The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions

Total Page:16

File Type:pdf, Size:1020Kb

The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions S S symmetry Article The Generalized OTOC from Supersymmetric Quantum Mechanics—Study of Random Fluctuations from Eigenstate Representation of Correlation Functions Kaushik Y. Bhagat 1, Baibhab Bose 2, Sayantan Choudhury 3,4,5,*,† , Satyaki Chowdhury 4,5, Rathindra N. Das 6, Saptarshhi G. Dastider 7, Nitin Gupta 8 , Archana Maji 6, Gabriel D. Pasquino 9 and Swaraj Paul 10 1 Centre for High Energy Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India; [email protected] 2 Department of Physics & Astrophysics, University of Delhi, Delhi 11007, India; [email protected] 3 Quantum Gravity and Unified Theory and Theoretical Cosmology Group, Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Potsdam-Golm, Germany 4 National Institute of Science Education and Research, Bhubaneswar, Odisha 752050, India; [email protected] 5 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India 6 Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; [email protected] (R.N.D.); [email protected] (A.M.) 7 Department of Chemistry, Sree Chaitanya College, Prafullanagar, Habra 743268, India; [email protected] 8 Department of Physical Sciences, Indian Institute of Science Education & Research Mohali, Punjab 140306, India; [email protected] or [email protected] 9 Department of Physics and Astronomy, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada; [email protected] Citation: Bhagat, K.Y.; Bose, B.; 10 Discipline of Mathematics, Indian Institute of Technology Indore, Indore 453552, India; [email protected] Choudhury, S.; Chowdhury, S.; Das, * Correspondence: [email protected] or [email protected] R.N.; Dastider, S.G.; Gupta, N.; † NOTE: This project is the part of the non-profit virtual international research consortium “Quantum Aspects Maji, A.; Pasquino, G.D.; Paul, S. of Space-Time & Matter” (QASTM). We would like to dedicate this work for the people those who are helping The Generalized OTOC from us to fight against COVID-19 pandemic across the globe. Supersymmetric Quantum Mechanics—Study of Random Abstract: The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very Fluctuations from Eigenstate strong theoretical probe of quantum randomness, using which one can study both chaotic and Representation of Correlation non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a Functions. Symmetry 2021, 13, 44. general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way. https://doi.org/10.3390/ Further, we demonstrate an equivalent formalism of computation using a general time-independent sym13010044 Hamiltonian having well-defined eigenstate representation for integrable Supersymmetric quantum Received: 6 December 2020 systems. We found that one needs to consider two new correlators apart from the usual one to have Accepted: 18 December 2020 a complete quantum description. To visualize the impact of the given formalism, we consider the Published: 30 December 2020 two well-known models, viz. Harmonic Oscillator and one-dimensional potential well within the framework of Supersymmetry. For the Harmonic Oscillator case, we obtain similar periodic time Publisher’s Note: MDPI stays neu- dependence but dissimilar parameter dependences compared to the results obtained from both micro- tral with regard to jurisdictional clai- canonical and canonical ensembles in quantum mechanics without Supersymmetry. On the other ms in published maps and institutio- hand, for the One-Dimensional Potential Well problem, we found significantly different time scales nal affiliations. and the other parameter dependence compared to the results obtained from non-Supersymmetric quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a Copyright: © 2020 by the authors. Li- model-independent Hamiltonian, along with the previously mentioned