Downloaded from Brill.Com10/06/2021 09:29:00AM Via Free Access 42 Luiselli Et Al
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Very European Tale – Britain Still Has Only Three Snake Species, but Its Grass Snake Is Now Assigned to Another Species (Natrix Helvetica)
SHORT COMMUNICATION The Herpetological Bulletin 141, 2017: 44-45 A very European tale – Britain still has only three snake species, but its grass snake is now assigned to another species (Natrix helvetica) UWE FRITZ1* & CAROLIN KINDLER1 1Senckenberg Natural History Collections Dresden, Museum of Zoology, A. B. Meyer Building, 01109 Dresden, Germany *Corresponding author Email: [email protected] ollowing several investigations of the phylogeography and systematics of grass snakes (Fritz et al., 2012; FKindler et al., 2013, 2014; Pokrant et al., 2016), we published a further detailed study on this topic in August (Kindler et al., 2017). Our new investigation revealed that only very limited gene flow occurs between western barred grass snakes and eastern common grass snakes. Consequently, we concluded that the barred grass snake (Fig. 1), previously a subspecies, should be elevated to a full species. August being the ‘silly season’ for news stories led the local media, including the highly respected BBC, to claim that Britain has now an additional snake species, i.e. four instead of three species – the northern viper (Vipera Figure 1. Young N. helvetica showing the distinctive lateral bars berus), the smooth snake (Coronella austriaca) as well as from which the species common name the ‘barred grass snake’ is derived (photo: © Jason Steel) two species of grass snake, the common grass snake (Natrix natrix) and the newly recognised barred grass snake (Natrix helvetica). findings. However, some southern populations identified This upheaval resulted from a complete misunderstanding by Thorpe with barred grass snakes, for instance from of a press release by the Senckenberg Institution. The press northern Italy, turned out to be distinct from N. -
Resource Selection by an Ectothermic Predator in a Dynamic Thermal Landscape
Received: 2 May 2017 | Revised: 16 August 2017 | Accepted: 17 August 2017 DOI: 10.1002/ece3.3440 ORIGINAL RESEARCH Resource selection by an ectothermic predator in a dynamic thermal landscape Andrew D. George1 | Grant M. Connette2 | Frank R. Thompson III3 | John Faaborg1 1Division of Biological Sciences, University of Missouri, Columbia, MO, USA Abstract 2Smithsonian Conservation Biology Institute, Predicting the effects of global climate change on species interactions has remained Front Royal, VA, USA difficult because there is a spatiotemporal mismatch between regional climate models 3U.S.D.A. Forest Service Northern Research and microclimates experienced by organisms. We evaluated resource selection in a Station, Columbia, MO, USA predominant ectothermic predator using a modeling approach that permitted us to Correspondence assess the importance of habitat structure and local real- time air temperatures within Andrew D. George, Department of Biology, Pittsburg State University, Pittsburg, KS USA. the same modeling framework. We radio- tracked 53 western ratsnakes (Pantherophis Email: [email protected] obsoletus) from 2010 to 2013 in central Missouri, USA, at study sites where this spe- cies has previously been linked to prey population demographics. We used Bayesian discrete choice models within an information theoretic framework to evaluate the sea- sonal effects of fine- scale vegetation structure and thermal conditions on ratsnake resource selection. Ratsnake resource selection was influenced most by canopy cover, canopy cover heterogeneity, understory cover, and air temperature heterogeneity. Ratsnakes generally preferred habitats with greater canopy heterogeneity early in the active season, and greater temperature heterogeneity later in the season. This sea- sonal shift potentially reflects differences in resource requirements and thermoregula- tion behavior. -
Population and Ecological Characteristics of the Dice Snake, Natrix Tessellata
