From Head Trauma to Toxicity, Cerebellar Disease Diagnosis

Total Page:16

File Type:pdf, Size:1020Kb

From Head Trauma to Toxicity, Cerebellar Disease Diagnosis Vet Times The website for the veterinary profession https://www.vettimes.co.uk FROM HEAD TRAUMA TO TOXICITY, CEREBELLAR DISEASE DIAGNOSIS Author : Dan Forster Categories : Vets Date : December 8, 2008 DAN FORSTER examines the clinical pointers indicating a disease that not only affects movement, but also eating, and describes the possible differential diagnoses behind the dysfunction. ANIMALS with cerebellar disease will often present with classic signs of ataxia and dysmetria. However, the aetiology of the cerebellar damage is not always straightforward. This article reviews some of the causes of cerebellar dysfunction that may be encountered in general practice. The cerebellum occupies 10 per cent of the brain parenchyma in dogs and cats, and lies behind the cerebrum. It is connected to the brainstem by three paired cerebellar peduncles on each side, which act as a conduit for both afferent and efferent information related to cerebellar function. It is divided into functional units by a series of transverse fissures. The small flocculonodular node is important for balance, and the caudal lobe is associated with the feedback regulation of motor function. The more rostral lobe receives proprioceptive information. At a cellular level, the inner portion of the cerebellum is the medullary substance that contains the deep nuclei. The outer portion is the cerebellar cortex and is composed of three layers; the molecular cell layer, the Purkinje cell layer and the granule cell layer (Figure 1). The Purkinje cells are large and very active, metabolically, which makes them highly susceptible to ischaemic and toxic damage. 1 / 15 An understanding of the microscopic anatomy is useful when considering how different cerebellar diseases manifest themselves clinically. The major function of the cerebellum is to coordinate voluntary, postural and reflex movements. The cerebellum is also thought to influence conscious thought processes, such as judging the timing of events and solving spatial and perceptual reasoning problems. Coupled with the vestibular system, the cerebellum also places a vital role in assisting equilibrium maintenance. Coordination and motor control in neonates is dictated by the degree of cerebellar development at birth. Clinical signs • Ataxia Cerebellar ataxia is due to a failure of motor coordination, although musculature strength is preserved. Swaying of the body (truncal ataxia – Figure 2) may be present, and animals will often stand with a broad-based stance. • Dysmetria (Figure 3) With dysmetria, limbs either overstep (hypermetria) or understep (hypometria). Hypermetria is more usually seen and changes are more evident in thoracic limbs. These changes reflect the animal’s inability to regulate the rate, range and force of movement. Dysmetria of the head is manifested as an intentional tremor that may be seen at rest (although, strictly, this is a tremor that appears after initiation of a movement), but is most easily appreciated when the animal concentrates on a task, such as when the animal attempts to eat. Poor balance complicates the process of eating further, as animals often cannot stand steady for long enough (Figure 4). • Vestibular signs Disequilibrium may occur due to involvement of the flocculonodular lobe. Signs reflect those seen in vestibular disease and may include loss of balance, falling to one side, head tilt etc. • Other signs Various other symptoms may be seen in association with specific diseases that affect more than just the cerebellum. Occasionally, with cerebellar pathology alone, there may be: – delayed postural reactions, with usually normal proprioceptive positioning; 2 / 15 – menace reaction deficits (ipsilateral to side of lesion), but with normal facial nerve function and vision; and – increased muscle tone and normal to hyperreflective reflexes. Assessment is often complicated by neurological damage elsewhere, and this should be taken into consideration during the neurological examination. Diagnosis In some instances the diagnosis is straightforward, such as a young kitten with ataxia, dysmetria and poor balance control – these factors scream cerebellar hypoplasia. However, this is not always the case, particularly if other systems are affected, and further investigation is often necessary. Physical examination (particularly neurological exam) aids the clinician in localising the lesion. Full bloods are, as ever, necessary and usually coupled with urinalysis and survey radiographs. Other forms of imaging can be useful, where available. MRI is preferable to CT for examining the brain since beam-hardening artefacts can obscure areas of the brain with CT scans. CSF analysis may aid the diagnosis and might be used in combination with serology tests for FIP, distemper, toxoplasmosis etc. Histopathology of the cerebellum is very useful, but rarely performed – except at postmortem. Differential diagnoses • Trauma Trauma is thought