well-cited models. censee MDPI, Basel, Switzerland. This article is an open access article Keywords: OTOC; supersymmetry; out-of-equilibrium quantum statistical mechanics distributed under the terms and con- ditions of the Creative Commons At- tribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Symmetry 2021, 13, 44. https://doi.org/10.3390/sym13010044 https://www.mdpi.com/journal/symmetry Symmetry 2021, 13, 44 2 of 103 Contents 1 Introduction 3 2 Lexicography 12 3 A Short Review of Supersymmetric Quantum Mechanics 12 4 General Remarks on Time Disorder Averaging and Thermal OTOCs 14 5 Eigenstate Representation of thermal OTOCs in Supersymmetric Quantum Mechanics 20 5.1 Partition Function from Supersymmetric Quantum Mechanics......................... 23 (1) 5.2 Representation of 2-Point OTOC: Y (t1, t2) ................................... 24 (2) 5.3 Representation of 2-Point OTOC: Y (t1, t2) ................................... 25 (3) 5.4 Representation of 2-Point OTOC: Y (t1, t2) ................................... 25 (1) 5.5 Representation of 4-Point OTOC: C (t1, t2) ................................... 26 (1) 5.5.1 Un-Normalized: C (t1, t2) ......................................... 26 (1) 5.5.2 Normalized: Ce (t1, t2) ........................................... 27 (2) 5.6 Representation of 4-Point OTOC: C (t1, t2) ................................... 28 (2) 5.6.1 Un-Normalized: C (t1, t2) ......................................... 28 (2) 5.6.2 Normalized: Ce (t1, t2) ........................................... 29 (3) 5.7 Representation of 4-Point OTOC: C (t1, t2) ................................... 30 (3) 5.7.1 Un-Normalized: C (t1, t2) ......................................... 30 (3) 5.7.2 Normalized: Ce (t1, t2) ........................................... 31 5.8 Summary of Results................................................. 32 6 Model I: Supersymmetric Quantum Mechanical Harmonic Oscillator 33 6.1 Eigenspectrum of the Super-Partner Hamiltonian................................ 33 6.2 Partition Function................................................... 34 6.3 Computation of 2-Point OTOCs........................................... 35 (1) 6.3.1 Computation of Y (t1, t2) ......................................... 35 (2) 6.3.2 Computation of Y (t1, t2) ......................................... 37 (3) 6.3.3 Computation of Y (t1, t2) .......................................... 38 6.4 Computation of Un-Normalized 4-Point OTOCs................................. 40 (1) 6.4.1 Computation of C (t1, t2) ......................................... 40 (2) 6.4.2 Computation of C (t1, t2) ......................................... 42 (3) 6.4.3 Computation of C (t1, t2) ......................................... 44 6.5 Computation of Normalized 4-Point OTOCs................................... 46 (1) 6.5.1 Computation of Ce (t1, t2) ......................................... 46 (2) 6.5.2 Computation of Ce (t1, t2) ......................................... 48 (3) 6.5.3 Computation of Ce (t1, t2) ......................................... 49 6.6 Summary of Results................................................. 50 7 Model II: Supersymmetric One-Dimensional Potential Well 52 8 General Remarks on the Classical Limiting Interpretation of OTOCs 54 9 Classical Limit of OTOC for Supersymmetric One-Dimensional Harmonic Oscillator 55 10 Classical Limit of OTOC for Supersymmetric 1D Box 57 11 Numerical Results 60 11.1 Supersymmetric 1D Infinite Potential Well..................................... 61 11.2 Supersymmetric 1D Harmonic Oscillator..................................... 72 12 Conclusions 83 Symmetry 2021, 13, 44 3 of 103 Appendix A Derivation of the Normalization Factors for the Supersymmetric HO 86 Appendix B Poisson Bracket Relation for the Supersymmetric Partner Potential Associated with the 1D Infinite Well Potential 88 Appendix C Derivation of the Eigenstate Representation of the Correlators 91 (1) Appendix C.1 Representation of 2-point Correlator: Y (t1, t2) ............................ 