Turkish Journal of Zoology Turk J Zool (2019) 43: 657-664 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Short Communication doi:10.3906/zoo-1811-8 Population and ecological characteristics of the dice snake, Natrix tessellata (Laurenti, 1768), in lower portions of the Vrbanja River (Republic of Srpska, Bosnia and Herzegovina) 1, 2 1 2 Goran ŠUKALO *, Sonja NIKOLIĆ , Dejan DMITROVIĆ , Ljiljana TOMOVIĆ 1 Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina 2 Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia Received: 06.11.2018 Accepted/Published Online: 12.09.2019 Final Version: 01.11.2019 Abstract: Despite their comparative richness and accessibility in the Republic of Srpska and in Bosnia and Herzegovina in general, population studies of reptiles have not been performed in Srpska until recently. For example, one of the most common snake species in this area is the dice snake; nevertheless, previous studies have only reported its distribution. The aim of the present study was to analyze characteristics of the dice snake population along the Vrbanja River. Animals were processed during 2011 throughout their activity period. In total, 199 individuals of all ages were collected. We observed substantial differences in numbers of animals captured in different habitat types classified according to the level of anthropogenic influence. Unexpectedly, the largest number of snakes was captured in the zone with the highest anthropogenic influence, while the smallest number was observed in the zone with no anthropogenic pressures. The above is probably connected with the observed greater number of their most common prey, as well as the absence of raptors in areas with human impact. -
An Overview and Checklist of the Native and Alien Herpetofauna of the United Arab Emirates
Herpetological Conservation and Biology 5(3):529–536. Herpetological Conservation and Biology Symposium at the 6th World Congress of Herpetology. AN OVERVIEW AND CHECKLIST OF THE NATIVE AND ALIEN HERPETOFAUNA OF THE UNITED ARAB EMIRATES 1 1 2 PRITPAL S. SOORAE , MYYAS AL QUARQAZ , AND ANDREW S. GARDNER 1Environment Agency-ABU DHABI, P.O. Box 45553, Abu Dhabi, United Arab Emirates, e-mail: [email protected] 2Natural Science and Public Health, College of Arts and Sciences, Zayed University, P.O. Box 4783, Abu Dhabi, United Arab Emirates Abstract.—This paper provides an updated checklist of the United Arab Emirates (UAE) native and alien herpetofauna. The UAE, while largely a desert country with a hyper-arid climate, also has a range of more mesic habitats such as islands, mountains, and wadis. As such it has a diverse native herpetofauna of at least 72 species as follows: two amphibian species (Bufonidae), five marine turtle species (Cheloniidae [four] and Dermochelyidae [one]), 42 lizard species (Agamidae [six], Gekkonidae [19], Lacertidae [10], Scincidae [six], and Varanidae [one]), a single amphisbaenian, and 22 snake species (Leptotyphlopidae [one], Boidae [one], Colubridae [seven], Hydrophiidae [nine], and Viperidae [four]). Additionally, we recorded at least eight alien species, although only the Brahminy Blind Snake (Ramphotyplops braminus) appears to have become naturalized. We also list legislation and international conventions pertinent to the herpetofauna. Key Words.— amphibians; checklist; invasive; reptiles; United Arab Emirates INTRODUCTION (Arnold 1984, 1986; Balletto et al. 1985; Gasperetti 1988; Leviton et al. 1992; Gasperetti et al. 1993; Egan The United Arab Emirates (UAE) is a federation of 2007). -
Caudal Distraction by Rat Snakes (Colubridae, Elaphe): a Novel Behavior Used When Capturing Mammalian Prey
Great Basin Naturalist Volume 59 Number 4 Article 8 10-15-1999 Caudal distraction by rat snakes (Colubridae, Elaphe): a novel behavior used when capturing mammalian prey Stephen J. Mullin University of Memphis, Memphis, Tennessee Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Mullin, Stephen J. (1999) "Caudal distraction by rat snakes (Colubridae, Elaphe): a novel behavior used when capturing mammalian prey," Great Basin Naturalist: Vol. 59 : No. 4 , Article 8. Available at: https://scholarsarchive.byu.edu/gbn/vol59/iss4/8 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Ba....in Naturalist 59(4), ©1999, pp. 361....167 CAUDAL DISTRACTION BY RAT SNAKES (COLUBHIDAE, ELAPHE): A NOVEL BEHAVIOR USED WHEN CAPTURING MAMMALIAN PREY Stephen]. Mullin1 AJ3S11UCT.--el.mthtl movement in snakes trulY serve ei.ther a pl'Cdatory (e.g., caudal luring) or defensive (e.g., rattling, aposem,ttism) fUllction, I descliho n new behavioral pattern of tai.l movement in snakes. Gray rat snakl.'$ (Elaphe OhSO!etd spiloid.es) fi)raging on ~ma11 mmnmnls (Mus d01ne~·ticus) Inoved. their tails in un erratic, whiplike fashion uIter detecting prey in their vidnity. The thrashing movement in the horizontal plfme was audibly and visually obviolls, resulting in dis placement of leaf litter around the hlil. All subjects displayed the behavior, hilt not in all foraging episodes. -
