree of Master of Arts in Applied Anthropology presented on April 30. 2003. Title: The Fetish Market and Animal Parts Trade of Mali. West Africa: An Ethnographic Investigation into Cultural Use and Significance. Abstract approved: Redacted for Privacy David While much research has examined the intricate interactions associated with the harvesting of wild animals for human consumption, little work has been undertaken in attempting to understand the greater socio-cultural significance of such use. In addition, to properly understand such systems of interaction, an intimate knowledge is required with regard to the rationale or motivation of resource users. In present day Mali, West Africa, the population perceives and upholds wildlife as a resource not only of valuable animal protein, in a region of famine and drought, but a means of generating income. The animal parts trade is but one mechanism within the larger socio-cultural structure that exploits wildlife through a complex human-environmental system to the benefit of those who participate. Moreover, this informal, yet highly structured system serves both cultural and outsider demand through its goods and services. By using traditional ethnographic investigation techniques (participant observation and semi-structured interviews) in combination with thick narration and multidisciplinary analysis (socio- cultural and biological-environmental), it is possible to construct a better understanding of the functions, processes, and motivation of those who participate. In a world where there is butonlya limited supply of natural and wild resources, understanding human- environmental systems is of critical value. ©Copyright by Ian B. -
Downloaded from Brill.Com10/06/2021 09:29:00AM Via Free Access 42 Luiselli Et Al
Contributions to Zoology, 74 (1/2) 41-49 (2005) Analysis of a herpetofaunal community from an altered marshy area in Sicily; with special remarks on habitat use (niche breadth and overlap), relative abundance of lizards and snakes, and the correlation between predator abundance and tail loss in lizards Luca Luiselli1, Francesco M. Angelici2, Massimiliano Di Vittorio3, Antonio Spinnato3, Edoardo Politano4 1 F.I.Z.V. (Ecology), via Olona 7, I-00198 Rome, Italy. E-mail: [email protected] 2 F.I.Z.V. (Mammalogy), via Cleonia 30, I-00152 Rome, Italy. 3 Via Jevolella 2, Termini Imprese (PA), Italy. 4 Centre of Environmental Studies ‘Demetra’, via Tomassoni 17, I-61032 Fano (PU), Italy Abstract relationships, thus rendering the examination of the relationships between predators and prey an extreme- A field survey was conducted in a highly degraded barren en- ly complicated task for the ecologist (e.g., see Con- vironment in Sicily in order to investigate herpetofaunal com- nell, 1975; May, 1976; Schoener, 1986). However, munity composition and structure, habitat use (niche breadth and there is considerable literature (both theoretical and overlap) and relative abundance of a snake predator and two spe- empirical) indicating that case studies of extremely cies of lizard prey. The site was chosen because it has a simple community structure and thus there is potentially less ecological simple communities, together with the use of appropri- complexity to cloud any patterns observed. We found an unexpect- ate minimal models, can help us to understand the edly high overlap in habitat use between the two closely related basis of complex patterns of ecological relationships lizards that might be explained either by a high competition for among species (Thom, 1975; Arditi and Ginzburg, space or through predator-mediated co-existence i.e. -
Medically Important Differences in Snake Venom Composition Are Dictated by Distinct Postgenomic Mechanisms
Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms Nicholas R. Casewella,b,1, Simon C. Wagstaffc, Wolfgang Wüsterb, Darren A. N. Cooka, Fiona M. S. Boltona, Sarah I. Kinga, Davinia Plad, Libia Sanzd, Juan J. Calveted, and Robert A. Harrisona aAlistair Reid Venom Research Unit and cBioinformatics Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom; bMolecular Ecology and Evolution Group, School of Biological Sciences, Bangor University, Bangor LL57 2UW, United Kingdom; and dInstituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, 11 46010 Valencia, Spain Edited by David B. Wake, University of California, Berkeley, CA, and approved May 14, 2014 (received for review March 27, 2014) Variation in venom