91 (2) Appendix C.2 Representation of 2-point Correlator: Y (t1, t2) ............................ 92 (3) Appendix C.3 Representation of 2-point Correlator: Y (t1, t2) ............................ 93 (1) Appendix C.4 Representation of 4-Point Correlator: C (t1, t2) ............................ 93 (1) Appendix C.4.1 Un-normalized: C (t1, t2) .................................... 93 (2) Appendix C.4.2 Un-normalized: C (t1, t2) .................................... 95 (3) Appendix C.5 Representation of 4-point Correlator: C (t1, t2) ............................ 98 Appendix C.6 Eigenstate Representation of the Normalization Factors for the 4-point Correlators........ 100 References 100 1. Introduction The concept of out-of-time-ordered-correlators (OTOC) was first introduced by the author duo Larkin and Ovchinnikov to describe the semi-classical correlation in the context of superconductivity [1], which was mostly used in various condensed matter systems to study various out-of-equilibrium phenomena in the quantum regime [2]. However, recently, it has attracted the attention of theoretical physicists from other branches in very different contexts, finding applications in the finite-temperature extension of quantum field theories, bulk gravitational theories, quantum black holes, and many more sensational
Recommended publications
  • Annual Report 2013-2014
    ANNUAL REPORT 2013 – 14 One Hundred and Fifth Year Indian Institute of Science Bangalore - 560 012 i ii Contents Page No Page No Preface 5.3 Departmental Seminars and IISc at a glance Colloquia 120 5.4 Visitors 120 1. The Institute 1-3 5.5 Faculty: Other Professional 1.1 Court 1 Services 121 1.2 Council 2 5.6 Outreach 121 1.3 Finance Committee 3 5.7 International Relations Cell 121 1.4 Senate 3 1.5 Faculties 3 6. Continuing Education 123-124 2. Staff 4-18 7. Sponsored Research, Scientific & 2.1 Listing 4 Industrial Consultancy 125-164 2.2 Changes 12 7.1 Centre for Sponsored Schemes 2.3 Awards/Distinctions 12 & Projects 125 7.2 Centre for Scientific & Industrial 3. Students 19-25 Consultancy 155 3.1 Admissions & On Roll 19 7.3 Intellectual Property Cell 162 3.2 SC/ST Students 19 7.4 Society for Innovation & 3.3 Scholarships/Fellowships 19 Development 163 3.4 Assistance Programme 19 7.5 Advanced Bio-residue Energy 3.5 Students Council 19 Technologies Society 164 3.6 Hostels 19 3.7 Award of Medals 19 8. Central Facilities 165-168 3.8 Placement 21 8.1 Infrastructure - Buildings 165 8.2 Activities 166 4. Research and Teaching 26-116 8.2.1 Official Language Unit 166 4.1 Research Highlights 26 8.2.2 SC/ST Cell 166 4.1.1 Biological Sciences 26 8.2.3 Counselling and Support Centre 167 4.1.2 Chemical Sciences 35 8.3 Women’s Cell 167 4.1.3 Electrical Sciences 46 8.4 Public Information Office 167 4.1.4 Mechanical Sciences 57 8.5 Alumni Association 167 4.1.5 Physical & Mathematical Sciences 75 8.6 Professional Societies 168 4.1.6 Centres under Director 91 4.2.
    [Show full text]
  • Kavli IPMU Annual 2014 Report
    ANNUAL REPORT 2014 REPORT ANNUAL April 2014–March 2015 2014–March April Kavli IPMU Kavli Kavli IPMU Annual Report 2014 April 2014–March 2015 CONTENTS FOREWORD 2 1 INTRODUCTION 4 2 NEWS&EVENTS 8 3 ORGANIZATION 10 4 STAFF 14 5 RESEARCHHIGHLIGHTS 20 5.1 Unbiased Bases and Critical Points of a Potential ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙20 5.2 Secondary Polytopes and the Algebra of the Infrared ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙21 5.3 Moduli of Bridgeland Semistable Objects on 3- Folds and Donaldson- Thomas Invariants ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙22 5.4 Leptogenesis Via Axion Oscillations after Inflation ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙23 5.5 Searching for Matter/Antimatter Asymmetry with T2K Experiment ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 24 5.6 Development of the Belle II Silicon Vertex Detector ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙26 5.7 Search for Physics beyond Standard Model with KamLAND-Zen ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙28 5.8 Chemical Abundance Patterns of the Most Iron-Poor Stars as Probes of the First Stars in the Universe ∙ ∙ ∙ 29 5.9 Measuring Gravitational lensing Using CMB B-mode Polarization by POLARBEAR ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 30 5.10 The First Galaxy Maps from the SDSS-IV MaNGA Survey ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙32 5.11 Detection of the Possible Companion Star of Supernova 2011dh ∙ ∙ ∙ ∙ ∙ ∙
    [Show full text]
  • IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof
    dm{f©H$ à{VdoXZ Annual Report 2015-16 ¼ããäÌãÓ¾ã ãä¶ã¹ã¥ã †Ìãâ Êãà¾ã „ÞÞã¦ã½ã ½ãÖ¦Ìã ‡ãŠñ †‡ãŠ †ñÔãñ Ìãõ—ãããä¶ã‡ãŠ ÔãâÔ©ãã¶ã ‡ãŠãè Ô©ãã¹ã¶ãã ãä•ãÔã½ãò ‚㦾ãã£ãìãä¶ã‡ãŠ ‚ã¶ãìÔãâ£ãã¶ã Ôããä֦㠂㣾ãã¹ã¶ã †Ìãâ ãäÍãàã¥ã ‡ãŠã ¹ãî¥ãùã Ôãñ †‡ãŠãè‡ãŠÀ¥ã Öãñý ãä•ã—ããÔãã ¦ã©ãã ÀÞã¶ã㦽ã‡ãŠ¦ãã Ôãñ ¾ãì§ãŠ ÔãÌããó§ã½ã Ôã½ãã‡ãŠÊã¶ã㦽ã‡ãŠ ‚㣾ãã¹ã¶ã ‡ãñŠ ½ã㣾ã½ã Ôãñ ½ããõãäÊã‡ãŠ ãäÌã—ãã¶ã ‡ãŠãñ ÀãñÞã‡ãŠ ºã¶ãã¶ããý ÊãÞããèÊãñ †Ìãâ Ôããè½ããÀãäÖ¦ã / ‚ãÔããè½ã ¹ã㟿ã‰ãŠ½ã ¦ã©ãã ‚ã¶ãìÔãâ£ãã¶ã ¹ããäÀ¾ããñ•ã¶ãã‚ããò ‡ãñŠ ½ã㣾ã½ã Ôãñ œãñ›ãè ‚ãã¾ãì ½ãò Öãè ‚ã¶ãìÔãâ£ãã¶ã àãñ¨ã ½ãò ¹ãÆÌãñÍãý Vision & Mission Establish scientific institution of the highest caliber where teaching and education are totally integrated with state-of-the- art research Make learning of basic sciences exciting through excellent integrative teaching driven by curiosity and creativity Entry into research at an early age through a flexible borderless curriculum and research projects Annual Report 2015-16 Governance Correct Citation Board of Governors IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof. T.V. Ramakrishnan (till 03/12/2015) Emeritus Professor of Physics, DAE Homi Bhabha Professor, Department of Physics, Indian Institute of Science, Bengaluru Published by Dr. K. Venkataramanan (from 04/12/2015) Director and President (Engineering and Construction Projects), Dr.
    [Show full text]
  • Academic Report 2009–10
    Academic Report 2009–10 Harish-Chandra Research Institute Chhatnag Road, Jhunsi, Allahabad 211019 Contents About the Institute 2 Director’s Report 4 Governing Council 8 Academic Staff 10 Administrative Staff 14 Academic Report: Mathematics 16 Academic Report: Physics 47 Workshops and Conferences 150 Recent Graduates 151 Publications 152 Preprints 163 About the Computer Section 173 Library 174 Construction Work 176 1 About the Institute Early Years The Harish-Chandra Research Institute is one of the premier research institute in the country. It is an autonomous institute fully funded by the Department of Atomic Energy, Government of India. Till October 10, 2000 the Institute was known as Mehta Research Institute of Mathematics and Mathematical Physics (MRI) after which it was renamed as Harish-Chandra Research Institute (HRI) after the internationally acclaimed mathematician, late Prof Harish-Chandra. The Institute started with efforts of Dr. B. N. Prasad, a mathematician at the University of Allahabad with initial support from the B. S. Mehta Trust, Kolkata. Dr. Prasad was succeeded in January 1966 by Dr. S. R. Sinha, also of Allahabad University. He was followed by Prof. P. L. Bhatnagar as the first formal Director. After an interim period in January 1983, Prof. S. S. Shrikhande joined as the next Director of the Institute. During his tenure the dialogue with the Department of Atomic Energy (DAE) entered into decisive stage and a review committee was constituted by the DAE to examine the Institutes fu- ture. In 1985 N. D. Tiwari, the then Chief Minister of Uttar Pradesh, agreed to provide sufficient land for the Institute and the DAE promised financial sup- port for meeting both the recurring and non-recurring expenditure.
