First Record of the Skink Chalcides in Coastal Areas of Guinea Bissau And

Total Page:16

File Type:pdf, Size:1020Kb

First Record of the Skink Chalcides in Coastal Areas of Guinea Bissau And ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at SHORT NOTE HERPETOZOA 20 (3/4) Wien, 30. Jänner 2008 SHORT NOTE 189 SCHNEIDER J. G. (1783): Allgemeine Naturgeschichte 1978; HÄKANSSON 1981; GRUSCHWITZ et al. der Schildkröten, nebst einem systematischen Verzeich- 1991; PAUWELS & MEIRTE 1996; BARNETT et nisse der einzelnen Arten und zwey Kupfern. Leipzig (J. G Müllersche Buchhandlung), 364 pp., 2 pts. VON al. 2001), Senegal (GRANDISON 1956; CON- SCHREBER, J. Ch. D. (1774-1792): Die Säugthiere in DAMIN & VlLLIERS 1962; ClSSE & KARNS Abbildungen nach der Natur mit Beschreibungen, fort- 1978; BÖHME 1978; JOGER & LAMBERT gesetzt (H. 65-69, 1817-1824) von GOLDFUSS, A. und (MANACAS (1834 ff.) WAGNER, J. A., Erlangen (W. Walther). WAG- 2002) and Guinea Bissau 1955). LER, J. (1821): Die Amphibien. (Lieferung 1). Nürnberg Of the four known specimens, three are pre- (J. B.Geyer), 12 pp., 6 pts. served in the British Museum (BMNH KEY WORDS: Reptilia, Testudines, Emydidae, 1927.2.2.64-66). One of these is from Cape Chrysemys picta picta, Hydrochelys picta, junior syn- St. Mary (13°29'N, 16°40'W) on the At- onym; nomenclature, priority, nomen oblitum, nomen lantic coast near the capital city of Banjul, protectum, taxonomy while the two other specimens are simply SUBMITTED: August 29, 2007 labelled "Gambia" (HÄKANSSON 1981). The AUTHORS: Richard GEMEL, Heinz GRILLITSCH, fourth known specimen of C. armitagei First Zoological Department, Herpetological Collection, Natural History Museum Vienna, Burgring 7, A-1010 (stored at Makasutu Wildlife Trust, Serre- Wien < [email protected] > kunda, Gambia; collection number: MWTR 003) is also from the coast of The Gambia, north of Kartung village (13°06'N, 16°45' W) (GREENBAUM 2005). First record of the skink Chalcides Here we report the occurrence of armitagei BOULENGER, 1922 Chalcides armitagei at the village of Boukot Ouolof (12°25'N, 16°45'W), on the in coastal areas of Guinea Bissau coast of Casamance in Senegal, where we and Senegal obtained thirteen specimens from villagers, and at the mouth of the river Essoukoudiak Twenty-four species are currently re- bolon (12°21'N, 16°40'W), 3 km W of cognised in the genus Chalcides (Squamata: Sucujaque in Guinea Bissau, where we col- Scincidae), but only six species are known lected two specimens of this species on July from Sub-Saharan Africa: Chalcides ocella- 12, 2006. The specimens are preserved at tus (FORSKAL, 1775)/ C. ragazzii PASTEUR, the Institut de Recherche pour le Deve- 1981, C. bottegi BOULENGER 1898, C. thier- loppement (IRD), Dakar. The main meas- ryi TORNIER, 1901, C. pulchellus Moc- urements and meristic data of Senegalese QUARD, 1906 and C. armitagei BOULENGER, and Bissau-Guinean specimens are indicat- 1922 (PASTEUR 1981; CAPUTO et al. 1995, ed in Table 1. They present the following GREENBAUM 2005; GREENBAUM et al. 2006). characters that distinguish C. armitagei Chalcides pulchellus and C. thierryi are dis- from all other Sub-Saharan species of tributed in the Sudan and Guinean savannas Chalcides (GREENBAUM et al. 2006): limbs of West Africa, from Guinea to Mali and tridactyl, postnasal usually absent (except from Ghana to Nigeria, respectively. for one specimen on both sides of the head Chalcides ocellatus is widely distributed in and for another specimen on one side only), Northern and Eastern Africa with the occur- three supraciliaries, five supralabials (six on rence of isolated populations in the Sahelian one side of the head for one specimen), four Niger River flood plain. The range areas of infralabials, 91-97 scales from mental to Chalcides ragazzii and C. bottegi are limit- anus. Among species of Chalcides from ed to the horn of Africa. other parts of the world, five species are tri- The Armitage's Skink