Klf5 Is Involved in Self-Renewal of Mouse Embryonic Stem Cells

Total Page:16

File Type:pdf, Size:1020Kb

Klf5 Is Involved in Self-Renewal of Mouse Embryonic Stem Cells Short Report 2629 Klf5 is involved in self-renewal of mouse embryonic stem cells Silvia Parisi1,2,*, Fabiana Passaro1,3,*, Luigi Aloia1,2, Ichiro Manabe4, Ryozo Nagai5, Lucio Pastore1,3 and Tommaso Russo1,3,‡ 1CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy 2European School of Molecular Medicine, SEMM, 80145 Napoli, Italy 3Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy 4Nano-Bioengineering Education Program and 5Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan *These authors contributed equally to this work ‡Author for correspondence (e-mail: [email protected]) Accepted 15 May 2008 Journal of Cell Science 121, 2629-2634 Published by The Company of Biologists 2008 doi:10.1242/jcs.027599 Summary Self-renewal of embryonic stem cells (ESCs) is maintained by undifferentiated state by Klf5 is, at least in part, due to the a complex regulatory mechanism involving transcription factors control of Nanog and Oct3/4 transcription, because Klf5 directly Oct3/4 (Pou5f1), Nanog and Sox2. Here, we report that Klf5, a binds to the promoters of these genes and regulates their Zn-finger transcription factor of the Kruppel-like family, is transcription. involved in ESC self-renewal. Klf5 is expressed in mouse ESCs, blastocysts and primordial germ cells, and its knockdown by RNA interference alters the molecular phenotype of ESCs, Supplementary material available online at thereby preventing their correct differentiation. The ability of http://jcs.biologists.org/cgi/content/full/121/16/2629/DC1 Klf5 to maintain ESCs in the undifferentiated state is supported by the finding that differentiation of ESCs is prevented Key words: Differentiation, Kruppel-like factors, Nanog, Oct3/4, when Klf5 is constitutively expressed. Maintenance of the Self-renewal Introduction Results and Discussion ESCs derived from the inner cell mass of the blastocyst can Klf5 is expressed in mouse ESCs and its knockdown Journal of Cell Science differentiate into primitive ectoderm, primitive endoderm and suppresses normal ESC differentiation trophoectoderm cells, and in turn into all cell types present in the The screening of a collection of short hairpin RNAs (shRNAs) embryo. ESCs are maintained in the undifferentiated state during designed to target mouse mRNAs allowed us to observe that the self-renewal by a complex regulatory network involving three shRNA targeting Klf5 mRNA was able to interfere with ESC transcription factors, namely Oct3/4 (Pou5f1) (Nichols et al., 1998), differentiation (see supplementary material Fig. S1). Klf5, also Nanog (Chambers et al., 2003; Mitsui et al., 2003) and Sox2 (Avilion known as intestinal-enriched factor and basic transcription et al., 2003). These factors regulate their own expression and that element binding protein 2, is a Zn-finger transcription factor of many other genes (Boyer et al., 2005; Loh et al., 2006). Other belonging to the Sp/Kruppel-like family. In adults, it is expressed transcription factors play important roles in ESC pluripotency and in the proliferating crypt cells of the intestinal epithelium and at self-renewal (Niwa, 2007). These data illustrate the complexity of low levels in the testis, uterus, placenta, lung and in the proliferating basal layer of the epidermis (Ohnishi et al., 2000). transcription regulation in ESCs, which is still not completely Klf5 knockout causes early embryonic lethality (Shindo et al., understood. 2002), which suggests that this factor plays a key role during Recently, several results indicate that transcription factors early development. belonging to the Kruppel-like family could have an important role Klf5 mRNA and protein are present in undifferentiated ESCs in the regulation of ESCs. Ectopic expression of Klf4, together and levels rapidly decrease after induction of ESC differentiation with Oct3/4, Sox2 and Myc, results in the conversion of by two different approaches (Fig. 1A,B). Immunostaining differentiated cells into pluripotent ES-like cells (Takahashi et al., demonstrated that Klf5 is expressed at various levels