    [Show full text]
  • Aninda Sinha
    CURRICULUM VITAE: Aninda Sinha DOB: 31 March, 1977 Affiliation: Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012, India. Position: Assistant Professor, from December 2010. Phone: +91 80 22932851 Email: [email protected] PROFESSIONAL EXPERIENCE 1. Postdoctoral fellow, Perimeter Institute for Theoretical Physics, Waterloo, Canada, 2007-2010. 2. PPARC postdoctoral fellow and Gonville and Caius college fellow, Cambridge University, UK, 2004- 2007. EDUCATION 1. Don Bosco, Calcutta, 1984-1996. Indian School Certificate. 2. Jadavpur University, Calcutta, 1996-1999. B.Sc., Physics honours (placed first). 3. Cambridge University, UK, 1999-2001. BA, MA, Certificate of Advanced Study in Mathematics{Part III applied mathematics (placed first with distinction); part III essay: Black holes and the AdS/CFT correspondence supervised by Professor Malcolm Perry. 4. Cambridge University, UK, (degree officially conferred 2005). PhD in theoretical physics, advisor Pro- fessor Michael Green, DAMTP. Thesis title: Aspects of IIB plane-wave string theory RESEARCH PUBLICATIONS 1. \On c-theorems in arbitrary dimensions" A. Bhattacharyya, L. -Y. Hung, K. Sen and A. Sinha. arXiv:1207.2333 [hep-th], to appear in PRD. 2. \Quantum corrections to screening at strong coupling" A. Singh and A. Sinha. Nucl. Phys. B 167-189, 864 (2012) arXiv:1204.1817 [hep-th] 3. \Counterterms, critical gravity and holography" K. Sen, A. Sinha and N. V. Suryanarayana. Phys. Rev. D 85, 124017 (2012) arXiv:1201.1288 [hep-th] 4. \Implications of a viscosity bound on black hole accretion" A. Sinha and B. Mukhopadhyay Phys. Lett. B 709, 289 (2012) arXiv:1108.5177 [astro-ph.HE] 5. \AdS/CFT and sQGP" A.
    [Show full text]
  • Current Affairs Q&A
    Current Affairs Q&A PDF This is Paid PDF provided by AffairsCloud.com, Our team is working hard in back end to provide quality PDF. If you not buy this paid PDF subscription plan, we kindly request you to buy pdf to avail this service. Help Us To Grow & Provide Quality Service Subscribe(Buy) Current Affairs PDF 2019 - Pocket, Study and Q&A (English & Hindi) Current Affairs Q&A PDF - September 2019 Table of Contents INDIAN AFFAIRS ................................................................................................................................................................................... 2 INTERNATIONAL AFFAIRS ............................................................................................................................................................ 59 BANKING & FINANCE ....................................................................................................................................................................... 87 ECONOMY & BUSINESS ................................................................................................................................................................. 112 AWARDS & RECOGNITIONS ........................................................................................................................................................ 128 APPOINTMENTS & RESIGNS ....................................................................................................................................................... 154 SCIENCE & TECHNOLOGY ...........................................................................................................................................................
