Cerebellar Abiotrophy in a 6-Year-Old Arabian Mare A

Total Page:16

File Type:pdf, Size:1020Kb

Cerebellar Abiotrophy in a 6-Year-Old Arabian Mare A 130 EQUINE VETERINARY EDUCATION / AE / march 2011 Case Reporteve_166 130..134 Cerebellar abiotrophy in a 6-year-old Arabian mare A. Foley, J. Grady†, K. Almes‡, K. Patton§ and E. Davis¶* Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia; †Sapulpa Equine Hospital, Oklahoma; ‡Kansas State Veterinary Diagnostic Lab, Kansas; §Battelle Toxicology Northwest, Washington; and ¶Department of Clinical Sciences, Kansas, USA. Keywords: horse; cerebellar abiotrophy; neurolgical disease; Arabian horse; cerebellum; neurological examination Summary Thorough ante mortem neurological examination of suspect individuals will aid in excluding other causes of Cerebellar abiotrophy (CA) is an uncommon neurological equine cerebellar disease. Complete post mortem disease that most commonly affects Arabian horses. examination, including histopathology of affected tissues, Affected horses are typically identified within the first 6 is required to establish a definitive diagnosis of cerebellar months of life. Intention tremor, wide based stance and abiotrophy. Gross morphological changes are not a ataxia are common clinical signs observed in affected characteristic of equine cerebellar abiotrophy and individuals. No treatment is available for resolution therefore gross evaluation or advanced diagnostic of clinical signs. Definitive diagnosis is based on imaging with MRI will not provide definitive evidence of histopathological examination of cerebellar tissue, which is equine cerebellar abiotrophy. Although some individuals characterised by loss of Purkinje cell layer. This report may demonstrate static clinical signs with reported clinical describes a case of cerebellar abiotrophy that had a improvement, this condition is untreatable and typically delayed diagnosis until 6 years of age. follows a course of chronic progression following the onset of clinical signs. This report documents a 6-year-old Arabian Introduction mare that presented for veterinary evaluation of neurological disease that was ultimately diagnosed as Cerebellar abiotrophy (CA) has been reported to occur cerebellar abiotrophy. primarily in Arabian horses and is characterised by progressive, premature degeneration of Purkinje cells. History Clinical manifestations of disease in affected horses include an intention tremor, ataxia, wide-based stance A 6-year-old Arabian mare presented to the Veterinary (Videos S1 and 2), dysmetria, spasticity and hypermetria Medical Teaching Hospital with progressive neurological without evidence of weakness (Beatty et al. 1986; Summers disease of approximately 9 months duration. The main et al. 1995; Byre 2004) (Video S3). Onset of clinical disease complaints at the time of presentation included ataxia, typically occurs between 2 and 6 months of age (Beatty an intention tremor, difficulty prehending feed and et al. 1986). Previous reports have described the latest difficulty turning to the right both in hand and under recognition of Arabians with CA to be 9 and 24 months of saddle. age (De Lahunta 1983). The aetiology of CA in Arabian The mare was purchased one year prior to presentation horses remains elusive. Experimental breeding of affected by an experienced equine owner with the intent of using and related individuals has resulted in the determination the mare as a performance animal. Prior to purchase the that cerebellar abiotrophy is an autosomal recessive trait. mare had received minimal training and had not been Affected individuals suffer from a metabolic defect that ridden. Once purchased the horse was initially trained results in premature Purkinje cell apoptosis (Sponseller 1967; in-hand and in a round pen and after approximately 2 Blanco et al. 2006). In horses, cerebellar abiotrophy is months the mare was placed into a training programme confined to a small group of breeds: the Arabian, that included light riding under saddle. At approximately Oldenberg; Gotland and an Eriskay pony, the latter of this time it was noted that the mare had difficulty handling which are descendants of Arabian bloodlines (Palmer exercise, demonstrated by stumbling and reluctance to et al. 1973; Beatty et al. 1986). flex her head and neck to the right. The owner felt that the mare had worsened in clinical disease after the initiation of *Corresponding author email: [email protected] training, but this was somewhat difficult to completely © 2011 EVJ Ltd EQUINE VETERINARY EDUCATION / AE / March 2011 131 assess since this was the first time the mare had been used Diagnostic test results as a performance animal under saddle. It was noted that by the time of presentation her in-hand mannerisms had The primary region of interest for radiographic examination changed when compared to mannerisms at the time of included the basisphenoid and basioccipital bones, purchase, and now included head tremors and obvious occipital condyles and cranial cervical regions (C1–C2) to ataxia that limited her ability to handle work under saddle. determine if congenital skeletal abnormalities were It was strongly considered by the receiving veterinary present. For completeness of radiographic study, entire staff that this mare was not neurologically normal at the skull and cervical radiographs were obtained and found to time of purchase one year previously. However, the be within normal limits; therefore, there was no evidence description of neurological abnormalities over the past that congenital skeletal abnormalities were associated several months at