Proceedings of the Indiana Academy Of
Serological Relationships among some Midwestern Snakes Sherman A. Minton Jr., Department of Microbilogy and Immunology Indiana University School of Medicine, Indianapolis, Indiana 46202 Abstract Using immunoelectrophoresis, serum samples from 24 species of midwestern snakes were reacted against antiserums raised against serums of Elaphe obsoleta, Natrix sipedon, and Agkistrodon piscivorus. On the basis of immunoelectrophoretic patterns, three clusters of species can be recognized. One consists of Natrix (3 sp.), Thamnophis (2 sp.), Regina septemvittata, Clonophis kirtlandi, Storeria dekayi and Virginia valeriae. A second consists of Elaphe (2 sp.), Lampropeltis (3 sp.) and Pituophis melanoleucus. The third consists of Agkistrodon (2sp.), Sistrurus catenatus, and Crotalus horridus. Five species {Coluber constrictor, Diadophis punctatus, Carphophis amoenus, Farancia abacura, and Heterodon platyrhinos) do not fit well into any of the above groups nor do they appear closely related to each other. Immunoelectrophoretic patterns do not indicate a markedly closer relationship between the Natrix and Elaphe groups of nonvenomous snakes than exists between these groups and the Agkistrodon group of pit vipers. Elaphe, Natrix and Agkistrodon all have species in east Asia, and the American groups presumably evolved from this stock. Other relationships and their zoogeographic implications are discussed. Introduction About 38 species of snakes occur in Indiana and adjoining states. Traditional taxonomy divides them into two families, the venomous pit vipers (Crotalinae, now generally considered a subfamily of the Viperidae) and the "typical nonvenomous snakes" of the family Colubridae. However, work during the past decade by investigators using both morphological and nonmorphological criteria has shown the Colubridae to be a highly heterogenous group (2,6,9,12,13). -
Conservation Genetics of the Imperiled Striped Whipsnake in Washington, USA
Herpetological Conservation and Biology 15(3):597–610. Submitted: 9 March 2020; Accepted: 5 November 2020; Published: 16 December 2020. CONSERVATION GENETICS OF THE IMPERILED STRIPED WHIPSNAKE IN WASHINGTON, USA DAVID S. PILLIOD1,4, LISA A. HALLOCK2, MARK P. MILLER3, THOMAS D. MULLINS3, AND SUSAN M. HAIG3 1U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, Idaho 83706, USA 2Wildlife Program, Washington Department of Fish and Wildlife, 1111 Washington Street, Olympia, Washington 98504, USA 3U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 Southwest Jefferson Way, Corvallis, Oregon 97331, USA 4Corresponding author, email: [email protected] Abstract.—Conservation of wide-ranging species is aided by population genetic information that provides insights into adaptive potential, population size, interpopulation connectivity, and even extinction risk in portions of a species range. The Striped Whipsnake (Masticophis taeniatus) occurs across 11 western U.S. states and into Mexico but has experienced population declines in parts of its range, particularly in the state of Washington. We analyzed nuclear and mitochondrial DNA extracted from 192 shed skins, 63 muscle tissue samples, and one mouth swab to assess local genetic diversity and differentiation within and between the last known whipsnake populations in Washington. We then placed that information in a regional context to better understand levels of differentiation and diversity among whipsnake populations in the northwestern portion of the range of the species. Microsatellite data analyses indicated that there was comparable genetic diversity between the two extant Washington populations, but gene flow may be somewhat limited. We found moderate to high levels of genetic differentiation among states across all markers, including five microsatellites, two nuclear genes, and two mitochondrial genes. -