    [Show full text]
  • String Theory and Quantum Gravity
    String Theory and Quantum Gravity Title: 5D Maximally Supersymmetric Yang-Mills on the Lattice ​ Authors: Anosh Joseph Publication: PoS LATTICE2016 220, (2016) ​ Title: Higher Dimensional Generalizations of the SYK Model ​ Authors: Micha Berkooz, Prithvi Narayan, Moshe Rozali, Joan Simón ​ ​ ​ Publication: arXiv:1610.02422 [hep-th] Oct 7, (2016) ​ Title: Conformal Bootstrap in Mellin Space ​ Authors: Rajesh Gopakumar, Apratim Kaviraj, Kallol Sen, Aninda Sinha ​ Publication: arXiv:1609.00572 [hep-th] Jun 28, (2016) ​ Title: Chaotic dynamics of strings in charged black hole backgrounds ​ Authors: Pallab Basu , Pankaj Chaturvedi, Prasant Samantray ​ Publication: arXiv:1606.08711 [hep-th] Jul 15, (2016) ​ Title: Schwinger-Keldysh formalism II: Thermal equivariant cohomology ​ Authors: Felix M. Haehl, R. Loganayagam, Mukund Rangamani ​ ​ ​ Publication: arXiv:1610.01941 [hep-th] Oct 6, (2016) ​ Title: Schwinger-Keldysh formalism I: BRST symmetries and superspace ​ Authors: Felix M. Haehl, R. Loganayagam, Mukund Rangamani ​ ​ ​ Publication: arXiv:1610.01940 [hep-th] Oct 6, (2016) ​ Title: Holographic Entanglement for Chern-Simons Terms ​ Authors: T. Azeyanagi, R. Loganayagam and G. S. Ng ​ ​ ​ Publication: arXiv:1507.02298 [hep-th] ​ Title: A Toy Model of Black Hole Complementarity ​ Authors: Souvik Banerjee, Jan-Willem Bryan, Kyriakos Papadodimas, Suvrat Raju ​ ​ Publication: arXiv:1603.02812 ​ Title: A toy model of black hole complementarity ​ Authors: Souvik Banerjee, Jan-Willem Bryan, Kyriakos Papadodimas, Suvrat Raju ​ ​ Publication: JHEP 1605, 004 (2016) ​ Title: Hairy Black Holes in a Box ​ Authors: Pallab Basu, Chethan Krishnan, P. N. Bala Subramanian (Bangalore, Indian ​ ​ ​ ​ ​ ​ Inst. Sci.) ​ Publication: JHEP (accepted, to appear) ​ Title: Chaotic dynamics of strings in charged black hole backgrounds ​ Authors: Pallab Basu (ICTS, Mumbai), Pankaj Chaturvedi (Indian Inst.
    [Show full text]
  • THE GENERALIZED OTOC from SUPERSYMMETRIC QUANTUM MECHANICS Study of Random Fluctuations from Eigenstate Representation of Correlation Functions
    THE GENERALIZED OTOC FROM SUPERSYMMETRIC QUANTUM MECHANICS Study of Random Fluctuations from Eigenstate Representation of Correlation Functions Kaushik Y. Bhagat1, Baibhab Bose2, Sayantan Choudhury3;4;5‡; §, Satyaki Chowdhury4;5, Rathindra N. Das6, Saptarshhi G. Dastider7, Nitin Gupta8, Archana Maji6, Gabriel D. Pasquino9, Swaraj Paul10 1Indian Institute of Science, Bengaluru, Karnataka-560012, India 2Department of Physics & Astrophysics, University of Delhi, Delhi-11007, India 3Quantum Gravity and Unified Theory and Theoretical Cosmology Group, Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mu¨hlenberg 1, 14476 Potsdam-Golm, Germany. 4National Institute of Science Education and Research, Bhubaneswar, Odisha - 752050, India 5Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai - 400085, India 6Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India 7Sree Chaitanya College, Prafullanagar, Habra, West Bengal - 743268 8Department of Physical Sciences, Indian Institute of Science Education & Research Mohali, Punjab - 140306, India 9University of Waterloo, 200 University Ave W, Waterloo, ON, Canada, N2L 3G1 10Discipline of Mathematics, Indian Institute of Technology Indore, Indore 453 552, India Abstract The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC, which can perfectly capture quantum randomness phe- nomena in a better way. Further, we demonstrate an equivalent formalism of computation using a general time-independent Hamiltonian having well-defined eigenstate representa- tion for integrable supersymmetric quantum systems. We found that one needs to consider two new correlators apart from the usual one to have a complete quantum description.