composition is a ubiquitous phenomenon in few (approximately 5–10) multilocus gene families, with each snakes and occurs both interspecifically and intraspecifically. family capable of producing related isoforms generated by Venom variation can have severe outcomes for snakebite victims gene duplication events occurring over evolutionary time (1, 14, by rendering the specific antibodies found in antivenoms in- 15). The birth and death model of gene evolution (16) is fre- effective against heterologous toxins found in different venoms. quently invoked as the mechanism giving rise to venom gene The rapid evolutionary expansion of different toxin-encoding paralogs, with evidence that natural selection acting on surface gene families in different snake lineages is widely perceived as the exposed residues of the resulting gene duplicates facilitates main cause of venom variation. However, this view is simplistic subfunctionalization/neofunctionalization of the encoded proteins and disregards the understudied influence that processes acting (15, 17–19). -
(Apicomplexa: Adeleorina) from the Blood of Echis Pyramidum: Morphology and SSU Rdna Sequence Hepatozoon Pyramidumi Sp
Original Article ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Hepatozoon pyramidumi sp. n. (Apicomplexa: Adeleorina) from the blood of Echis pyramidum: morphology and SSU rDNA sequence Hepatozoon pyramidumi sp. n. (Apicomplexa: Adeleorina) do sangue de Echis pyramidum: morfologia e sequência de SSU rDNA Lamjed Mansour1,2; Heba Mohamed Abdel-Haleem3; Esam Sharf Al-Malki4; Saleh Al-Quraishy1; Abdel-Azeem Shaban Abdel-Baki3* 1 Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia 2 Unité de Recherche de Biologie Intégrative et Écologie Évolutive et Fonctionnelle des Milieux Aquatiques, Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisia 3 Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt 4 Department of Biology, College of Sciences, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia How to cite: Mansour L, Abdel-Haleem HM, Al-Malki ES, Al-Quraishy S, Abdel-Baki AZS. Hepatozoon pyramidumi sp. n. (Apicomplexa: Adeleorina) from the blood of Echis pyramidum: morphology and SSU rDNA sequence. Braz J Vet Parasitol 2020; 29(2): e002420. https://doi.org/10.1590/S1984-29612020019 Abstract Hepatozoon pyramidumi sp. n. is described from the blood of the Egyptian saw-scaled viper, Echis pyramidum, captured from Saudi Arabia. Five out of ten viper specimens examined (50%) were found infected with Hepatozoon pyramidumi sp. n. with parasitaemia level ranged from 20-30%. The infection was restricted only to the erythrocytes. Two morphologically different forms of intraerythrocytic stages were observed; small and mature gamonts. The small ganomt with average size of 10.7 × 3.5 μm. Mature gamont was sausage-shaped with recurved poles measuring 16.3 × 4.2 μm in average size. -
An Overview and Checklist of the Native and Alien Herpetofauna of the United Arab Emirates
Herpetological Conservation and Biology 5(3):529–536. Herpetological Conservation and Biology Symposium at the 6th World Congress of Herpetology. AN OVERVIEW AND CHECKLIST OF THE NATIVE AND ALIEN HERPETOFAUNA OF THE UNITED ARAB EMIRATES 1 1 2 PRITPAL S. SOORAE , MYYAS AL QUARQAZ , AND ANDREW S. GARDNER 1Environment Agency-ABU DHABI, P.O. Box 45553, Abu Dhabi, United Arab Emirates, e-mail: [email protected] 2Natural Science and Public Health, College of Arts and Sciences, Zayed University, P.O. Box 4783, Abu Dhabi, United Arab Emirates Abstract.—This paper provides an updated checklist of the United Arab Emirates (UAE) native and alien herpetofauna. The UAE, while largely a desert country with a hyper-arid climate, also has a range of more mesic habitats such as islands, mountains, and wadis. As such it has a diverse native herpetofauna of at least 72 species as follows: two amphibian species (Bufonidae), five marine turtle species (Cheloniidae [four] and Dermochelyidae [one]), 42 lizard species (Agamidae [six], Gekkonidae [19], Lacertidae [10], Scincidae [six], and Varanidae [one]), a single amphisbaenian, and 22 snake species (Leptotyphlopidae [one], Boidae [one], Colubridae [seven], Hydrophiidae [nine], and Viperidae [four]). Additionally, we recorded at least eight alien species, although only the Brahminy Blind Snake (Ramphotyplops braminus) appears to have become naturalized. We also list legislation and international conventions pertinent to the herpetofauna. Key Words.— amphibians; checklist; invasive; reptiles; United Arab Emirates INTRODUCTION (Arnold 1984, 1986; Balletto et al. 1985; Gasperetti 1988; Leviton et al. 1992; Gasperetti et al. 1993; Egan The United Arab Emirates (UAE) is a federation of 2007). -