in almost all 2006; Okita et al., 2007; Werning et al., 2007; Maherali et al., undifferentiated ESCs (Fig. 1C) and that it substantially colocalises 2007). Recent findings indicate that Klf2 or Klf5 can replace Klf4 with Oct3/4 and Nanog [964 out of 1100 cells (87.6%) were positive in the gene combination inducing cell reprogramming (Nakagawa for both Oct3/4 and Klf5; 512 out of 678 cells (75.5%) were Nanog et al., 2008) and that triple knockdown (KD) of Klf2, Klf4 and and Klf5 positive; 625 out of 720 cells (86.8%) expressed both Klf5 abolishes the undifferentiated phenotype of ESCs (Jiang et Oct3/4 and Nanog]. After 3 days in differentiation conditions, the al., 2008). Klf5 signal disappeared from most cells, as observed for Oct3/4 In this study, we demonstrate that KD of even only Klf5 and Nanog (supplementary material Fig. S2). The expression of abolishes the ESC undifferentiated phenotype, whereas its Klf5 mRNA in vivo is in agreement with that observed during in constitutive expression prevents ESC differentiation. vitro differentiation of ESCs. In fact, we found the Klf5 transcript 2630 Journal of Cell Science 121 (16) in blastocysts at embryonic day (E)3.5 but not in the epiblast of E6.5 embryos (Fig. 1D). Immunostaining of pre-implantation embryos revealed nuclear Klf5 in the morula (Fig. 1E) and in many cells of the blastocyst at Theiler stage 4 (Fig. 1E,F), when the blastocoelic cavity is formed. At these stages, the cells also expressed Oct3/4 and Nanog. At a later stage, the expression of Klf5 persisted (supplementary material Fig. S2). Immunostaining of sections from E11.5 embryos revealed that Klf5 is also expressed in small groups of cells in the genital ridge, coincident with primordial germ cells expressing Oct3/4 (Fig. 1H). ESCs lose their undifferentiated phenotype as a consequence of Klf5 KD The observation that Klf5 expression is restricted to undifferentiated ESCs both in vitro and in vivo and is tightly regulated when differentiation occurs suggests that it might be required to maintain ESCs in an undifferentiated state. To address this hypothesis, we explored the effects of Klf5 KD in undifferentiated ESCs. To this aim, ESCs were transfected with the previously used Klf5 shRNA or with a mixture of four short interfering RNAs (siRNAs), all targeting different regions of the Klf5 mRNA. Whereas non-silencing (CRL)- shRNA-transfected cells were indistinguishable from untransfected cells, Klf5 KD resulted in the appearance of clusters of enlarged flattened cells (supplementary material Fig. S3). To verify that these morphological changes result from loss of the undifferentiated phenotype, we counted alkaline-phosphatase-positive colonies (APcs), as a marker of undifferentiated ESCs, in cells plated at clonal density (~80 cells/cm2). Although grown in the presence Journal of Cell Science of leukaemia inhibitory factor (LIF) and serum, Klf5- KD cells lost their undifferentiated phenotype, as witnessed by the drastic reduction of APcs (Fig. 2A). Accordingly, Oct3/4 and Nanog expression was significantly decreased, as demonstrated by immunostaining (Fig. 2B) and reverse-transcriptase (RT)-PCR (Fig. 2C). Fig. 1. Klf5 expression in ESCs. (A,B) Klf5 mRNA (A) and protein (B) levels decrease soon after the induction of ESC differentiation. ESCs were differentiated as embryoid Furthermore, Oct3/4 KD decreased levels of the bodies (EBs) or in monolayer. (C) Klf5 is highly expressed in undifferentiated ESCs and cognate mRNA and protein by >50% and was colocalised with Oct3/4 and Nanog. Scale bars: 50 μm. (D) RT-PCR of Klf5 in ESCs, accompanied by a significant reduction of Sox2 and and in E3.5 and E6.5 embryos. (E) Klf5 is expressed in morulae together with Oct3/4 Nanog mRNA levels. In these conditions, Klf5 mRNA and Nanog. (F,G) E3.5 embryos express Klf5, Oct3/4 and Nanog in the inner cell mass. μ was significantly decreased (Fig. 2D), which reinforces Scale bars: 20 m. (H) Two consecutive sections of an E11.5 embryo were stained with anti-Klf5 and -Oct3/4 antibodies. The arrowheads indicate the groups of cells in the the concept that the expression of Klf5 is restricted to the genital ridge (primordial germ cells) expressing both Klf5 and