rest while standing still, at the walk when with neurological deficits. not under saddle and while eating were concerning. In Specific findings of the cervical radiographic particular, the fact that these abnormalities were not evaluation did reveal mild degenerative changes of the present at the time of purchase, supported the concern articular processes between C6–C7 and C7–T1. Minimum although mild disease may have been present at the time sagittal ratios were within normal limits. Mild degenerative of purchase and went unnoticed, the current neurological joint disease of the caudal cervical spine may have played disease was apparently progressive and moderate in a contributing role in the mare’s reluctance to flex her nature. head to the right. Cerebral spinal fluid was analysis was consistent with a mildly traumatic tap. Three millilitres of CSF were submitted Clinical findings for analysis; leucocyte count was performed with a haemocytometer that revealed 0 WBC/ml, 165 At presentation, the mare’s vital parameters were within erythrocytes/ml and a trace of protein present. normal limits, she was mildly excited and exhibited a Cytocentrifugation was performed to concentrate cells for pronounced vertical head tremor (Video S4). The head analysis. This analysis revealed a low nucleated cellularity tremor was noted to worsen with intentional movement with 10% nondegenerate neutrophils, 55% lymphocytes, toward an object, such as when offered grain. The 35% monocytes; protein was 28 mg/dl and Western blot predominant abnormality that was noted on cranial nerve analysis was negative for immunoglobulins specific for examination included a bilaterally diminished menace Sarcocystis neurona. reflex established by the observation that minimal blinking occurred when a hand was moved toward the mare’s Diagnosis head. Vision was established by proper negotiation around obstacles. Moderate symmetric ataxia was present and Based on case details, clinical signs, slow progression of consistent with cerebellar disease. The mare demonstrated disease and elimination of other differential considerations a wide based stance, particularly in the hindlimbs a presumptive diagnosis of cerebellar abiotrophy was yet maintained appropriate strength. Thoracic limb made. Although the diagnosis of cerebellar abiotrophy hypermetria was present at the walk and was was made at this time it was speculated that this mare had exaggerated upon head elevation. When circling at the suffered from mild neurological deficits since an early age, walk circumduction of the pelvic limbs was observed. As a which would be consistent with previous reports of result of lesion localisation differential considerations were cerebellar abiotrophy developing in the first months of life. limited to primary cerebellar disease. We further speculated that although deficits were present at a young age they went unrecognised by those Differential diagnoses individuals associated with the mare. Based on the rather moderate severity of disease at the time of presentation to the VMTH it was considered likely that there had been Due to breed, age and long duration of clinical signs, progression of disease in the previous year. The mare cerebellar abiotrophy and equine protozoal probably had underlying neurological disease that was not myeloencephalitis (EPM) were the primary differential apparent to the lay observer, particularly since she had not diagnoses. Trauma was considered unlikely due to been used for performance prior to purchase. A veterinary chronicity and the progressive nature of disease. Initial examination had not performed at the time of purchase. diagnostic testing included haematology, skull and complete cervical radiography to rule out congenital malformation of the skull or cranial cervical spine. Based Outcome on negative findings, cerebral spinal fluid was collected by lumbosacral spinal fluid centesis and submitted for Due to progression of disease, severity of clinical signs and cytological analysis and EPM testing via Western
Recommended publications
  • Late Onset of Cerebellar Abiotrophy in a Boxer
    SAGE-Hindawi Access to Research Veterinary Medicine International Volume 2010, Article ID 406275, 4 pages doi:10.4061/2010/406275 Case Report Late Onset of Cerebellar Abiotrophy in aBoxerDog Sanjeev Gumber, Doo-Youn Cho, and Timothy W. Morgan Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA Correspondence should be addressed to Sanjeev Gumber, [email protected] Received 2 August 2010; Accepted 7 November 2010 Academic Editor: Daniel Smeak Copyright © 2010 Sanjeev Gumber et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cerebellar abiotrophy is a degenerative disorder of the central nervous system and has been reported in humans and animals. This case report documents clinical, histopathological, and immunohistochemical findings of cerebellar abiotrophy in an adult Boxer dog. A 3.5-year-old, female, tan Boxer dog presented with a six-week history of left-sided head tilt. Neurological examination and additional diagnostics during her three subsequent visits over 4.5 months revealed worsening of neurological signs including marked head pressing, severe proprioceptive deficits in all the four limbs, loss of menace response and palpebral reflex in the left eye, and a gradual seizure lasting one hour at her last visit. Based on the immunohistochemical staining for glial fibrillary acidic protein and histopathological examination of cerebellum, cerebellar cortical abiotrophy was diagnosed. This is the first reported case of cerebellar abiotrophy in a Boxer dog to our knowledge.