Chalcides armi- dactyl, all belonging to the C chalcides tagei BOULENGER, 1922, is considered as the group and distributed in Mediterranean rarest of the six species of Sub-Saharan countries (PASTEUR 1981; CAPUTO 1993; Africa (HÄKANSSON 1981; GREENBAUM CAPUTO et al. 1995): C. chalcides (LINNAE- 2005). Only four specimens, all from The US, 1758), C. mertensi KLAUSEWITZ, 1954, Gambia, have been reported since the C. pseudostriatus CAPUTO, 1993, C. minu- description of the species, despite reason- tus CAPUTO, 1993 and C. striatus (CUVIER, ably comprehensive collecting in The 1829). They differ from C. armitagei by a Gambia (ANDERSSON 1937; MILES et al. series of characters, including the presence ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at 190 SHORT NOTE HERPETOZOA 20 (3/4) Wien, 30. Jänner 2008 SHORT NOTE Io *•• es V o ¥ ^^••>- II S3 S2 3 g s zv3 a ON C oo o •— -a 00 o i Fig. 1: Chalcides armitagei BOULENGER, 1922 * ^t «ri Tt — TJ- i from the vicinity of Sucujaque, Guinea Bissau. 15 5> =2 = •_-O —«OOO II ^ i/^ f*^ r^^ T^ rv^ f^*i J i t t2gSidb *i ü Ifi 2% c t/3 330O0OOOO2°20GO ll .s[.siö oododooodooo ggoppooppoopopp C/5C/1ÖCOOOOCOOCOOO CO CO CO CO CQ d^ CO CO CO CO CO CD CO I Fig. 2: Habitat of Chalcides armitagei BOULENGER, 1922 near Sucujaque, Guinea Bissau, at the beginning of the rainy season in July 2006. ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at SHORT NOTE HERPETOZOA 20 (3/4) Wien, 30. Jänner 2008 SHORT NOTE 191 of a postnasal, four supraciliaries, a more the Chalcides chalcides complex (Reptilia, Scincidae), elongated body and a higher number of with description of two new species.- Bollettino del Museo Regionale di Scienze Naturali, Torino; 11: 47- scales from mental to anus (PASTEUR 1981; 120. CAPUTO V. & LANZA B. & PALMIERI, R. (1995): CAPUTO 1993; CAPUTO et al. 1995; Body elongation and limb reduction in the genus SCHLEICH et al. 1996). Chalcides LAURENTI 1768 (Squamata Scincidae): a comparative study. Tropical Zoology, Firenze; 8: 95- The thirteen specimens from Senegal 152. CISSE, M. & KARNS, D. R. (1978): Les sauriens du were collected either on the surface or under Senegal.- Bulletin de l'Institut Fundamental d'Afrique Noire (I.F.A.N.), Dakar; (serie A, sci. nat.) 10: 144-211. the leaf litter in palm tree plantations nearby CONDAMIN, M. & VILLIERS, A. (1962): Contribution ä the houses of the village. The two speci- l'etude de la faune de la basse Casamance. II Reptiles.- mens from Guinea Bissau were collected on Bulletin de l'Institut Fondamental d'Afrique Noire the edge of rice fields (Figs. 1 and 2). In (I.F.A.N.), Dakar; (serie A, sei. nat.) 24: 897-908. GRANDISON, A. G. C. (1956): On a collection of lizards each station the soil was sandy. No speci- from West Africa.- Bulletin de l'Institut Fondamental men was observed on the beaches, but all d'Afrique Noire (I.F.A.N.), Dakar; (serie A, sei. nat.) were collected less than two kilometers 18: 223-245. GREENBAUM, E. (2005): Systematics of from the coastline. We interviewed vil- the West African skinks in the Chalcides thierry group: composition, distribution, and redescription of types.- lagers about this species. Chalcides armi- African Journal of Herpetology, Bloemfontein; 54: 17- tagei is well known from the villagers and 29. GREENBAUM, E. & CAMPBELL, A. C. & RAXWORTHY, there is no doubt that it is very abundant in C. J. (2006): A revision of sub-saharan Chalcides the area. By contrast, we were unable to (Squamata: Scincidae), with redescriptions of two East African species.- Herpetologica, Lawrence; 62: 71-89. find any specimen 20-30 km inland in the GRUSCHWITZ, M. & LENZ, S. & BÖHME, W. (1991): Zur Oussouye area. Kenntnis der Herpetofauna von Gambia (Westafrika). Teil 1: Einführung, Froschlurche (Amphibia, Anura), Our observations in Senegal and Schildkröten (Reptilia, Chelonia), Krokodile Guinea Bissau, the place of origin of the (Crocodylia) und Echsen (Sauria).