American Corn Snake Risk Assessment
Invasive animal risk assessment Biosecurity Queensland Agriculture Fisheries and Department of American corn snake Elaphe guttata Steve Csurhes and Paul Fisher First published 2009 Updated 2016 © State of Queensland, 2016. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence visit http://creativecommons.org/licenses/ by/3.0/au/deed.en" http://creativecommons.org/licenses/by/3.0/au/deed.en P e s t a n i m a l r i s k a s s e s s m e n t : American corn snake Elaphe guttata 2 Contents Summary 4 Introduction 5 Identity and taxonomy 5 Taxonomy 5 Description and biology 5 Diet 7 Reproduction 7 Predators and diseases 7 Origin and distribution 9 Status in Australia and Queensland 10 Preferred habitat 10 History as a pest elsewhere 11 Pest potential in Queensland 11 Climate match 11 Habitat match 12 Generalist diet 13 High fecundity 13 Risk of introduction and release 13 Numerical risk analysis 13 Appendix 14 Risk assessment using the Australian reptile and amphibian model 14 Risk assessment using the bird and mammal model (adapted for reptiles) 14 References 15 P e s t a n i m a l r i s k a s s e s s m e n t : American corn snake Elaphe guttata 3 Summary Elaphe guttata (American corn snake) is a small to medium-sized slender snake up to 180 cm long, native to the south-eastern United States. -
"Black Snakes": Identification and Ecology1
WEC214 "Black Snakes": Identification and Ecology1 Steve A. Johnson and Monica E. McGarrity2 Introduction Black-Colored Snakes in the Southeast The southeastern United States is home to a great diversity of snakes. There are about 45 species of Some snake species look quite similar and may snakes (only 6 of which are venomous) that may be be difficult for those inexperienced with snakes to found along the Atlantic and Gulf coastal states from confidently identify. Among these are several species Louisiana to North Carolina. These snakes live in a of southeastern snakes commonly called “black variety of upland and wetland habitats and play snakes” because of their primarily black coloration. important roles in the region's ecology. They are These include the Black Swampsnake, Black both predators and prey, and thus form important Ratsnake, Ring-necked Snake, Red-bellied links in natural food webs. Mudsnake, Black Pinesnake, Eastern Indigo Snake and the Southern Black Racer. The latter two — Regrettably, populations of many species of Eastern Indigo and Black Racer—are the species snakes are declining not only throughout the most often referred to as “black snakes”. southeastern United States but also worldwide. These declines are largely due to habitat loss and In addition to those listed above, individuals of degradation, high mortality on roads and pollution several species of water snakes, the Eastern associated with development, agriculture and other Hog-nosed Snake and the venomous Cottonmouth human activities. In addition, introduction of Moccasin may be black colored to a great extent, invasive species, disease, parasitism and even climate depending on the age of the individual and the habitat change may exert negative effects on snake in which it is found. -
Prey-Handling Behavior of Hatchling Elaphe Helena (Colubridae)
Herpetologica, 59(4), 2003, 469–474 Ó 2003 by The Herpetologists’ League, Inc. PREY-HANDLING BEHAVIOR OF HATCHLING ELAPHE HELENA (COLUBRIDAE) 1,2 RITA S. MEHTA Department of Biology, University of Texas, Tyler, TX 75719, USA ABSTRACT: The effects of prey size on prey-handling behavior for 60 ingestively naive hatchling Elaphe helena were studied in the laboratory. Hatchlings were randomly assigned to one of three diet categories in which prey (Mus musculus) varied by relative mass differences of 20–35%, 40–46%, or 50–59% of an individual snake’s own body mass. The effects of prey size on capture position, direction of ingestion, condition of prey at ingestion (dead/alive), feeding duration, and prey-handling tactic were observed and recorded for each feeding episode. Results indicated that prey size