Oct3/4. The arrow ESC undifferentiated state. indicates the stomach epithelium, where Klf5 is also expressed (Ohnishi et al., 2000). To explore phenotypic changes induced by Klf5 KD, we analysed several markers of cell fate. As shown in Fig. 2E, markers of endoderm (Gata4, Hnf4 and Sox17), ectoderm Klf5 constitutive expression prevents ESC differentiation (Sox1) and visceral endoderm (Afp) were undetectable in both We then examined ESC clones stably expressing Klf5 under the Klf5- and CRL-shRNA-transfected cells; mRNAs for the control of a constitutive β-actin promoter (see supplementary mesoderm markers brachyury and Meox1, and for the trophoblast material Fig. S5). Mock-transfected ESC clones plated at ~80 markers Cdx2, Eomes and PL-1, appeared only in Klf5 KD cells. cells/cm2 showed only a few APcs (60±3.8 APcs/100-mm plate, Immunostaining of Klf5 KD cells showed that 12.3±0.2% of cells n=4) 6 days after LIF withdrawal, whereas, despite LIF withdrawal, (n=920) expressed brachyury and 11.2±0.6% (n=950) expressed ESCs stably expressing exogenous Klf5 showed 912.5±33 Cdx2 (supplementary material Fig. S4). The remaining cells did APcs/100-mm plate (n=4, Fig. 3A). As shown in Fig. 3B-D, after not express any examined differentiation markers, and some of 5 days in differentiation conditions, exogenous Klf5 expression these cells still expressed Nanog (28.5±3%) and/or Oct3/4 sustains Oct3/4 and Nanog expression whereas, in mock-transfected (37.8±3.5%). cells, Oct3/4 and Nanog expression is strongly decreased. Klf5 in self-renewal of ESCs 2631 immunoprecipitation (ChIP) experiments, which demonstrated the direct interaction of Klf5 with the Nanog promoter (Fig.
Recommended publications
  • Core Transcriptional Regulatory Circuitries in Cancer
    Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage.
    [Show full text]
  • The Title of the Dissertation
    UNIVERSITY OF CALIFORNIA SAN DIEGO Novel network-based integrated analyses of multi-omics data reveal new insights into CD8+ T cell differentiation and mouse embryogenesis A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics and Systems Biology by Kai Zhang Committee in charge: Professor Wei Wang, Chair Professor Pavel Arkadjevich Pevzner, Co-Chair Professor Vineet Bafna Professor Cornelis Murre Professor Bing Ren 2018 Copyright Kai Zhang, 2018 All rights reserved. The dissertation of Kai Zhang is approved, and it is accept- able in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California San Diego 2018 iii EPIGRAPH The only true wisdom is in knowing you know nothing. —Socrates iv TABLE OF CONTENTS Signature Page ....................................... iii Epigraph ........................................... iv Table of Contents ...................................... v List of Figures ........................................ viii List of Tables ........................................ ix Acknowledgements ..................................... x Vita ............................................. xi Abstract of the Dissertation ................................. xii Chapter 1 General introduction ............................ 1 1.1 The applications of graph theory in bioinformatics ......... 1 1.2 Leveraging graphs to conduct integrated analyses .......... 4 1.3 References .............................. 6 Chapter 2 Systematic
    [Show full text]
  • Repurposing of KLF5 Activates a Cell Cycle Signature During the Progression from a Precursor State to Oesophageal Adenocarcinoma DOI: 10.7554/Elife.57189
    The University of Manchester Research Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma DOI: 10.7554/eLife.57189 Document Version Final published version Link to publication record in Manchester Research Explorer Citation for published version (APA): OCCAMS Consortium (2020). Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma. eLife, 9, 1-63. [e57189]. https://doi.org/10.7554/eLife.57189 Published in: eLife Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:11. Oct. 2021 RESEARCH ARTICLE Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor
    [Show full text]
  • Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
    The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP).