to be uncommon due to the isolated nature of the cerebellum, although cats present more often than dogs. Severe trauma can cause acute decerebellation, which occurs when the entirety of the organ is affected. There will usually be opisthotonus (hyperextension of neck and tail), plus rigidity of all four limbs. Animals may present in this fashion and often look like they are in rigor mortis – although they are still alive (Figure 5). Treatment should focus on managing any associated shock and maintaining good cerebral blood flow. Oxygenation is also important, and blood pressure plus intracranial pressure should be monitored. • Cerebellar abiotrophy Abiotrophy may be defined as spontaneous, premature neuronal death. These diseases refer to 3 / 15 degeneration of normal neuronal cell populations within the cerebellar cortex after birth and are thought to be due to inherited defects of cellular metabolism. Autosomal recessive modes of inheritance have been suggested for most of the abiotrophies. The cerebellar Purkinje cells seem to be targeted (Figure 1). Affected animals usually have progressive cerebellar neurological signs. This differs to the static nature of signs seen in cats with hypoplasia. The rate of progression differs between breeds, however. The onset of signs is variable from breed to breed. For example, Kerry blue terriers may show signs at six to eight weeks of age, whereas Gordon setters may be a few years old before the onset of clinical signs. Cerebellar abiotrophy has been mainly reported in dogs, with a few sporadic feline cases reported. • Neuroaxonal dystrophy This has been reported in both cats and dogs, and characterised histologically by swellings at axonal ends – “spheroids”. The condition is thought to be due to a defect in axonal transport, leading to an accumulation of transport products at the distal axon. The disease is genetically transmitted in cats (Siamese and domestic shorthairs) and also thought to be hereditary in dogs. A similar pattern is seen histologically following the accumulation of metabolic by-products in lysosomal storage diseases. Symptoms are typical of cerebellar syndrome and usually present within the first few months of life. • Dandy-Walker syndrome This rare congenital malformation is well-recognised in human medicine. The disease features specific cerebellar abnormali ties, including cerebellar vermian hypoplasia, hydrocephalus and the presence of a fluid-filled cyst in the posterior fossa. The condition has been reported in one kitten and several breeds of dog; typical cerebellar signs were noted. • Feline cerebellar hypoplasia This is seen sporadically in kittens and, less commonly, in dogs. A feline panleukopaenia virus infection in utero is considered the main cause of this condition in cats, and canine herpesvirus in dogs, although toxins and genetic defects have also been reported. The cytopathic effect of the virus on rapidly dividing cerebellar cells of the external germinal layer, coupled with the virus’ direct effect on Purkinje cells, is sufficient to cause a hypoplasia of the granule cell layer. Signs are usually observed when kittens or pups start to walk. Animals show typical signs of dysmetria and poor balance (Figure 6). Some kittens are reported to improve, which is probably due to compensation using conscious proprioception and vision. • Cerebellar toxicity 4 / 15 Metronidazole has been reported to cause signs of acute cerebellar dysfunction, which may occur from as early as seven days after the start of therapy, although toxicity is usually associated with higher doses and/or longer durations of medication. Signs will slowly resolve once therapy is stopped. • Infectious and inflammatory cerebellar disease Other areas of the CNS, with or without other organ systems, will often be affected, depending on the disease. Each condition cannot be discussed in detail, but a summary for infectious conditions that can affect the cerebellum is provided here: • canine distemper (early and late onset, cerebellar peduncles are typically affected in association with other areas of brain tissue); • feline panleukopaenia virus; • mycotic disease (diffuse or multifocal meningoencephalitis can cause damage throughout the CNS. Any mycotic organism may cause disease, with Cryptococcus and Blastomyces most commonly reported); • parasite migration (rare); • canine herpesvirus; • toxoplasma and neospora (protozoa typically present as multifocal disease, and infectious foci can also form granulomas); • ricketssial disease (vasculitis caused by Rocky Mountain spotted fever – or ehrlichiosis – an cause meningoencephalitis
Recommended publications
  • Cp-Research-News-2014-06-23