- Herpetofauna, Gambian specimens, and the failure of pre- Weinstadt; 13: 13-22. HÄKANSSON, T. (1981): An annotated checklist of reptiles known to occur in the vious studies to find this species in Senegal Gambia.- Journal of Herpetology, Athens, Ohio; 15: and Guinea Bissau, suggest that C. 155-161. JOGER, U. & LAMBERT, M. R. K. (2002): armitagei is a psammophile species whose Inventory of reptiles and amphibians in SE Senegal distribution is limited to the coast of this including the Niokolo-Koba National Park, with obser- vations on factors influencing diversity.- Tropical region of West Africa. A strictly coastal dis- Zoology, Firenze; 15: 165-185. MANACAS, S. (1955): tribution is unique in the genus Chalcides Säurios e ofidios da Guine Portuguesa.- Anais da Junta for Sub-Saharan species, but is known for de Investigates do Ultramar, Lisboa; 10: 1-29. MILES, two Mediterranean species: Chalcides par- M. A. & THOMSON, A. G. & WALTERS, G. W. (1978): Amphibians and reptiles from the vicinity of Boughari, allelus (DOUMERGUE, 1901) and C mauri- Casamance (Senegal), and the Gambia.- Bulletin de tanicus (DUMERIL & BIBRON, 1839), two l'Institut Fondamental d'Afrique Noire (I.F.A.N.), endemics of NW Algeria and NE Morocco, Dakar; (serie A, sei. nat.) 40: 437-456. PASTEUR, G. from Oran to Melilla, which are distributed (1981): A survey of the species groups of the Old World scincid genus Chalcides.- Journal of in coastal sands and plantations along the Herpetology, Athens, Ohio; 15: 1-16. PAUWELS, O. & Mediterranean Sea (BONS & GENIEZ 1996; MEIRTE, D. (1996): Contribution to the knowledge of SCHLEICH etal. 1996). the Gambian herpetofauna.- British Herpetolological Society Bulletin, London; 56: 27-34. SCHLEICH, H. H. REFERENCES: ANDERSSON, L. G. (1937): & KÄSTLE, W. & KABISCH, K. (1996): Amphibians and Reptiles and batrachians collected in the Gambia by reptiles of North Africa: biology, systematics, field Gustav Svensson and Birger Rudebeck (Swedish expe- guide. Koenigstein (Koeltz Scientific Publishers), pp.
Recommended publications
  • Downloaded from Brill.Com10/06/2021 09:29:00AM Via Free Access 42 Luiselli Et Al
    Contributions to Zoology, 74 (1/2) 41-49 (2005) Analysis of a herpetofaunal community from an altered marshy area in Sicily; with special remarks on habitat use (niche breadth and overlap), relative abundance of lizards and snakes, and the correlation between predator abundance and tail loss in lizards Luca Luiselli1, Francesco M. Angelici2, Massimiliano Di Vittorio3, Antonio Spinnato3, Edoardo Politano4 1 F.I.Z.V. (Ecology), via Olona 7, I-00198 Rome, Italy. E-mail: [email protected] 2 F.I.Z.V. (Mammalogy), via Cleonia 30, I-00152 Rome, Italy. 3 Via Jevolella 2, Termini Imprese (PA), Italy. 4 Centre of Environmental Studies ‘Demetra’, via Tomassoni 17, I-61032 Fano (PU), Italy Abstract relationships, thus rendering the examination of the relationships between predators and prey an extreme- A field survey was conducted in a highly degraded barren en- ly complicated task for the ecologist (e.g., see Con- vironment in Sicily in order to investigate herpetofaunal com- nell, 1975; May, 1976; Schoener, 1986). However, munity composition and structure, habitat use (niche breadth and there is considerable literature (both theoretical and overlap) and relative abundance of a snake predator and two spe- empirical) indicating that case studies of extremely cies of lizard prey. The site was chosen because it has a simple community structure and thus there is potentially less ecological simple communities, together with the use of appropri- complexity to cloud any patterns observed. We found an unexpect- ate minimal models, can help us to understand the edly high overlap in habitat use between the two closely related basis of complex patterns of ecological relationships lizards that might be explained either by a high competition for among species (Thom, 1975; Arditi and Ginzburg, space or through predator-mediated co-existence i.e.