    [Show full text]
  • Modulating Hallmarks of Cholangiocarcinoma
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Fall 12-14-2018 Modulating Hallmarks of Cholangiocarcinoma Cody Wehrkamp University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Molecular Biology Commons Recommended Citation Wehrkamp, Cody, "Modulating Hallmarks of Cholangiocarcinoma" (2018). Theses & Dissertations. 337. https://digitalcommons.unmc.edu/etd/337 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. MODULATING HALLMARKS OF CHOLANGIOCARCINOMA by Cody J. Wehrkamp A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor Justin L. Mott University of Nebraska Medical Center Omaha, Nebraska November 2018 Supervisory Committee: Kaustubh Datta, Ph.D. Melissa Teoh‐Fitzgerald, Ph.D. Richard G. MacDonald, Ph.D. Acknowledgements This endeavor has led to scientific as well as personal growth for me. I am indebted to many for their knowledge, influence, and support along the way. To my mentor, Dr. Justin L. Mott, you have been an incomparable teacher and invaluable guide. You upheld for me the concept that science is intrepid, even when the experience is trying. Through my training, and now here at the end, I can say that it has been an honor to be your protégé. When you have shaped your future graduates to be and do great, I will be privileged to say that I was your first one.
    [Show full text]
  • A Flexible Microfluidic System for Single-Cell Transcriptome Profiling
    www.nature.com/scientificreports OPEN A fexible microfuidic system for single‑cell transcriptome profling elucidates phased transcriptional regulators of cell cycle Karen Davey1,7, Daniel Wong2,7, Filip Konopacki2, Eugene Kwa1, Tony Ly3, Heike Fiegler2 & Christopher R. Sibley 1,4,5,6* Single cell transcriptome profling has emerged as a breakthrough technology for the high‑resolution understanding of complex cellular systems. Here we report a fexible, cost‑efective and user‑ friendly droplet‑based microfuidics system, called the Nadia Instrument, that can allow 3′ mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure‑based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efciencies that compare favorably in the feld. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of diferent bufers and barcoded bead confgurations to facilitate diverse applications. Finally, by 3′ mRNA profling asynchronous human and mouse cells at diferent phases of the cell cycle, we demonstrate the system’s ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and fexible technology for future transcriptomic studies, and other related applications, at cell resolution. Single cell transcriptome profling has recently emerged as a breakthrough technology for understanding how cellular heterogeneity contributes to complex biological systems. Indeed, cultured cells, microorganisms, biopsies, blood and other tissues can be rapidly profled for quantifcation of gene expression at cell resolution.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,067,617 B2 Barbas, III Et Al