    Monday 23 June 2014 Cerebral Palsy Alliance is delighted to bring you this free weekly bulletin of the latest published research into cerebral palsy. Our organisation is committed to supporting cerebral palsy research worldwide - through information, education, collaboration and funding. Find out more at www.cpresearch.org.au Professor Nadia Badawi Macquarie Group Foundation Chair of Cerebral Palsy PO Box 560, Darlinghurst, New South Wales 2010 Australia Subscribe at www.cpresearch.org/subscribe/researchnews Unsubscribe at www.cpresearch.org/unsubscribe Interventions and Management 1. Iran J Child Neurol. 2014 Spring;8(2):45-52. Associations between Manual Abilities, Gross Motor Function, Epilepsy, and Mental Capacity in Children with Cerebral Palsy. Gajewska E, Sobieska M, Samborski W. OBJECTIVE: This study aimed to evaluate gross motor function and hand function in children with cerebral palsy to explore their association with epilepsy and mental capacity. MATERIAL & METHODS: The research investigating the association between gross and fine motor function and the presence of epilepsy and/or mental impairment was conducted on a group of 83 children (45 girls, 38 boys). Among them, 41 were diagnosed with quadriplegia, 14 hemiplegia, 18 diplegia, 7 mixed form, and 3 athetosis. A neurologist assessed each child in terms of possible epilepsy and confirmed diagnosis in 35 children. A psychologist assessed the mental level (according to Wechsler) and found 13 children within intellectual norm, 3 children with mild mental impairment, 18 with moderate, 27 with severe, and 22 with profound. Children were then classified based on Gross Motor Function Classification System and Manual Ability Classification Scale. RESULTS: The gross motor function and manual performance were analysed in relation to mental impairment and the presence of epilepsy.
    [Show full text]
  • Late Onset of Cerebellar Abiotrophy in a Boxer
    SAGE-Hindawi Access to Research Veterinary Medicine International Volume 2010, Article ID 406275, 4 pages doi:10.4061/2010/406275 Case Report Late Onset of Cerebellar Abiotrophy in aBoxerDog Sanjeev Gumber, Doo-Youn Cho, and Timothy W. Morgan Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA Correspondence should be addressed to Sanjeev Gumber, [email protected] Received 2 August 2010; Accepted 7 November 2010 Academic Editor: Daniel Smeak Copyright © 2010 Sanjeev Gumber et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cerebellar abiotrophy is a degenerative disorder of the central nervous system and has been reported in humans and animals. This case report documents clinical, histopathological, and immunohistochemical findings of cerebellar abiotrophy in an adult Boxer dog. A 3.5-year-old, female, tan Boxer dog presented with a six-week history of left-sided head tilt. Neurological examination and additional diagnostics during her three subsequent visits over 4.5 months revealed worsening of neurological signs including marked head pressing, severe proprioceptive deficits in all the four limbs, loss of menace response and palpebral reflex in the left eye, and a gradual seizure lasting one hour at her last visit. Based on the immunohistochemical staining for glial fibrillary acidic protein and histopathological examination of cerebellum, cerebellar cortical abiotrophy was diagnosed. This is the first reported case of cerebellar abiotrophy in a Boxer dog to our knowledge.
    [Show full text]
  • Dystonia and Chorea in Acquired Systemic Disorders
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.65.4.436 on 1 October 1998. Downloaded from 436 J Neurol Neurosurg Psychiatry 1998;65:436–445 NEUROLOGY AND MEDICINE Dystonia and chorea in acquired systemic disorders Jina L Janavs, Michael J AminoV Dystonia and chorea are uncommon abnormal Associated neurotransmitter abnormalities in- movements which can be seen in a wide array clude deficient striatal GABA-ergic function of disorders. One quarter of dystonias and and striatal cholinergic interneuron activity, essentially all choreas are symptomatic or and dopaminergic hyperactivity in the nigros- secondary, the underlying cause being an iden- triatal pathway. Dystonia has been correlated tifiable neurodegenerative disorder, hereditary with lesions of the contralateral putamen, metabolic defect, or acquired systemic medical external globus pallidus, posterior and poste- disorder. Dystonia and chorea associated with rior lateral thalamus, red nucleus, or subtha- neurodegenerative or heritable metabolic dis- lamic nucleus, or a combination of these struc- orders have been reviewed frequently.1 Here we tures. The result is decreased activity in the review the underlying pathogenesis of chorea pathways from the medial pallidus to the and dystonia in acquired general medical ventral anterior and ventrolateral thalamus, disorders (table 1), and discuss diagnostic and and from the substantia nigra reticulata to the therapeutic approaches. The most common brainstem, culminating in cortical disinhibi- aetiologies are hypoxia-ischaemia and tion. Altered sensory input from the periphery 2–4 may also produce cortical motor overactivity medications. Infections and autoimmune 8 and metabolic disorders are less frequent and dystonia in some cases. To date, the causes. Not uncommonly, a given systemic dis- changes found in striatal neurotransmitter order may induce more than one type of dyski- concentrations in dystonia include an increase nesia by more than one mechanism.
