Klf4 and Klf5 Differentially Inhibit Mesoderm and Endoderm Differentiation in Embryonic Stem Cells
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Core Transcriptional Regulatory Circuitries in Cancer
Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage. -
Loss of the NKX3.1 Tumorsuppressor Promotes the TMPRSS2-ERG
Thangapazham et al. BMC Cancer 2014, 14:16 http://www.biomedcentral.com/1471-2407/14/16 RESEARCH ARTICLE Open Access Loss of the NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer Rajesh Thangapazham, Francisco Saenz, Shilpa Katta, Ahmed A Mohamed, Shyh-Han Tan, Gyorgy Petrovics, Shiv Srivastava and Albert Dobi* Abstract Background: In normal prostate epithelium the TMPRSS2 gene encoding a type II serine protease is directly regulated by male hormones through the androgen receptor. In prostate cancer ERG protooncogene frequently gains hormonal control by seizing gene regulatory elements of TMPRSS2 through genomic fusion events. Although, the androgenic activation of TMPRSS2 gene has been established, little is known about other elements that may interact with TMPRSS2 promoter sequences to modulate ERG expression in TMPRSS2-ERG gene fusion context. Methods: Comparative genomic analyses of the TMPRSS2 promoter upstream sequences and pathway analyses were performed by the Genomatix Software. NKX3.1 and ERG genes expressions were evaluated by immunoblot or by quantitative Real-Time PCR (qRT-PCR) assays in response to siRNA knockdown or heterologous expression. QRT-PCR assay was used for monitoring the gene expression levels of NKX3.1-regulated genes. Transcriptional regulatory function of NKX3.1 was assessed by luciferase assay. Recruitment of NKX3.1 to its cognate elements was monitored by Chromatin Immunoprecipitation assay. Results: Comparative analysis of the TMPRSS2 promoter upstream sequences among different species revealed the conservation of binding sites for the androgen inducible NKX3.1 tumor suppressor. Defects of NKX3.1, such as, allelic loss, haploinsufficiency, attenuated expression or decreased protein stability represent established pathways in prostate tumorigenesis. -
Additive Effects of Micrornas and Transcription Factors on CCL2 Production in Human White Adipose Tissue
1248 Diabetes Volume 63, April 2014 Agné Kulyté,1 Yasmina Belarbi,1 Silvia Lorente-Cebrián,1 Clara Bambace,1 Erik Arner,1,2 Carsten O. Daub,3 Per Hedén,4 Mikael Rydén,1 Niklas Mejhert,1 and Peter Arner1 Additive Effects of MicroRNAs and Transcription Factors on CCL2 Production in Human White Adipose Tissue Adipose tissue inflammation is present in insulin- converged on the nuclear factor-kB pathway. In resistant conditions. We recently proposed conclusion, TF and miRNA-mediated regulation of a network of microRNAs (miRNAs) and transcription CCL2 production is additive and partly relayed by factors (TFs) regulating the production of the cell-specific networks in human adipose tissue that proinflammatory chemokine (C-C motif) ligand-2 may be important for the development of insulin (CCL2) in adipose tissue. We presently extended and resistance/type 2 diabetes. further validated this network and investigated if the Diabetes 2014;63:1248–1258 | DOI: 10.2337/db13-0702 METABOLISM circuits controlling CCL2 can interact in human adipocytes and macrophages. The updated subnetwork predicted that miR-126/-193b/-92a White adipose tissue (WAT) function plays an important control CCL2 production by several TFs, including role in the development of insulin resistance/type 2 di- v-ets erythroblastosis virus E26 oncogene homolog 1 abetes. Fat cells present in WAT secrete a number of (avian) (ETS1), MYC-associated factor X (MAX), molecules, collectively termed adipokines, which affect and specificity protein 12 (SP1). This was confirmed insulin sensitivity by autocrine and/or paracrine mecha- in human adipocytes by the observation that gene nisms (1,2). In insulin-resistant obese subjects, WAT silencing of ETS1, MAX, or SP1 attenuated CCL2 displays a chronic low-grade inflammation, which is production. -