    [Show full text]
  • Exploring the Host Specificity and Diversity of Haemogregarines in the Canary Islands Beatriz Tomé1,2*, Ana Pereira1,2, Fátima Jorge3, Miguel A
    Tomé et al. Parasites & Vectors (2018) 11:190 https://doi.org/10.1186/s13071-018-2760-5 RESEARCH Open Access Along for the ride or missing it altogether: exploring the host specificity and diversity of haemogregarines in the Canary Islands Beatriz Tomé1,2*, Ana Pereira1,2, Fátima Jorge3, Miguel A. Carretero1, D. James Harris1 and Ana Perera1 Abstract Background: Host-parasite relationships are expected to be strongly shaped by host specificity, a crucial factor in parasite adaptability and diversification. Because whole host communities have to be considered to assess host specificity, oceanic islands are ideal study systems given their simplified biotic assemblages. Previous studies on insular parasites suggest host range broadening during colonization. Here, we investigate the association between one parasite group (haemogregarines) and multiple sympatric hosts (of three lizard genera: Gallotia, Chalcides and Tarentola) in the Canary Islands. Given haemogregarine characteristics and insular conditions, we hypothesized low host specificity and/or occurrence of host-switching events. Methods: A total of 825 samples were collected from the three host taxa inhabiting the seven main islands of the Canarian Archipelago, including locations where the different lizards occurred in sympatry. Blood slides were screened to assess prevalence and parasitaemia, while parasite genetic diversity and phylogenetic relationships were inferred from 18S rRNA gene sequences. Results: Infection levels and diversity of haplotypes varied geographically and across host groups. Infections were found in all species of Gallotia across the seven islands, in Tarentola from Tenerife, La Gomera and La Palma, and in Chalcides from Tenerife, La Gomera and El Hierro. Gallotia lizards presented the highest parasite prevalence, parasitaemia and diversity (seven haplotypes), while the other two host groups (Chalcides and Tarentola) harbored one haplotype each, with low prevalence and parasitaemia levels, and very restricted geographical ranges.
    [Show full text]
  • An Overview and Checklist of the Native and Alien Herpetofauna of the United Arab Emirates
    Herpetological Conservation and Biology 5(3):529–536. Herpetological Conservation and Biology Symposium at the 6th World Congress of Herpetology. AN OVERVIEW AND CHECKLIST OF THE NATIVE AND ALIEN HERPETOFAUNA OF THE UNITED ARAB EMIRATES 1 1 2 PRITPAL S. SOORAE , MYYAS AL QUARQAZ , AND ANDREW S. GARDNER 1Environment Agency-ABU DHABI, P.O. Box 45553, Abu Dhabi, United Arab Emirates, e-mail: [email protected] 2Natural Science and Public Health, College of Arts and Sciences, Zayed University, P.O. Box 4783, Abu Dhabi, United Arab Emirates Abstract.—This paper provides an updated checklist of the United Arab Emirates (UAE) native and alien herpetofauna. The UAE, while largely a desert country with a hyper-arid climate, also has a range of more mesic habitats such as islands, mountains, and wadis. As such it has a diverse native herpetofauna of at least 72 species as follows: two amphibian species (Bufonidae), five marine turtle species (Cheloniidae [four] and Dermochelyidae [one]), 42 lizard species (Agamidae [six], Gekkonidae [19], Lacertidae [10], Scincidae [six], and Varanidae [one]), a single amphisbaenian, and 22 snake species (Leptotyphlopidae [one], Boidae [one], Colubridae [seven], Hydrophiidae [nine], and Viperidae [four]). Additionally, we recorded at least eight alien species, although only the Brahminy Blind Snake (Ramphotyplops braminus) appears to have become naturalized. We also list legislation and international conventions pertinent to the herpetofauna. Key Words.— amphibians; checklist; invasive; reptiles; United Arab Emirates INTRODUCTION (Arnold 1984, 1986; Balletto et al. 1985; Gasperetti 1988; Leviton et al. 1992; Gasperetti et al. 1993; Egan The United Arab Emirates (UAE) is a federation of 2007).