Fish Diversity and Assemblages According to Distance from Source Along a Coastal River Gradient (Ehania River; South- East of Ivory Coast)
Iranian Journal of Fisheries Sciences 14(1)112-129 2015 Fish diversity and assemblages according to distance from source along a coastal river gradient (Ehania River; south- east of Ivory Coast) Konan K.F.1,2,3; Edia O.E.1; Bony K.Y.1,2; Kouamé K.M.1,3; Gourène G.1 Received: May 2013 Accepted: December 2014 Abstract Fish assemblage was investigated during the study of longitudinal profile of the Ehania River Basin in south-eastern Côte d’Ivoire. This area is subjected to intense human activities with many plantations (palm tree, banana, pineapple, coffee, rubber and cocoa). Samples were collected, with gillnets of different mesh sizes, through 6 sampling surveys during dry and rainy seasons from February 2010 to December 2010 at 6 sampling sites. A total of 70 fish species belonging to 48 genera, 28 families and 10 orders were recorded. The temporal variation of diversity index is less marked than spatial variation. The upstream, with 35 species, was less rich in species than the medium area and downstream areas (respectively 46 and 68). The upstream and downstream areas gathered 35 species. Thirty three species were common to the upper and middle areas and 46 species appeared both in the lower courses and the middle area. The 21 species restricted to the lower part of the river are mainly estuarine/marine origin. The beta diversity value revealed low similarity between the lower and upper course of Ehania River. The lowest Downloaded from jifro.ir at 13:43 +0330 on Tuesday October 5th 2021 values of Shannon’s diversity index and equitability index were observed in the middle part of the River which characterized by high population density and intense agricultural activity with many plantations. -
Venomous Snakes of the Horn of Africa
VENOMOUS SNAKES OF THE HORN OF AFRICA Venomous Snake Identification Burrowing Asps Boomslang, Vine and Tree Snakes Snakebite Prevention Behavior: Venomous snakes are found throughout the Horn of Africa. Assume that any snake you encounter is venomous. Leave Long, Flattened Head, Round Fixed Front Smooth Long, Cylindrical Behavior: Burrowing asps spend the majority of time underground in burrows under stones, concrete slabs, logs, snakes alone. Many people are bitten because they try to kill a snake or get a closer look at it. Slightly Distinct from Neck Pupils Fangs Scales Body, Thin Tail They are active during both the daytime and nighttime. or wooden planks. 5-8 feet in length They live in trees and feed on bats, birds, and lizards. They are active on the surface only during the nighttime hours or after heavy rains flood their burrows. They are not aggressive: will quickly flee to nearest tree or bush if surprised on ground. Snakebites occur most often: MAMBAS They feed on small reptiles and rodents found in holes or underground. They do not climb. When molested, they inflate their bodies or necks as threat posture before biting. After rainstorms that follow long, dry spells or after rains in desert areas. Dendroaspis spp. SAVANNA VINE They are not aggressive: bites usually occur at night when snakes are stepped on accidentally. SNAKE During the half-hour before total darkness and the first two hours after dark. Habitats: Trees next to caves, coastal bush and reeds, tropical forests, open savannas, Thelotornis Habitats: Burrows in sand or soft soil, semi-desert areas, woodlands, and savannas. -
Checklist of Amphibians and Reptiles of Morocco: a Taxonomic Update and Standard Arabic Names