    US007067617B2 (12) United States Patent (10) Patent No.: US 7,067,617 B2 Barbas, III et al. (45) Date of Patent: Jun. 27, 2006 (54) ZINC FINGER BINDING DOMAINS FOR OTHER PUBLICATIONS NUCLEOTDE SEOUENCE ANN Q Nagase et al., DNA Research, 2000, vol. 7, pp. 271-281.* (75) Inventors: Carlos F. Barbas, III, Solana Beach, Zweidler-McKay, et al ... “Gifi-1 Encodes a Nuclear Zinc CA (US); Birgit Dreier, Adlikon (CH) Finger Protein That Binds DNA and Functions as a Tran s s scriptional Repressor, Mol. Cell. Biol. 16: 4024-4034 (73) Assignee: The Scripps Research Institute, La (1996). Jolla, CA (US) Dreier, et al., “Insights into the Molecular Recogntion of the s 5-GNN-3 Family of Sequences by Zinc Finger Domains’. (*) Notice: Subject to any disclaimer, the term of this J. Mol. Biol. 303: 489-502 (2000). patent is extended or adjusted under 35 Celenza, et al., “A Yeast Gene That is Essential for Release U.S.C. 154(b) by 115 days. from Glucose Repression Encodes a Protein Kinase”, Sci ence 233: 1175-1180 (1986). (21) Appl. No.: 10/080,100 Singh, et al., “Molecular Cloning of an Enhancer Binding Protein: Isolation by Screening of an Expression Library (22) Filed: Feb. 21, 2002 with a Recognition Site DNA”, Cell 52: 415-423 (1988). Kinzler, et al., “The GLI Gene is a Member of the Kruppel (65) Prior Publication Data Family of Zinc Finger Proteins”, Nature 332: 371-374 US 20O2/O165356 A1 Nov. 7, 2002 (1988). OV. f. Debs, et al., “Regulation Gene Expression in Vivo by Related U.S.
    [Show full text]
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,790,941 B2 Barbas, III Et Al
    USOO6790941B2 (12) United States Patent (10) Patent No.: US 6,790,941 B2 Barbas, III et al. (45) Date of Patent: *Sep. 14, 2004 (54) ZINC FINGER PROTEIN DERIVATIVES AND 5,702.914. A 12/1997 Evans et al. METHODS THEREFOR 5,789,538 A * 8/1998 Rebar et al. ................ 530/324 5,792,640 A 8/1998 Chandrasegaran (75) Inventors: Carlos F. Barbas, III, San Diego, CA 5,869,618 A 2/1999 Lippman et al. (US); Joel M. Gottesfeld, Del Mar, CA 5,871,902 A 2/1999 Weininger et al. (US); Peter E. Wright, La Jolla, CA 5,871,907 A 2/1999 Winter et al. s s s 5,916,794. A 6/1999 Chandrasegaran (US) 5,939,538 A 8/1999 Leavitt et al. (73) Assignee: The Scripps Research Institute, La 6,001.885. A 12/1999 Vega et al. Jolla, CA (US) 6,007,988 A 12/1999 Choo et al. s 6,013,453 A 1/2000 Choo et al. ( c: ) Notice: Subject to any disclaimer, the term of this 6.242,568 B1 6/2001 Barbas et al. ............... 530/350 patent is extended or adjusted under 35 2002/0081.614 A1 6/2002 Case et al. U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS This patent is Subject to a terminal dis- WOEP WO95/19431875567 11/1998y: claimer. WO WO 96/06110 2/1996 WO WO 96/06166 2/1996 (21) Appl. No.: 09/500,700 WO WO 96/11267 4/1996 22) Filled: Feb. 9,9 2000 WO WO 96/20951 7/1996 (65) Prior Publication Data W W o: 19.