    [Show full text]
  • Aquatic Habits of Some Scincid and Lacertid Lizards in Italy
    Herpetology Notes, volume 14: 273-277 (2021) (published online on 01 February 2021) Aquatic habits of some scincid and lacertid lizards in Italy Matteo Riccardo Di Nicola1, Sergio Mezzadri2, Giacomo Bruni3, Andrea Ambrogio4, Alessia Mariacher5,*, and Thomas Zabbia6 Among European lizards, there are no strictly aquatic thermoregulation (Webb, 1980). We here report several or semi-aquatic species (Corti et al., 2011). The only remarkable observations of different behaviours in ones that regularly show familiarity with aquatic aquatic environments in non-accidental circumstances environments are Zootoca vivipara (Jacquin, 1787) and for three Italian lizard species (Chalcides chalcides, especially Z. carniolica (Mayer et al., 2000). Species of Lacerta bilineata, Podarcis muralis). the genus Zootoca can generally be found in wetlands and peat bogs (Bruno, 1986; Corti and Lo Cascio, 1999; Chalcides chalcides (Linnaeus, 1758) Lapini, 2007; Bombi, 2011; Speybroeck, 2016; Di Italian Three-toed Skink Nicola et al., 2019), swimming through the habitat from one floating site to another for feeding, or for escape First event. On 1 July 2020 at 12:11 h (sunny weather; (Bruno, 1986; Glandt, 2001; Speybroeck et al., 2016). Tmax = 32°C; Tavg = 25°C) near Poggioferro, Grosseto These lizards are apparently even capable of diving into Province, Italy (42.6962°N, 11.3693°E, elevation a body of water to reach the bottom in order to flee from 494 m), one of the authors (AM) observed an Italian predators (Bruno, 1986). three-toed skink floating in a near-vertical position in Nonetheless, aquatic habits are considered infrequent a swimming pool, with only its head above the water in other members of the family Lacertidae, including surface (Fig.
    [Show full text]
  • Checklist of Amphibians and Reptiles of Morocco: a Taxonomic Update and Standard Arabic Names
    Herpetology Notes, volume 14: 1-14 (2021) (published online on 08 January 2021) Checklist of amphibians and reptiles of Morocco: A taxonomic update and standard Arabic names Abdellah Bouazza1,*, El Hassan El Mouden2, and Abdeslam Rihane3,4 Abstract. Morocco has one of the highest levels of biodiversity and endemism in the Western Palaearctic, which is mainly attributable to the country’s complex topographic and climatic patterns that favoured allopatric speciation. Taxonomic studies of Moroccan amphibians and reptiles have increased noticeably during the last few decades, including the recognition of new species and the revision of other taxa. In this study, we provide a taxonomically updated checklist and notes on nomenclatural changes based on studies published before April 2020. The updated checklist includes 130 extant species (i.e., 14 amphibians and 116 reptiles, including six sea turtles), increasing considerably the number of species compared to previous recent assessments. Arabic names of the species are also provided as a response to the demands of many Moroccan naturalists. Keywords. North Africa, Morocco, Herpetofauna, Species list, Nomenclature Introduction mya) led to a major faunal exchange (e.g., Blain et al., 2013; Mendes et al., 2017) and the climatic events that Morocco has one of the most varied herpetofauna occurred since Miocene and during Plio-Pleistocene in the Western Palearctic and the highest diversities (i.e., shift from tropical to arid environments) promoted of endemism and European relict species among allopatric speciation (e.g., Escoriza et al., 2006; Salvi North African reptiles (Bons and Geniez, 1996; et al., 2018). Pleguezuelos et al., 2010; del Mármol et al., 2019).