Herpetology Notes, volume 14: 1-14 (2021) (published online on 08 January 2021) Checklist of amphibians and reptiles of Morocco: A taxonomic update and standard Arabic names Abdellah Bouazza1,*, El Hassan El Mouden2, and Abdeslam Rihane3,4 Abstract. Morocco has one of the highest levels of biodiversity and endemism in the Western Palaearctic, which is mainly attributable to the country’s complex topographic and climatic patterns that favoured allopatric speciation. Taxonomic studies of Moroccan amphibians and reptiles have increased noticeably during the last few decades, including the recognition of new species and the revision of other taxa. In this study, we provide a taxonomically updated checklist and notes on nomenclatural changes based on studies published before April 2020. The updated checklist includes 130 extant species (i.e., 14 amphibians and 116 reptiles, including six sea turtles), increasing considerably the number of species compared to previous recent assessments. Arabic names of the species are also provided as a response to the demands of many Moroccan naturalists. Keywords. North Africa, Morocco, Herpetofauna, Species list, Nomenclature Introduction mya) led to a major faunal exchange (e.g., Blain et al., 2013; Mendes et al., 2017) and the climatic events that Morocco has one of the most varied herpetofauna occurred since Miocene and during Plio-Pleistocene in the Western Palearctic and the highest diversities (i.e., shift from tropical to arid environments) promoted of endemism and European relict species among allopatric speciation (e.g., Escoriza et al., 2006; Salvi North African reptiles (Bons and Geniez, 1996; et al., 2018). Pleguezuelos et al., 2010; del Mármol et al., 2019). -
Structure±Function Properties of Venom Components from Australian Elapids
PERGAMON Toxicon 37 (1999) 11±32 Review Structure±function properties of venom components from Australian elapids Bryan Grieg Fry * Peptide Laboratory, Centre for Drug Design and Development, University of Queensland, St. Lucia, Qld, 4072, Australia Received 9 December 1997; accepted 4 March 1998 Abstract A comprehensive review of venom components isolated thus far from Australian elapids. Illustrated is that a tremendous structural homology exists among the components but this homology is not representative of the functional diversity. Further, the review illuminates the overlooked species and areas of research. # 1998 Elsevier Science Ltd. All rights reserved. 1. Introduction Australian elapids are well known to be the most toxic in the world, with all of the top ten and nineteen of the top 25 elapids with known LD50s residing exclusively on this continent (Broad et al., 1979). Thus far, three main types of venom components have been characterised from Australian elapids: prothrombin activating enzymes; lipases with a myriad of potent activities; and powerful peptidic neurotoxins. Many species have the prothrombin activating enzymes in their venoms, the vast majority contain phospholipase A2s and all Australian elapid venoms are suspected to contain peptidic neurotoxins. In addition to the profound neurological eects such as disorientation, ¯accid paralysis and respiratory failure, characteristic of bites by many species of Australian elapids is hemorrhaging and incoagulable blood. As a result, these elapids can be divided into two main classes: species with procoagulant venom (Table 1) and species with non-procoagulant venoms (Table 2) (Tan and * Author to whom correspondence should be addressed. 0041-0101/98/$ - see front matter # 1998 Elsevier Science Ltd. -
Ichthyological Exploration of Freshwaters an International Journal for Field-Orientated Ichthyology
Verlag Dr. Friedrich Pfeil ISSN 0936-9902 Excerpt from Ichthyological Exploration of Freshwaters An international journal for field-orientated ichthyology Volume 28 Number 2 This article may be used for research, teaching and private purposes. Exchange with other researchers is allowed on request only. Any substantial or systematic reproduction, re-distribution, re-selling in any form to anyone, in particular deposition in a library, institutional or private website, or ftp-site for public access, is expressly forbidden. Ichthyological Exploration of Freshwaters An international journal for field-orientated ichthyology Volume 28 • Number 2 • January 2018 pages 97-192, 40 figs., 14 tabs. Managing Editor Paulo H. F. Lucinda, Laboratório de Ictiologia Sistemática, Universidade Federal do Tocantins, P.O. Box 136, 77500-000 Porto Nacional, TO, Brazil E-mail [email protected] Honorary Editor Maurice Kottelat, Rue des Rauraques 6, CH-2800 Delémont, Switzerland Associate Editors Ralf Britz, Department of Zoology, The Natural History Museum, London, United Kingdom Kevin W. Conway, Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, USA Jörg Freyhof, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany Sven O. Kullander, Naturhistoriska Riksmuseet, Stockholm, Sweden Heok Hee Ng, Lee Kong Chian Natural History Museum, National University of Singapore, Singapore Editorial Advisory Board Helen K. Larson, Museum and Art Gallery of the Northern Territory, Darwin, Australia Lukas Rüber, Naturhistorisches Museum, Bern, Switzerland Ivan Sazima, Museu de Zoologia, Unicamp, Campinas, Brazil Paul H. Skelton, South African Institute for Aquatic Biodiversity, Grahamstown, South Africa Tan Heok Hui, Lee Kong Chian Natural History Museum, National University of Singapore, Singapore Ichthyological Exploration of Freshwaters is published quarterly Subscriptions should be addressed to the Publisher: Verlag Dr. -