    [Show full text]
  • Annual Report
    THE INSTITUTE OF MATHEMATICAL SCIENCES C. I. T. Campus, Taramani, Chennai - 600 113. ANNUAL REPORT Aug 2001 - Jul 2002 Telegram: MATSCIENCE Fax: +91-44-254 1586 Telephone: +91-44-254 2398, 254 1856, 254 2588, 254 1049, 254 2050 e-mail: offi[email protected] ii Foreword I am pleased to present the progress made by the Institute during 2001-2002 in its many sub-disciplines and note the distinctive achievements of the members of the Institute. The construction of additional office space and an auditorium was completed and the new office space has now been occupied. The Auditorium, which has a seating capacity of 190, was named the Ramanujan Auditorium and was inaugurated on June 22nd by Dr. Anil Kakodkar. On behalf of the Institute, I convey my sincere thanks to Dr. R. Chidambaram (the previous Chairman of AEC), Dr. Anil Kakodkar (the present Chairman), and Mrs. Sudha Bhave (Joint Secretary, DAE), for the keen interest shown by them in the progress of this building project and the help and support extended to us at every stage. I am pleased to mention that 2001-2002 was an academically productive year and many interesting events took place. The B. M. Birla Award was given to Dr. Kapil Paranjape for Mathematical Science for the year 1999, and to Dr. Sudeshna Sinha for Physical Sciences for the year 2001. Dr. Kapil Paranjape was awarded a DST-Swarnajayanthi Project on Cycles, Arithmetic and Cryptography. Prof. K. Srinivasa Rao was awarded the Tamil Nadu Scientists Award for the year 2000 by the Tamil Nadu State Council for Science and Technology.
    [Show full text]
  • Schedule Titles and Zoom Links: Please Note That IST = UTC + 5:30
    The Dual Mysteries of Gauge Theories and Gravity IIT Madras 2020 Schedule Titles and zoom links: Please note that IST = UTC + 5:30 Mon, Oct 19, Session 1: Chair: Suresh Govindarajan ​ 09:00--9:30 IST Opening address by David Gross and Director’s welcome speech Zvi Bern 9:30- 10:25 IST Scattering Amplitudes as a Tool for Understanding Gravity Aninda Sinha 10:40--11:20 IST Rebooting the S-matrix bootstrap Mon, Oct 19, Session 2: Chair: Jyotirmoy Bhattacharyya ​ Jerome Gauntlett 14:00-14:40 IST Spatially Modulated & Supersymmetric Mass Deformations of N=4 SYM ​ Elias Kiritsis 14:55-15:35 IST ​ Emergent gravity from hidden sectors and TT deformations ​ ​ ​ Rene Meyer 15:50 -16:30 IST Strongly Correlated Dirac Materials, Electron Hydrodynamics & AdS/CFT ​ Mon, Oct 19, Session 3: Chair: Bindusar Sahoo ​ Chethan Krishnan 19:30-20:10 IST Cosmic Censorship of Trans-Planckian Field Ranges in Gravitational Collapse ​ ​ ​ Timm Wrase 20:25 - 21:05 IST Misaligned SUSY in string theory ​ Thomas van Riet 21:20 -22:00 IST A de Sitter landscape and Russel's teapot ​ 1 The Dual Mysteries of Gauge Theories and Gravity Tue, Oct 20, Session 1: Chair: Nabamita Banerjee ​ Rajesh Gopakumar 9:00 - 9:40 IST ​ ​ Branched Covers and Worldsheet Localisation in AdS_3 Gustavo Joaquin Turiaci 9:55- 10:35 IST ​ ​ The gravitational path integral near extremality Ayan Mukhopadhyay 10:50- 11:30 IST ​ ​ Analogue quantum black holes Tue, Oct 20, Session 2: Chair: Koushik Ray ​ David Mateos 14:00-14:40 IST Holographic Dynamics near a Critical Point Shiraz Minwalla 14:55 - 15:35 IST ​ ​ Fermi seas from Bose condensates and a bosonic exclusion principle in matter Chern Simons theories.