    [Show full text]
  • Resorption of Oviductal Eggs and Embryos in Squamate Reptiles
    HERPETOLOGICAL JOURNAL, Vol. 8, pp. 65-71 ( 1998) RESORPTION OF OVIDUCTAL EGGS AND EMBRYOS IN SQUAMATE REPTILES DANIEL G. BLACKBURN Department of Biology, Life Sciences Center, Tr inity College, Hartford, CT 06106, USA Among squamate reptiles, gravid females are frequently said to be able to resorb infertile and malformed eggs from their oviducts. This pattern, if it existed, would allow females to recycle nutrients from abortive attempts at reproduction, and to increase lifetime reproductive potential by modulating reproductive effort according to environmental circumstances. However, . a review of the literature reveals that evidence for oviductal egg resorption is weak, and does not preclude other fates for abortive eggs (egg retention or expulsion). Furthermore, for the oviduct to resorb eggs would require that it have the fu nctional properties of the digestive tract, properties that may be incompatible with its several reproductive fu nctions. Future work should not assume oviductal egg resorption in squamates without definitive evidence that the eggs are not simply aborted or retained by fe males following absorption of water. INTRODUCTION 1970a; Thompson, 1977, 1982; Stewart, 1989; Stewart et In literature dating back to the late 1800s, fe male liz­ al., 1990). However, as shown by these and other ards and snakes have been said to be able to resorb eggs studies (Thompson, 1981; Stewart & Castillo, 1984), and embryos from their oviducts under conditions of the yolk typically provides most of the nutrients for de­ physiological stress and infertility. Theoretically, such velopment. Therefore, given that most of female resorption could be an ideal way fora fe male to mini­ nutrient investment into the prospective neonate occurs mize loss of nutrients during failed attempts at at the time of ovulation in both oviparous and vivipa­ forms, a female that could resorb the yolk or the reproduction, and to control reproduction in such a way rous as to maximize lifetime reproductive potential.
    [Show full text]
  • A Candidate Species of Chalcides Laurenti, 1768, in North
    Mendieta_etal_new_Chalcides_north_Africa:HerPeTozoA.qxd 08.02.2017 15:42 Seite 1 HerPeTozoA 29 (3/4): 155 - 161 155 Wien, 30. Jänner 2017 Another record or a new taxon? A candidate species of Chalcides LAurenTi , 1768, in north Africa (Squamata: Sauria: Scincidae) Weiterer nachweis oder neues Taxon? ein Kandidat für eine bisher unbenannte nordafrikanische Art der gattung Chalcides LAurenTi , 1768 (Squamata: Sauria: Scincidae) SAnTiAgo MonTero -M endieTA & J oAn Ferrer & M oHAMMed AiT HAMMou & WALid dAHMAni & d eLFi SAnuy & SebASTià CAMArASA KurzFASSung die gattung Chalcides umfaßt etwa 30 hauptsächlich nordafrikanische Skinkarten. die beurteilung ihres taxonomischen Status und ihrer verbreitung war in der Literatur der vergangenen Jahre beträchtlichen veränderungen unterworfen. im Mai 2014, fanden die Autoren einen Skink vom Chalcides -Typ im Théniet el Had nationalpark (Algerien) und klassifizierten ihn als Chalcides­mertensi KLAuSeWiTz , 1954, aufgrund des Aussehens und der verbreitung. vom mitochondrialen gen Cytochrom b wurde ein Abschnitt von 396 bp als referenzwert gegenüber der vorhandenen Phylogenie der gattung Chalcides sequenziert. Überraschenderweise stand der unter - suchte Skink genetisch exemplaren von Chalcides­minutus CAPuTo , 1993 am nächsten, die in 300 km entfernung gefunden worden waren. der morphologische vergleich des neuen Fundes mit der originalbeschreibung zeigte, daß der Skink wahrscheinlich eine unbeschriebene Chalcides- Art darstellt und daß eine umfassende revision der algerischen Skinke erforderlich sein wird, um die Phylogenie des C.­minutus-mertensi­ Artenkomplexes zu entwirren. AbSTrACT The genus Chalcides comprises about 30 species of scincid lizards mainly distributed across north Africa, its taxonomic status and distribution as described in the literature has fluctuated in recent years. in May 2014, the authors found a skink of the Chalcides type in Théniet el Had national Park (Algeria) initially classified as Chalcides­mertensi KLAuSeWiTz , 1954, based on its morphological similarity and distribution.