    [Show full text]
  • Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24
    Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24 The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Agler, Caryline, Dahlia M. Nielsen, Ganokon Urkasemsin, Andrew Singleton, Noriko Tonomura, Snaevar Sigurdsson, Ruqi Tang, et al. “Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24.” Edited by Tosso Leeb. PLoS Genet 10, no. 2 (February 6, 2014): e1003991. As Published http://dx.doi.org/10.1371/journal.pgen.1003991 Publisher Public Library of Science Version Final published version Citable link http://hdl.handle.net/1721.1/86370 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24 Caryline Agler1, Dahlia M. Nielsen2, Ganokon Urkasemsin1, Andrew Singleton3, Noriko Tonomura4,5, Snaevar Sigurdsson4, Ruqi Tang4, Keith Linder6, Sampath Arepalli3, Dena Hernandez3, Kerstin Lindblad-Toh4,7, Joyce van de Leemput3, Alison Motsinger-Reif2,8, Dennis P. O’Brien9, Jerold Bell5, Tonya Harris1, Steven Steinberg10, Natasha J. Olby1,8* 1 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America, 2 Bioinformatics Research Center, North Carolina State
    [Show full text]
  • Abiotrophy in Domestic Animals: a Review
    Abiotrophy in Domestic Animals: A Review Alexander de Lahunta ABSTRACT and it allows us to concentrate our can be made to normal neuronal efforts on determining the specific development in which many popula- This review of abiotrophies in cytological defect that is present and tions of differentiated neurons die domestic animals has been organized ideally the genetic basis for its prematurely as a normal programmed by the predominate anatomical loca- occurrence. When we use abiotrophy developmental event. Some of the tion of the lesion. Secondary consider- to name a disease, we are only mechanisms may be common to both ations include the major signs of the describing the pathological process processes. This normal developmental clinical disorder and special neuropa- a concept of the mechanism resulting event occurs in the peripheral nervous thological features. Those abiotro- in the degeneration that is described. system when motoneurons from the phies that have an established genetic As the underlying cause of the ventral grey column fail to develop a basis are identifiled but the review abiotrophy is determined, this should normal motor end plate relationship includes degenerative disorders in be used in naming the disease. Using with a skeletal muscle fiber which is which the etiology is not yet the concept of abiotrophy in its the target organ. These neurons established. broadest sense it is applicable to any of degenerate. The ultimate size and the inherited degenerative diseases of shape of the ventral grey column the nervous system. This would reflects this normal degenerative Gowers in 1902 (1) gave a lecture include the numerous cerebellar process (2,3).
    [Show full text]
  • Cerebellar Disease in the Dog and Cat
    CEREBELLAR DISEASE IN THE DOG AND CAT: A LITERATURE REVIEW AND CLINICAL CASE STUDY (1996-1998) b y Diane Dali-An Lu BVetMed A thesis submitted for the degree of Master of Veterinary Medicine (M.V.M.) In the Faculty of Veterinary Medicine University of Glasgow Department of Veterinary Clinical Studies Division of Small Animal Clinical Studies University of Glasgow Veterinary School A p ril 1 9 9 9 © Diane Dali-An Lu 1999 ProQuest Number: 13815577 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13815577 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY lib ra ry ll5X C C ^ Summary SUMMARY________________________________ The aim of this thesis is to detail the history, clinical findings, ancillary investigations and, in some cases, pathological findings in 25 cases of cerebellar disease in dogs and cats which were presented to Glasgow University Veterinary School and Hospital during the period October 1996 to June 1998. Clinical findings were usually characteristic, although the signs could range from mild tremor and ataxia to severe generalised ataxia causing frequent falling over and difficulty in locomotion.