    [Show full text]
  • Tata Institute of Fundamental Research
    Tata Institute of Fundamental Research NAAC Self-Study Report, 2016 VOLUME 3 VOLUME 3 1 Departments, Schools, Research Centres and Campuses School of Technology and School of Mathematics Computer Science (STCS) School of Natural Sciences Chemical Sciences Astronomy and (DCS) Main Campus Astrophysics (DAA) Biological (Colaba) High Energy Physics Sciences (DBS) (DHEP) Nuclear and Atomic Condensed Matter Physics (DNAP) Physics & Materials Theoretical Physics (DTP) Science (DCMPMS) Mumbai Homi Bhabha Centre for Science Education (HBCSE) Pune National Centre for Radio Astrophysics (NCRA) Bengaluru National Centre for Biological Sciences (NCBS) International Centre for Theoretical Sciences (ICTS) Centre for Applicable Mathematics (CAM) Hyderabad TIFR Centre for Interdisciplinary Sciences (TCIS) VOLUME 3 2 SECTION B3 Evaluative Report of Departments (Research Centres) VOLUME 3 3 Index VOLUME 1 A-Executive Summary B1-Profile of the TIFR Deemed University B1-1 B1-Annexures B1-A-Notification Annex B1-A B1-B-DAE National Centre Annex B1-B B1-C-Gazette 1957 Annex B1-C B1-D-Infrastructure Annex B1-D B1-E-Field Stations Annex B1-E B1-F-UGC Review Annex B1-F B1-G-Compliance Annex B1-G B2-Criteria-wise inputs B2-I-Curricular B2-I-1 B2-II-Teaching B2-II-1 B2-III-Research B2-III-1 B2-IV-Infrastructure B2-IV-1 B2-V-Student Support B2-V-1 B2-VI-Governance B2-VI-1 B2-VII-Innovations B2-VII-1 B2-Annexures B2-A-Patents Annex B2-A B2-B-Ethics Annex B2-B B2-C-IPR Annex B2-C B2-D-MOUs Annex B2-D B2-E-Council of Management Annex B2-E B2-F-Academic Council and Subject
    [Show full text]
  • ICTS ACTIVITY REPORT 2015 - 17 Ii ICTS REPORT 2015–17 | DIRECTOR’S REPORT ICTS REPORT 2015–17 | DIRECTOR’S REPORT Iii
    ICTS REPORT 2015–17 | DIRECTOR’S REPORT i ICTS ACTIVITY REPORT 2015 - 17 ii ICTS REPORT 2015–17 | DIRECTOR’S REPORT ICTS REPORT 2015–17 | DIRECTOR’S REPORT iii CONTENTS 1) DIRECTOR’S REPORT PAGE 1 2) RESEARCH REPORTS PAGE 6 4) PROGRAM ACTIVITIES PAGE 78 5) OUTREACH PAGE 92 6) GRADUATE STUDIES PAGE 100 7) STAFF PAGE 106 8) CAMPUS PAGE 110 9) AWARDS AND HONORS PAGE 122 10) MANAGEMENT PAGE 126 iv ICTS REPORT 2015–17 | DIRECTOR’S REPORT ICTS REPORT 2015–17 | DIRECTOR’S REPORT 1 DIRECTOR’S REPORT 2 ICTS REPORT 2015–17 | DIRECTOR’S REPORT “In our acquisition of knowledge of the universe (whether mathematical or otherwise) that which renovates the quest is nothing more or less than complete innocence ... It alone can unite humility with boldness so as to allow us to penetrate to the heart of things ...” Alexander Grothendieck (From “Reaping and Sowing”) It has been a great privilege for me to helm ICTS these last two plus years, and to build on the strong foundations set by Spenta Wadia, the founding director. In this period, ICTS has grown from the close intimacy of our temporary garden home in IISc to something more akin to the expansive shade of a banyan tree in our new campus at Shivakote. Nevertheless, we continually strive to ‘renovate the quest’, trying to retain the innocence of all new beginnings. In fact, it is hard to believe that we are now in the tenth year of our existence – ready to step into adolescence in the second decade of our explorations.
    [Show full text]