    [Show full text]
  • Tenerife Skink BJLS Submitted.Pdf
    LJMU Research Online Brown, RP, Woods, M and Thorpe, RS Historical volcanism and within-island genetic divergence in the Tenerife skink (Squamata: Scincidae) http://researchonline.ljmu.ac.uk/id/eprint/6206/ Article Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work) Brown, RP, Woods, M and Thorpe, RS (2017) Historical volcanism and within-island genetic divergence in the Tenerife skink (Squamata: Scincidae). Biological Journal of the Linnean Society. ISSN 0024-4066 LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription. For more information please contact [email protected] http://researchonline.ljmu.ac.uk/ Historical volcanism and within-island genetic divergence in the Tenerife skink (Chalcides viridanus) RICHARD P. BROWN1, MATTHEW WOODS1, ROGER S. THORPE2 1School of Natural Sciences & Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF. 2School of Biological Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW.
    [Show full text]
  • Highest Elevation Record for the Italian Three-Toed Skink Chalcides Chalcides (Squamata: Scincidae)
    Herpetology Notes, volume 14: 813-814 (2021) (published online on 26 May 2021) Highest elevation record for the Italian three-toed skink Chalcides chalcides (Squamata: Scincidae) Mattia De Vivo1,2,a,* , Mario Posillico1,a, Lorenza Lerda1, Maria Rosaria Cavallo1, and Wanda Amitrano1 The Italian three-toed skink (Chalcides chalcides for the species, extending its current range by almost Linnaeus, 1758) is a Mediterranean endemic scincid 150 m with respect to the previous known on Monte lizard, inhabiting Algeria, Libya, Italy and Tunisia. Pizzalto at 1928 m elevation (Carafa, 2016), which is C. chalcides is listed in Appendix III of the Bern located about 60 km southern than our observation. Even Convention and it is regarded as of “Least Concern” before, Caputo (2006) reported a maximum elevation both by the Global and Italian IUCN assessments (Miras of 1590 m, which was subsequently shifted to 1880 m et al., 2009a; Andreone et al., 2013). It is strictly diurnal elevation (Caputo et al., 2011). In Africa, the Italian with fossorial habits, and mainly occurs in grassy and three-toed skink has been mostly collected in coastal sunny habitats, but several aspects of the ecology of this or lowland areas (Giovanotti et al., 2007; Miras et al., species are poorly known (e.g., Capula et al., 2003). The 2009a; GBIF, 2021), although a report from El Bayadh Italian three-toed skink is mainly found between sea (Algeria) at about 1350 m elevation exists (GBIF.org, level and 600 m elevation (Caputo, 2006), but there are 2021). According to the Global Biodiversity Information a few previous observations at higher elevations.
    [Show full text]
  • UAE National Red List of Herpetofauna: 2019
    UAE National Red List of Herpetofauna: Amphibians & Terrestrial Reptiles, Sea Snakes & Marine Turtles 2019 www.moccae.gov.ae UAE National Red List of Herpetofauna: Amphibians & Terrestrial Reptiles, Sea Snakes & Marine Turtles April 2019 A report to the Ministry of Climate Change and Environment, United Arab Emirates Johannes Els, David Allen, Craig Hilton-Taylor and Kate Harding IUCN Global Species Programme, Cambridge Amphibians & Terrestrial Reptiles, Sea Snakes & Marine Turtles Table of Contents Acknowledgements Executive Summary 1 Introduction 1.1 The United Arab Emirates context 1.2 Amphibians 1.3 Terrestrial reptiles 1.4 Marine reptiles 1.5 Assessment of species extinction risk 1.6 Objectives of the UAE National Red List of Herpetofauna 2 Assessment methodology 2.1 Geographic scope 2.2 Taxonomic scope 2.3 Assessment protocol 2.4 Species distribution mapping 2.5 Red List Index datapoint 3 Results 3.1 Threat status 3.2 Status and distribution of amphibians 3.3 Status and distribution of terrestrial reptiles 3.4 Status and distribution of marine reptiles 3.5 Major threats to amphibians, terrestrial and marine reptiles in the UAE 3.6 Population trends 3.7 Protected areas 3.8 Gaps in knowledge 3.9 Red List Index datapoint 4 Conservation measures 4.1 Conservation of amphibians, terrestrial and marine reptiles in the UAE 4.2 Red List versus priority for conservation action 5 Recommendations 5.1 Recommended actions 5.2 Application of project outputs 5.3 Future work References Appendix 1. Red List status of amphibians, terrestrial and marine reptiles in the UAE. Appendix 2. List of participants in the UAE National Red List Assessment Workshop 5 UAE National Red List of Herpetofauna 2019 Amphibians & Terrestrial Reptiles, Sea Snakes & Marine Turtles Acknowledgements We would like to thank the many experts who have contributed to the UAE Peter Uetz (The Reptile Database) contributed to discussions of taxonomic National Red List herpetofauna assessments and distribution maps.