    [Show full text]
  • Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24
    Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24 The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Agler, Caryline, Dahlia M. Nielsen, Ganokon Urkasemsin, Andrew Singleton, Noriko Tonomura, Snaevar Sigurdsson, Ruqi Tang, et al. “Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24.” Edited by Tosso Leeb. PLoS Genet 10, no. 2 (February 6, 2014): e1003991. As Published http://dx.doi.org/10.1371/journal.pgen.1003991 Publisher Public Library of Science Version Final published version Citable link http://hdl.handle.net/1721.1/86370 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24 Caryline Agler1, Dahlia M. Nielsen2, Ganokon Urkasemsin1, Andrew Singleton3, Noriko Tonomura4,5, Snaevar Sigurdsson4, Ruqi Tang4, Keith Linder6, Sampath Arepalli3, Dena Hernandez3, Kerstin Lindblad-Toh4,7, Joyce van de Leemput3, Alison Motsinger-Reif2,8, Dennis P. O’Brien9, Jerold Bell5, Tonya Harris1, Steven Steinberg10, Natasha J. Olby1,8* 1 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America, 2 Bioinformatics Research Center, North Carolina State
    [Show full text]
  • PPCO Twist System
    PEER REVIEWED The NEUROLOGICNEUROLOGIC EXAMINATIONEXAMINATION in Companion Animals In the January/February issue of Part 2: Interpreting Today’s Veterinary Practice, Part 1 of this article discussed performing Abnormal Findings a neurologic examination; Part 2 will address interpretation of Helena Rylander, DVM, Diplomate ACVIM (Neurology) abnormal findings. complete neurologic examination should be THE BRAIN done in all animals presenting with suspected Lesions in the brain can be localized to the: Aneurologic disease. Abnormalities found during t Cerebrum and thalamus (ie, prosencephalon) the neurologic examination can reflect the location of t Brainstem the lesion, but not the cause, requiring further tests, t Cerebellum. such as blood analysis, electrodiagnostic tests, and In order to localize the lesion to a specific part of advanced imaging, to determine a diagnosis. the brain, an understanding of the anatomy and func- The neurologic examination evaluates different parts tion of the brain is necessary (see Brain Anatomy & of the nervous system; the findings from the examina- Related Functions). tion help localize the lesion to the: t Brain Ataxia t Spinal cord A patient with ataxia may have a lesion in the proprio- t Peripheral nervous system ceptive pathways (peripheral nerves, spinal cord, or t Cauda equina. cerebrum), vestibular system, or cerebellum. Ataxia A fundic examination is recommended, especially in can be described as an uncoordinated gait, with cross- patients with brain disorders. Repeat neurologic exami- ing of the limbs and, sometimes, listing or falling to 1 nations are helpful to discover subtle abnormalities and or both sides. Ataxia can be further characterized as: assess progression of disease.