    [Show full text]
  • Berlin-2 17 06 22-Handout.Ppt [Kompatibilitätsmodus]
    25.06.2017 Malformations Important fetal teratogenic virus infections in different species: Feline panleukopenia virus cat cerebellar hypoplasia, hydranencephaly Introduction to Neuropathology – Part II Classical swine fever virus pig dysmyelinogenesis, cerebellar hypoplasia Bovine virus diarrhea virus calf, lamb hydrocephalus. cerebellar hypo- and aplasia, prosencephaly, hypomyelination, porencephaly Malformations Akabane, Cache valley, calf, lamb hydranencephaly, Prof. Dr. W. Baumgärtner and Dr. P. Wohlsein Schmallenberg virus arthrogryposis, Department of Pathology cerebellar hypoplasia, University of Veterinary Medicine porencephaly Hannover, Germany Neurological disease spectrum in dogs Malformations Important fetal teratogenic virus infections in different species: Canine parvovirus dog cerebellar hypoplasia, dysplasia Bluetongue virus lamb, calf hydranencephaly Chuzan virus calf hydranencephaly, cerebellar hypoplasia Aino virus calf arthrogryposis, hydranencephaly, Introduction cerebellar hypoplasia Malformations Border disease virus lamb porencephaly, hypomyelination Wesselsbron virus calf hydranencephaly, Fluehmann et al., 2006; J Small Anim Pract; mod. porencephaly Malformations Malformations ! frequent disorder in domestic animals (5% neonatal death) ! grossly or only microscopically visible Categories of CNS developmental defects: ! defects of neural tube closure Etiology: ! defects of forebrain induction ! primary: spontaneous or hereditary (point gene mutations, ! neuronal migration disorders and sulcation defects chromosomal
    [Show full text]
  • Cerebellar Abiotrophy
    Cerebellar Abiotrophy Affected breeds: Arabian, Bashkir Curly, Danish Sport, Trakehner, Welsh Pony. Equine cerebellar abiotrophy (CA) is an inherited neurological condition and is characterized by the degeneration of a specific cell type in the brain called Purkinje cells; these cells play a fundamental role in controlling movement. CA foals are apparently normal at birth, but between the ages of 6 – 16 weeks develop signs of CA which include head tremor and a lack of balance. Consequently, affected foals may show a splayed stance in an attempt to balance themselves, and may fall and be unable to rise easily. The severity of the signs displayed by affected foals varies widely and symptoms can be confused with other conditions. Affected foals are often euthanized as they are unsafe to ride. Research carried out at the Veterinary Genetics Laboratory in Davis, California has identified a mutation that is associated with CA. CA is found mainly in Arabian horses, but is also seen at a lower level in several other breeds including the Bashkir Curly Horse, Danish Sport Horse, Trakehners and Welsh ponies. The appearance of the defect in these breeds is due to Arabian ancestry; the CA test is therefore recommended for horses that have Arabian horses in their pedigree. CA is inherited in a recessive manner. This means that carrier horses which have one copy of the defective gene appear healthy, but can pass this on to their offspring. The breeding of two carriers will produce CA-affected foals 25% of the time. The breeding of a carrier with a clear horse will not result in affected foals, though 50% of offspring will be carriers themselves.
    [Show full text]
  • Equine Cerebellar Abiotrophy (CA) –
    ARABIAN HORSE FOUNDATION UPDATE Equine Cerebellar Abiotrophy (CA) – Update on UC Davis Research: Indirect DNA Test Available Background: Equine Cerebellar Abiotrophy (CA) is a debilitating degenerative condition of the cerebellum portion of the brain which results in a severe lack of coordination. The degree of severity can vary among individual horses, but most affected horses are euthanized before adulthood, due to the hazard they present to themselves and others, and the current inability to treat or cure the condition. Research has indicated that CA is the result of an autosomal recessive gene mutation. Autosomal means the disorder is not sex linked (both sexes can be affected) and recessive means both parents must contribute the “CA gene” in order to have an affected foal (this is the same mode of inheritance as SCID). Additional information on CA can be found here: http://www.arabianhorses.org/education/genetic/default.asp Indirect DNA Test: The Veterinary Genetics Laboratory at UC Davis has supported CA research for over 6 years. The CA research is being done by Dr. Cecilia Penedo and her graduate student Leah Brault. In 2007, The Horse Genome Project completed the sequencing of the horse genome and this development has enabled tremendous progress for mapping CA to a narrow region of the genome. These advancements have allowed the researchers to identify markers associated with CA and develop an indirect DNA test (early version of a diagnostic test) to help diagnose the defect in suspect foals and to help owners identify carriers in their breeding stock. This test can help guide breeders in making mating selections, with the goal to never produce a CA affected foal.