    [Show full text]
  • The Role of Inhibitors of Differentiation Proteins ID1 and ID3 in Breast Cancer Metastasis
    The role of Inhibitors of Differentiation proteins ID1 and ID3 in breast cancer metastasis Wee Siang Teo A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy St Vincent’s Clinical School, Faculty of Medicine The University of New South Wales Cancer Research Program The Garvan Institute of Medical Research Sydney, Australia March, 2014 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Teo First name: Wee Siang Abbreviation for degree as given in the University calendar: PhD (Medicine) School: St Vincent’s Clinical School Faculty: Faculty of Medicine Title: The role of Inhibitors of Differentiation proteins ID1 and ID3 in breast cancer metastasis Abstract 350 words maximum: (PLEASE TYPE) Breast cancer is a leading cause of cancer death in women. While locally-confined breast cancer is generally curable, the survival of patients with metastatic breast cancer is very poor. Treatment for metastatic breast cancer is palliative not curative due to the lack of targeted therapies. Metastasis is a complex process that still remains poorly understood, thus a detailed understanding of the biological complexity that underlies breast cancer metastasis is essential in reducing the lethality of this disease. The Inhibitor of Differentiation proteins 1 and 3 (ID1/3) are transcriptional regulators that control many cell fate and developmental processes and are often deregulated in cancer. ID1/3 are required and sufficient for the metastasis of breast cancer in experimental models. However, the mechanisms by which ID1/3 mediate metastasis in breast cancer remain to be determined. Little is known about pathways regulated by ID1/3 in breast cancer as well as their functional role in the multiple steps of metastatic progression.
    [Show full text]
  • ID1 Mediates Escape from TGF-Β Tumor Suppression in Pancreatic Cancer
    Author Manuscript Published OnlineFirst on October 3, 2019; DOI: 10.1158/2159-8290.CD-19-0529 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ID1 mediates escape from TGF-β tumor suppression in pancreatic cancer Yun-Han Huang1,2,3, Jing Hu1, Fei Chen1, Nicolas Lecomte4, Harihar Basnet1, Charles J. David1,10, Matthew D. Witkin5, Peter J. Allen6, Steven D. Leach4,6,7,9, Travis J. Hollmann7,8, Christine A. Iacobuzio-Donahue4,7,8, and Joan Massagué1* 1Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065 2Weill Cornell/Sloan Kettering/Rockefeller Tri-Institutional MD-PhD Program, New York, NY 10065 3Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065 4The David M. Rubinstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 5Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 6Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065 7Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 8Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 9Present address: Department of Molecular and Systems Biology, Dartmouth Geisel School of Medicine, 1 Rope Ferry Road, Hanover, NH 03755-1404 10Present address: Tsinghua University School of Medicine, Department of Basic Sciences, Medical Sciences Building D106, Haidian District, Beijing, China, 100084 Running title: ID1 mediates escape from TGF-β tumor suppression in PDA Keywords: TGF-β, pancreatic cancer, ID1, tumor suppression, EMT Financial support: National Cancer Institute grants R01-CA34610 (JM) and P30-CA008748 (MSKCC), and Predoctoral Fellowship F30-CA203238 (YH).
    [Show full text]
  • Islet-1 Is Essential for Pancreatic Β-Cell Function Benjamin N. Ediger
    Page 1 of 68 Diabetes June 20, 2014 Diabetes Islet-1 is essential for pancreatic β-cell function Benjamin N. Ediger1,5, Aiping Du1, Jingxuan Liu1, Chad S. Hunter3, Erik R. Walp1, Jonathan Schug4, Klaus H. Kaestner4, Roland Stein3, Doris A. Stoffers5* and Catherine Lee May*,1,2 1Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, 2Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 3Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA 4Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 5Department of Medicine and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA * These authors contributed equally. Running Title: Isl-1 regulates β-cell function Address correspondence to: Catherine Lee May, Ph.D. 3615 Civic Center Blvd, Room 516E Philadelphia, PA 19104 Phone: 267-426-0116 E-mail: [email protected] And Doris A. Stoffers, M.D., Ph.D. 3400 Civic Center Boulevard, 12-124 SCTR Philadelphia, PA 19104 Phone: (215) 573-5413 E-mail: [email protected] Fax: 215-590-3709 Word Count: 4065 Number of Tables: 6 (all are supplemental) Number of Figures: 9 (3 are supplemental) Diabetes Publish Ahead of Print, published online July 15, 2014 Diabetes Page 2 of 68 Abstract Isl-1 is essential for the survival and ensuing differentiation of pancreatic endocrine progenitors. Isl-1 remains expressed in all adult pancreatic endocrine lineages; however, its specific function in the postnatal pancreas is unclear.
    [Show full text]