    [Show full text]
  • New Reptile Hosts for Helminth Parasites in a Mediterranean Region
    Journal of Herpetology, Vol. 54, No. 2, 268–271, 2020 Copyright 2020 Society for the Study of Amphibians and Reptiles New Reptile Hosts for Helminth Parasites in a Mediterranean Region 1 2 3 4,5 VICENTE ROCA, JOSABEL BELLIURE, XAVIER SANTOS, AND JULI G. PAUSAS 1Departament de Zoologia, Facultat de Cie`ncies Biolo`giques, Universitat de Vale`ncia, Dr. Moliner 50, 46100 Burjassot, Valencia, Espan˜a 2Departamento de Ciencias de la Vida, Facultad de Biologı´a, Ciencias Ambientales y Quı´mica, Universidad de Alcala´, 28871 Alcala´ de Henares, Madrid, Espan˜a 3CIBIO/In BIO, Centro de Investigac¸ a˜o em Biodiversidade e Recursos Gene´ticos da Universidade do Porto, Instituto de Cieˆncias Agra´rias de Vaira˜o, R. Padre Armando Quintas, 4485-661 Vaira˜o, Portugal 4Centre d’Investigacio´ sobre la Desertificacio´ (CIDE), Carretera Moncada-Na´quera km 4.5, 46113 Moncada, Valencia, Espan˜a ABSTRACT.—Parasitic helminths are an almost universal feature of vertebrate animals, but reptiles are among the hosts with the most depauperate parasite communities. Biological traits of reptiles are considered to be among the key reasons that explain low helminth diversity; therefore, insights from a wide range of reptile hosts are helpful to understanding the ecology of parasitic helminths. We analyzed helminth fauna in two lacertids, Psammodromus algirus and Psammodromus edwarsianus (Squamata: Lacertidae), and one skink, Chalcides bedriagai (Squamata: Scincidae), three common species of Mediterranean woodlands that differ in their ecological conditions and in lifestyles that are linked to habitat use. We examined a total of 102 P. algirus,27P. edwarsianus, and 23 C. bedriagai from mountain landscapes in eastern Iberia.
    [Show full text]
  • Phylogenetic Relationships of the Chalcides Skink Species from the Chafarinas Islands with Those from Mainland North Africa
    Biochemical Systematics and Ecology 71 (2017) 187e192 Contents lists available at ScienceDirect Biochemical Systematics and Ecology journal homepage: www.elsevier.com/locate/biochemsyseco Phylogenetic relationships of the Chalcides skink species from the Chafarinas Islands with those from mainland North Africa * Jose Martín a, , Claudia Mateus b, Roberto García-Roa a, Jesús Ortega a, Salvador Carranza b a Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal 2, 28006 Madrid, Spain b Instituto de Biología Evolutiva (CSIC- Universitat Pompeu Fabra), Passeig Marítim de La Barceloneta 37-49, 08003 Barcelona, Spain article info abstract Article history: Species whose geographical distribution encompasses both mainland and island pop- Received 19 November 2016 ulations provide ideal systems for examining potential isolation and genetic divergence. Received in revised form 15 February 2017 This has also interest from a conservationist point of view, as it is important to protect Accepted 17 February 2017 “evolutionarily significant units”. We report a phylogenetic mitochondrial DNA analysis comparing the populations of the three Chalcides skink species from the Chafarinas Islands (NW Africa) with specimens of the same species from the nearest mainland. We tested for Keywords: the potential genetic distinctiveness of the skink island populations. However, the results Skinks Chalcides of the comparison of the genetic variability of the mitochondrial coding gene cytb were Phylogeny conclusive showing that the genetic divergence between continental and island Chalcides Chafarinas Islands species was either non-existent or extremely low. We discuss how genetic divergence may Mitochondrial DNA be lower than expected if separation time of the islands with the mainland has not been North Africa long enough or if the island skink populations were currently communicated via ocean rafting with individuals coming from the mainland ones.
    [Show full text]