Lncegfl7os Regulates Human Angiogenesis by Interacting
RESEARCH ARTICLE LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus Qinbo Zhou1†, Bo Yu1†*, Chastain Anderson1, Zhan-Peng Huang2, Jakub Hanus1, Wensheng Zhang3, Yu Han4, Partha S Bhattacharjee5, Sathish Srinivasan6, Kun Zhang3, Da-zhi Wang2, Shusheng Wang1,7* 1Department of Cell and Molecular Biology, Tulane University, New Orleans, United States; 2Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, United States; 3Department of Computer Science, Xavier University, New Orleans, United States; 4Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, United States; 5Department of Biology, Xavier University, New Orleans, United States; 6Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma, United States; 7Department of Ophthalmology, Tulane University, New Orleans, United States Abstract In an effort to identify human endothelial cell (EC)-enriched lncRNAs,~500 lncRNAs were shown to be highly restricted in primary human ECs. Among them, lncEGFL7OS, located in the opposite strand of the EGFL7/miR-126 gene, is regulated by ETS factors through a bidirectional promoter in ECs. It is enriched in highly vascularized human tissues, and upregulated in the hearts of dilated cardiomyopathy patients. LncEGFL7OS silencing impairs angiogenesis as shown by EC/fibroblast co-culture, in vitro/in vivo and ex vivo human choroid sprouting angiogenesis assays, while lncEGFL7OS overexpression has the opposite function. Mechanistically, *For correspondence: lncEGFL7OS is required for MAPK and AKT pathway activation by regulating EGFL7/miR-126 [email protected] (BY); expression. MAX protein was identified as a lncEGFL7OS-interacting protein that functions to [email protected] (SW) regulate histone acetylation in the EGFL7/miR-126 promoter/enhancer. -
Repurposing of KLF5 Activates a Cell Cycle Signature During the Progression from a Precursor State to Oesophageal Adenocarcinoma DOI: 10.7554/Elife.57189
The University of Manchester Research Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma DOI: 10.7554/eLife.57189 Document Version Final published version Link to publication record in Manchester Research Explorer Citation for published version (APA): OCCAMS Consortium (2020). Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma. eLife, 9, 1-63. [e57189]. https://doi.org/10.7554/eLife.57189 Published in: eLife Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:11. Oct. 2021 RESEARCH ARTICLE Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor -
UTX Regulates Mesoderm Differentiation of Embryonic Stem Cells Independent of H3K27 Demethylase Activity
UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity Chaochen Wanga, Ji-Eun Leea,1, Young-Wook Chob,1, Ying Xiaoc, Qihuang Jina, Chengyu Liud, and Kai Gea,2 aLaboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; bKorea Basic Science Institute Chuncheon Center, Chuncheon, Kangwon, Korea 200-701; cDermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and dTransgenic Core, Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 Edited by Mark Groudine, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved August 3, 2012 (received for review March 9, 2012) To investigate the role of histone H3K27 demethylase UTX in male cells. UTY is a paralog of the X-linked UTX and shares embryonic stem (ES) cell differentiation, we have generated UTX 88% sequence homology with UTX protein. Unlike UTX, UTY knockout (KO) and enzyme-dead knock-in male ES cells. Deletion lacks detectable histone demethlase activity in vitro (8, 12). The of the X-chromosome-encoded UTX gene in male ES cells markedly viability data from male and female UTX KO mice indicate a decreases expression of the paralogous UTY gene encoded by Y largely functional redundancy between UTX and UTY during chromosome, but has no effect on global H3K27me3 level, Hox male embryonic development (13). gene expression, or ES cell self-renewal. However, UTX KO cells UTX has been shown to regulate myocyte differentiation, heart show severe defects in mesoderm differentiation and induction of development, and T-box transcription factor target gene expres- Brachyury, a transcription factor essential for mesoderm develop- sion (13–15). -
Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). -
A Flexible Microfluidic System for Single-Cell Transcriptome Profiling
www.nature.com/scientificreports OPEN A fexible microfuidic system for single‑cell transcriptome profling elucidates phased transcriptional regulators of cell cycle Karen Davey1,7, Daniel Wong2,7, Filip Konopacki2, Eugene Kwa1, Tony Ly3, Heike Fiegler2 & Christopher R. Sibley 1,4,5,6* Single cell transcriptome profling has emerged as a breakthrough technology for the high‑resolution understanding of complex cellular systems. Here we report a fexible, cost‑efective and user‑ friendly droplet‑based microfuidics system, called the Nadia Instrument, that can allow 3′ mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure‑based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efciencies that compare favorably in the feld. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of diferent bufers and barcoded bead confgurations to facilitate diverse applications. Finally, by 3′ mRNA profling asynchronous human and mouse cells at diferent phases of the cell cycle, we demonstrate the system’s ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and fexible technology for future transcriptomic studies, and other related applications, at cell resolution. Single cell transcriptome profling has recently emerged as a breakthrough technology for understanding how cellular heterogeneity contributes to complex biological systems. Indeed, cultured cells, microorganisms, biopsies, blood and other tissues can be rapidly profled for quantifcation of gene expression at cell resolution. -
Klf5 Is Involved in Self-Renewal of Mouse Embryonic Stem Cells
Short Report 2629 Klf5 is involved in self-renewal of mouse embryonic stem cells Silvia Parisi1,2,*, Fabiana Passaro1,3,*, Luigi Aloia1,2, Ichiro Manabe4, Ryozo Nagai5, Lucio Pastore1,3 and Tommaso Russo1,3,‡ 1CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy 2European School of Molecular Medicine, SEMM, 80145 Napoli, Italy 3Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy 4Nano-Bioengineering Education Program and 5Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan *These authors contributed equally to this work ‡Author for correspondence (e-mail: [email protected]) Accepted 15 May 2008 Journal of Cell Science 121, 2629-2634 Published by The Company of Biologists 2008 doi:10.1242/jcs.027599 Summary Self-renewal of embryonic stem cells (ESCs) is maintained by undifferentiated state by Klf5 is, at least in part, due to the a complex regulatory mechanism involving transcription factors control of Nanog and Oct3/4 transcription, because Klf5 directly Oct3/4 (Pou5f1), Nanog and Sox2. Here, we report that Klf5, a binds to the promoters of these genes and regulates their Zn-finger transcription factor of the Kruppel-like family, is transcription. involved in ESC self-renewal. Klf5 is expressed in mouse ESCs, blastocysts and primordial germ cells, and its knockdown by RNA interference alters the molecular phenotype of ESCs, Supplementary material available online at thereby preventing their correct differentiation. The ability of http://jcs.biologists.org/cgi/content/full/121/16/2629/DC1 Klf5 to maintain ESCs in the undifferentiated state is supported by the finding that differentiation of ESCs is prevented Key words: Differentiation, Kruppel-like factors, Nanog, Oct3/4, when Klf5 is constitutively expressed. -
Speaker Abstracts 2018 International Chordoma Research Workshop | Speaker Abstracts 1