Relict Tropical Fish Fauna in Central Sahara
39 Iclitliyol. Explor. Freshwaters, Vol. 1, No. 1, pp. 39-48,2 figs., 1 tab., January 1990 O 1990 by Verlag Dr. Friedrich Pfeil, München, FRG - ISSN 0936-9902 Relict tropical fish fauna in Central Sahara Christian Lévêque * Following a taxonomic revision of freshwater fishes recorded from the Sahara, an updated species list is given. It appears that most species collected in small water bodies are relict populations of widespread species occuring in surrounding river basins, except for Barbus apleurogramina which might be a relict of a more ancient fish fauna. Distribution patterns are discussed in view of the supposed extent of river catchments during the Holocene. Une révision taxinomique des espèces de poissons récoltées dans le Sahara a permis de dresser une liste actualisée prenant en compte les connaissances récentes. I1 apparaît que la plupart des espèces collectées dans les petites collections d'eau sont des populations reliques d'espèces largement répandues dans les bassins hydrographiques voisins, àl'exception de Barbus npleurogranana qui pourrait être un vestige d'une faune plus ancienne. La distribution actuelle est discutée, à la lumière des données sur l'extension supposée des bassins hydrographiques durant l'Holocène. Introduction taxonomic revisions, it turned out that confusion existed in the identificationof some species, often Since the begining of this century, numerous based on small specimens, sometimes poorly Saharan expeditions were able to collect several preserved. The aim of this paper is to give an fish species in the widely scattered and isolated updated taxonomic review of the relict fish small patches of water in this area (Daget, 1959a, populations in the Sahara, and to discuss their 1968; Dumont, 1979, 1987; Estève. -
Resorption of Oviductal Eggs and Embryos in Squamate Reptiles
HERPETOLOGICAL JOURNAL, Vol. 8, pp. 65-71 ( 1998) RESORPTION OF OVIDUCTAL EGGS AND EMBRYOS IN SQUAMATE REPTILES DANIEL G. BLACKBURN Department of Biology, Life Sciences Center, Tr inity College, Hartford, CT 06106, USA Among squamate reptiles, gravid females are frequently said to be able to resorb infertile and malformed eggs from their oviducts. This pattern, if it existed, would allow females to recycle nutrients from abortive attempts at reproduction, and to increase lifetime reproductive potential by modulating reproductive effort according to environmental circumstances. However, . a review of the literature reveals that evidence for oviductal egg resorption is weak, and does not preclude other fates for abortive eggs (egg retention or expulsion). Furthermore, for the oviduct to resorb eggs would require that it have the fu nctional properties of the digestive tract, properties that may be incompatible with its several reproductive fu nctions. Future work should not assume oviductal egg resorption in squamates without definitive evidence that the eggs are not simply aborted or retained by fe males following absorption of water. INTRODUCTION 1970a; Thompson, 1977, 1982; Stewart, 1989; Stewart et In literature dating back to the late 1800s, fe male liz al., 1990). However, as shown by these and other ards and snakes have been said to be able to resorb eggs studies (Thompson, 1981; Stewart & Castillo, 1984), and embryos from their oviducts under conditions of the yolk typically provides most of the nutrients for de physiological stress and infertility. Theoretically, such velopment. Therefore, given that most of female resorption could be an ideal way fora fe male to mini nutrient investment into the prospective neonate occurs mize loss of nutrients during failed attempts at at the time of ovulation in both oviparous and vivipa forms, a female that could resorb the yolk or the reproduction, and to control reproduction in such a way rous as to maximize lifetime reproductive potential.