    [Show full text]
  • Identification of Mutation for Cerebellar Degeneration in the Gordon Setter
    North Carolina State University is a land-grant College of Veterinary Medicine university and a constituent institution of The Department of Clinical Sciences University of North Carolina 1060 William Moore Drive Raleigh, North Carolina 27607 Identification of Mutation for Cerebellar Degeneration in the Gordon Setter The mutation causing cerebellar degeneration (also known as cerebellar abiotrophy, cerebellar ataxia, cerebellar cortical degeneration, CA) has been identified in the laboratory of Dr. Natasha Olby at North Carolina State University. Cerebellar degeneration has been documented in the Gordon Setter as an autosomal recessive inherited disorder since at least the 1960s. It causes a progressive loss of coordination resulting in the hallmark ataxic gait characterized by dramatic overstepping, particularly obvious in the forelimbs. Onset of signs ranges from 6 months to 4 years of age and disease progression tends to be slow, occurring over several years. The mutation was identified following extensive mapping of cerebellar degeneration in Old English Sheepdogs. Testing of the mutation discovered in Old English Sheepdogs revealed that both breeds of dog have the same mutation. This implies that it is an old mutation that has existed in these populations of dogs at a very low level until more recent times. The mutation has not been described previously, and to date has only been found in the Old English Sheep dog and the Gordon Setter. Cerebellar degeneration has been seen in Gordon Setters worldwide, including the US, Canada, Europe, and Australia. It has been documented in both conformation and field lines. While the mutation is old and dispersed in the breed, we do not expect it to be present at a high frequency in the breed.
    [Show full text]
  • First Report of Cerebellar Abiotrophy in an Arabian Foal from Argentina
    Open Veterinary Journal, (2016), Vol. 6(3): 259-262 ISSN: 2226-4485 (Print) Case Report ISSN: 2218-6050 (Online) DOI: http://dx.doi.org/10.4314/ovj.v6i3.17 _____________________________________________________________________________________ Submitted: 03/08/2016 Accepted: 09/12/2016 Published: 22/12/2016 First report of cerebellar abiotrophy in an Arabian foal from Argentina S.A. Sadaba1,2, G.J. Madariaga3, C.M. Corbi Botto1,2, M.H. Carino1, M.E. Zappa1, P. Peral García1, S.A. Olguín4, A. Massone3 and S. Díaz1,* 1IGEVET – Instituto de Genética Veterinaria “Ing. Fernando Noel Dulout” (UNLP-CONICET La Plata), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina 2Research Fellows from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Rivadavia 1917 (C1033AAJ) CABA, Argentina 3Laboratorio de Patología Especial Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina 4Cátedra de Métodos Complementarios de Diagnóstico, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina _____________________________________________________________________________________________ Abstract Evidence of cerebellar abiotrophy (CA) was found in a six-month-old Arabian filly with signs of incoordination, head tremor, wobbling, loss of balance and falling over, consistent with a cerebellar lesion. Normal hematology profile blood test and cerebrospinal fluid analysis excluded infectious encephalitis, and serological testing for Sarcocystis neurona was negative. The filly was euthanized. Postmortem X-ray radiography of the cervical cephalic region identified not abnormalities, discounting spinal trauma. The histopathological analysis of serial transverse cerebellar sections by electron microscopy revealed morphological characteristics of apoptotic cells with pyknotic nuclei and degenerate mitochondria, cytoplasmic condensation and areas with absence of Purkinje cells, matching with CA histopathological characteristics.