Sixth International Chordoma Research Workshop Speaker abstracts 2018 International Chordoma Research Workshop | Speaker abstracts 1 TABLE OF CONTENTS EPIGENETIC CONTROL OF BRACHYURY AND METABOLIC STRESS RESPONSE: NOVEL THERAPEUTIC TARGETS FOR CHORDOMA ........................................................................................................................................................... 2 SYSTEMATIC DISCOVERY OF NOVEL VULNERABILITIES IN CHORDOMA .................................................................. 3 RATIONALE FOR THE ADVANCEMENT OF PTEN/AKT PATHWAY INHIBITORS AND COMBINATIONS FOR PERSONALIZED CHORDOMA THERAPY ................................................................................................................... 4 THE ROLE OF PHILANTHROPY IN TRANSFORMING CANCER RESEARCH .................................................................. 5 BRACHYURY IN CHORDOMA AND CARCINOMAS: BIOLOGY AND POTENTIAL TARGETING APPROACHES ............... 6 CHARTING BRACHYURY-MEDIATED DEVELOPMENTAL PATHWAYS DURING EARLY MOUSE EMBRYOGENESIS ...... 7 CRYSTAL STRUCTURES OF BRACHYURY: A PRELUDE TO DRUG DISCOVERY ............................................................ 8 A BRACHYURY TRANSCRIPTIONAL REPORTER TO GUIDE DRUG DISCOVERY........................................................... 9 INVESTIGATING BRACHYURY GENE REGULATION TO IDENTIFY THERAPEUTIC TARGETS IN CHORDOMA ............. 10 DELINEATING AND TARGETING THE BRACHYURY-YAP REGULATORY AXIS IN CANCER ......................................... 11 OPEN ACCESS -
Bangor University DOCTOR of PHILOSOPHY Brachyury in the Human Colon and Colorectal Cancer Williams, Jason
Bangor University DOCTOR OF PHILOSOPHY Brachyury in the Human Colon and Colorectal Cancer Williams, Jason Award date: 2018 Awarding institution: Bangor University Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Brachyury in the Human Colon and Colorectal Cancer Ph. D. Thesis 2017 Jason Saunders Williams i Declaration and Consent Details of the Work I hereby agree to deposit the following item in the digital repository maintained by Bangor University and/or in any other repository authorized for use by Bangor University. Author Name: Title: Supervisor/Department: Funding body (if any): Qualification/Degree obtained: PhD This item is a product of my own research endeavours and is covered by the agreement below in which the item is referred to as “the Work”. It is identical in content to that deposited in the Library, subject to point 4 below. -
PROX1 Is Associated with Cancer Progression and Prognosis in Gastric Cancer KOJI UETA 1,2 , YASUNORI OTOWA 1,2 , YOSHIHIRO KAKEJI 2 and MASANORI HIRASHIMA 1
ANTICANCER RESEARCH 38 : 6139-6145 (2018) doi:10.21873/anticanres.12966 PROX1 Is Associated with Cancer Progression and Prognosis in Gastric Cancer KOJI UETA 1,2 , YASUNORI OTOWA 1,2 , YOSHIHIRO KAKEJI 2 and MASANORI HIRASHIMA 1 1Division of Vascular Biology, Department of Physiology and Cell Biology, and 2Division of Gastro-intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan Abstract. Background: It was recently reported that expected to improve prognosis. On the other hand, in the expression of prospero homeobox protein-1 (PROX1) is field of gastric cancer, trastuzumab for human epidermal correlated with the prognosis of esophageal cancer and growth factor receptor 2 (HER2)-positive gastric cancer is colorectal cancer. However, its correlation with gastric cancer the molecular-targeted therapeutic agent that has proven is unclear. Materials and Methods: Our study analyzed the useful, to date. Ramucirumab, which is an antibody against effect of PROX1 knockdown on the migration, invasion and VEGF receptor 2 has become an agent for second-line proliferation of the MKN45 human gastric cancer cell line. chemotherapy and is expected to have a therapeutic effect on The correlation between PROX1 expression levels and gastric cancer. However, options for second-line or third-line clinicopathological factors were also analyzed in tumor therapy are fewer than those for colon cancer. samples from 99 patients with gastric cancer. Results: Prospero homeobox protein-1 (PROX1) is a transcription Migration, invasion and proliferation were significantly regulator which has been implicated in differentiation of reduced in MKN45 cells with PROX1 knockdown. PROX1 lymphatic endothelial cells (1).