significantly affected the prey-handling behavior of hatchling E. helena. In the largest relative mass category, hatchlings captured prey by the anterior end more often than in the smaller two relative mass categories. Prey from the smallest relative mass category were simply seized whereas, in the medium and large categories, pinion and constriction behaviors were observed. Time to subdue and ingest the prey item increased with prey size categories. Key words: Colubridae; Effects of prey size; Elaphe helena; Prey-handling behavior THE SIZE, type, and activity level of various (i.e., press prey against the substrate with the prey are thought to influence the feeding anterior portion of the body) and constrict behaviors for many advanced snakes (de small active mice than nestling rats. Further- Queiroz, 1984; Moon, 2000). -
Elaphe Subocularis (Brown) Trans-Pecos Rat Snake
268.1 REPTILIA: SQUAMATA: SERPENTES: COLUBRIDAE ELAPHE SUBOCULARIS Catalogue of American Amphibians and Reptiles. of the Edwards Plateau south through Coahuila and Chihuahua, Mexico, including portions of eastern Durango and western Nue• WORTHINGTON,RICHARDD. 1980. Elaphe subocularis. vo Leon. Literature records include the following: New Mexico (Lewis, 1948, 1950; Dowling, 1957; Jameson, 1957; Gehlbach, 1959); Texas (Raun and Gehlbach, 11172and references there• Elaphe subocularis (Brown) in; Mather and Dixon, 1976; Tryon, 1976; Worthington, 1976); Trans-Pecos rat snake Chihuahua (Axtell and Webb, 1963); Coahuila (Smith, 1939; Schmidt and Owens, 1944); Durango (Webb, 1960); Nuevo Coluber subocularis Brown, 1901:492. Type-locality, "Davis Leon (Martin del Campo, 1953; Conant, 1965). Mountains, fifty miles southwest of Pecos, near the head of Toyah Creek." Holotype, Acad. Natur. Sci. Philadelphia 13733, adult male, collected by Mr. E. Mayenberg, 1901 (not • FOSSIL RECORD. Brattstrom (1964) reported Elaphe sub• examined by author). ocularis from several Pleistocene cave deposits on the western Elaphe subocularis: Stejneger and Barbour, 1917:84. Name val• flank of Pyramid Peak, Organ Mountains, Dona Ana County, New idated by Internat!. Comm. Zoo!. Nomenc!., 1965:182. Mexico .. Elaphe sclerotica: Smith, 1941:135. Substitute name for Coluber subocularis Brown, a secondary homonym of Bascanion sub• • PERTINENTLITERATURE. Important reviews are Dowling oculare Cope, 1866; name invalidated by Internat!. Comm. (1957), Wright and Wright (1957), -
Checklist of Amphibians and Reptiles of Morocco: a Taxonomic Update and Standard Arabic Names
Herpetology Notes, volume 14: 1-14 (2021) (published online on 08 January 2021) Checklist of amphibians and reptiles of Morocco: A taxonomic update and standard Arabic names Abdellah Bouazza1,*, El Hassan El Mouden2, and Abdeslam Rihane3,4 Abstract. Morocco has one of the highest levels of biodiversity and endemism in the Western Palaearctic, which is mainly attributable to the country’s complex topographic and climatic patterns that favoured allopatric speciation. Taxonomic studies of Moroccan amphibians and reptiles have increased noticeably during the last few decades, including the recognition of new species and the revision of other taxa. In this study, we provide a taxonomically updated checklist and notes on nomenclatural changes based on studies published before April 2020. The updated checklist includes 130 extant species (i.e., 14 amphibians and 116 reptiles, including six sea turtles), increasing considerably the number of species compared to previous recent assessments. Arabic names of the species are also provided as a response to the demands of many Moroccan naturalists. Keywords. North Africa, Morocco, Herpetofauna, Species list, Nomenclature Introduction mya) led to a major faunal exchange (e.g., Blain et al., 2013; Mendes et al., 2017) and the climatic events that Morocco has one of the most varied herpetofauna occurred since Miocene and during Plio-Pleistocene in the Western Palearctic and the highest diversities (i.e., shift from tropical to arid environments) promoted of endemism and European relict species among allopatric speciation (e.g., Escoriza et al., 2006; Salvi North African reptiles (Bons and Geniez, 1996; et al., 2018). Pleguezuelos et al., 2010; del Mármol et al., 2019).