    [Show full text]
  • From Head Trauma to Toxicity, Cerebellar Disease Diagnosis
    Vet Times The website for the veterinary profession https://www.vettimes.co.uk FROM HEAD TRAUMA TO TOXICITY, CEREBELLAR DISEASE DIAGNOSIS Author : Dan Forster Categories : Vets Date : December 8, 2008 DAN FORSTER examines the clinical pointers indicating a disease that not only affects movement, but also eating, and describes the possible differential diagnoses behind the dysfunction. ANIMALS with cerebellar disease will often present with classic signs of ataxia and dysmetria. However, the aetiology of the cerebellar damage is not always straightforward. This article reviews some of the causes of cerebellar dysfunction that may be encountered in general practice. The cerebellum occupies 10 per cent of the brain parenchyma in dogs and cats, and lies behind the cerebrum. It is connected to the brainstem by three paired cerebellar peduncles on each side, which act as a conduit for both afferent and efferent information related to cerebellar function. It is divided into functional units by a series of transverse fissures. The small flocculonodular node is important for balance, and the caudal lobe is associated with the feedback regulation of motor function. The more rostral lobe receives proprioceptive information. At a cellular level, the inner portion of the cerebellum is the medullary substance that contains the deep nuclei. The outer portion is the cerebellar cortex and is composed of three layers; the molecular cell layer, the Purkinje cell layer and the granule cell layer (Figure 1). The Purkinje cells are large and very active, metabolically, which makes them highly susceptible to ischaemic and toxic damage. 1 / 15 An understanding of the microscopic anatomy is useful when considering how different cerebellar diseases manifest themselves clinically.
    [Show full text]
  • Cerebellar Abiotrophy
    CEREBELLAR ABIOTROPHY What is cerebellar abiotrophy? The cerebellum is the part of the brain that regulates the control and coordination of movement. In this condition, cells in the cerebellum mature normally before birth, but then deteriorate prematurely causing clinical signs associated with poor coordination and lack of balance. The Purkinje cells in the cerebellum are primarily involved; cells in other areas of the brain may also be affected. How is cerebellar abiotrophy inherited? An autosomal recessive mode of inheritance has been confirmed or is strongly suspected for the abiotrophies listed below, with the exception of x-linked cerebellar ataxia in the English pointer, which has an x-linked mode of inheritance. What breeds are affected by cerebellar abiotrophy? Neonatal cerebellar abiotrophy (very rare) - Affected cells start to degenerate before birth, so that signs of cerebellar dysfunction are present at birth or when the pup first walks. Beagle, samoyed Postnatal cerebellar abiotrophy - Cells in the cerebellum are normal at birth and begin to degenerate at variable times thereafter. Australian kelpie, border collie, Labrador retriever - Clinical signs are first seen at 6 to 12 weeks, and the condition worsens quickly (over a few weeks). Airedale - There is early onset (12 weeks of age) and a slow progression of clinical signs. Bern running dog, Bernese mountain dog, bull terrier, German shepherd - Signs are seen by 6 months of age. Gordon setters - Clinical signs develop at 6 months to 2 years of age, and the progression is slow (months to years). Brittany spaniels - The onset of clinical signs is late (average age 10 years), and the condition progresses slowly.
    [Show full text]
  • HSVMA Guide to Congenital and Heritable Disorders in Dogs
    GUIDE TO CONGENITAL AND HERITABLE DISORDERS IN DOGS Includes Genetic Predisposition to Diseases Special thanks to W. Jean Dodds, D.V.M. for researching and compiling the information contained in this guide. Dr. Dodds is a world-renowned vaccine research scientist with expertise in hematology, immunology, endocrinology and nutrition. Published by The Humane Society Veterinary Medical Association P.O. Box 208, Davis, CA 95617, Phone: 530-759-8106; Fax: 530-759-8116 First printing: August 1994, revised August 1997, November 2000, January 2004, March 2006, and May 2011. Introduction: Purebred dogs of many breeds and even mixed breed dogs are prone to specific abnormalities which may be familial or genetic in nature. Often, these health problems are unapparent to the average person and can only be detected with veterinary medical screening. This booklet is intended to provide information about the potential health problems associated with various purebred dogs. Directory Section I A list of 182 more commonly known purebred dog breeds, each of which is accompanied by a number or series of numbers that correspond to the congenital and heritable diseases identified and described in Section II. Section II An alphabetical listing of congenital and genetically transmitted diseases that occur in purebred dogs. Each disease is assigned an identification number, and some diseases are followed by the names of the breeds known to be subject to those diseases. How to use this book: Refer to Section I to find the congenital and genetically transmitted diseases associated with a breed or breeds in which you are interested. Refer to Section II to find the names and definitions of those diseases.
    [Show full text]