    [Show full text]
  • Abiotrophy in Domestic Animals: a Review
    Abiotrophy in Domestic Animals: A Review Alexander de Lahunta ABSTRACT and it allows us to concentrate our can be made to normal neuronal efforts on determining the specific development in which many popula- This review of abiotrophies in cytological defect that is present and tions of differentiated neurons die domestic animals has been organized ideally the genetic basis for its prematurely as a normal programmed by the predominate anatomical loca- occurrence. When we use abiotrophy developmental event. Some of the tion of the lesion. Secondary consider- to name a disease, we are only mechanisms may be common to both ations include the major signs of the describing the pathological process processes. This normal developmental clinical disorder and special neuropa- a concept of the mechanism resulting event occurs in the peripheral nervous thological features. Those abiotro- in the degeneration that is described. system when motoneurons from the phies that have an established genetic As the underlying cause of the ventral grey column fail to develop a basis are identifiled but the review abiotrophy is determined, this should normal motor end plate relationship includes degenerative disorders in be used in naming the disease. Using with a skeletal muscle fiber which is which the etiology is not yet the concept of abiotrophy in its the target organ. These neurons established. broadest sense it is applicable to any of degenerate. The ultimate size and the inherited degenerative diseases of shape of the ventral grey column the nervous system. This would reflects this normal degenerative Gowers in 1902 (1) gave a lecture include the numerous cerebellar process (2,3).
    [Show full text]
  • The Rostrocaudal Gradient for Somatosensory Perception in The
    692 J Neurol Neurosurg Psychiatry 2000;69:692–709 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.69.5.692 on 1 November 2000. Downloaded from A 49 year old right handed man suddenly shape, and texture weighing 50, 60, 70, 80, developed dysaesthesia in the right hand. 90, and 100 g. For texture perception, we LETTERS TO This recovered gradually, but 1 month later prepared six wooden plates of an identical he still had an impaired tactile recognition for size and shape, on which one of six diVerent THE EDITOR objects. His voluntary movements were skill- textures (sandpaper, felt, wood, wool, fine ful. Deep tendon reflex was slightly exagger- grain, synthetic rubber) were mounted. The ated in his right arm. Babinski’s sign was patient palpated one texture by either hand absent. His language was normal. Brain MRI with his eyes closed. Then he was asked to on the 35th day after the onset showed a select tactually a correct one among the six The rostrocaudal gradient for laminar necrosis on the caudal edge of the textures. For shape perception (three somatosensory perception in the human lateral portion of the left postcentral gyrus dimensional figures) the patient palpated one postcentral gyrus (figure). of the five wooden objects (cylinder, cube, Somaesthetic assessment was done during sphere, prism, and cone) with his eyes closed. Anatomical organisation of the primate post- the 21–28th days of the illness. Then he was asked to explain the shape ver- central gyrus has been described in terms of Elementary somatosensory functions were bally.
    [Show full text]
  • History-Of-Movement-Disorders.Pdf
    Comp. by: NJayamalathiProof0000876237 Date:20/11/08 Time:10:08:14 Stage:First Proof File Path://spiina1001z/Womat/Production/PRODENV/0000000001/0000011393/0000000016/ 0000876237.3D Proof by: QC by: ProjectAcronym:BS:FINGER Volume:02133 Handbook of Clinical Neurology, Vol. 95 (3rd series) History of Neurology S. Finger, F. Boller, K.L. Tyler, Editors # 2009 Elsevier B.V. All rights reserved Chapter 33 The history of movement disorders DOUGLAS J. LANSKA* Veterans Affairs Medical Center, Tomah, WI, USA, and University of Wisconsin School of Medicine and Public Health, Madison, WI, USA THE BASAL GANGLIA AND DISORDERS Eduard Hitzig (1838–1907) on the cerebral cortex of dogs OF MOVEMENT (Fritsch and Hitzig, 1870/1960), British physiologist Distinction between cortex, white matter, David Ferrier’s (1843–1928) stimulation and ablation and subcortical nuclei experiments on rabbits, cats, dogs and primates begun in 1873 (Ferrier, 1876), and Jackson’s careful clinical The distinction between cortex, white matter, and sub- and clinical-pathologic studies in people (late 1860s cortical nuclei was appreciated by Andreas Vesalius and early 1870s) that the role of the motor cortex was (1514–1564) and Francisco Piccolomini (1520–1604) in appreciated, so that by 1876 Jackson could consider the the 16th century (Vesalius, 1542; Piccolomini, 1630; “motor centers in Hitzig and Ferrier’s region ...higher Goetz et al., 2001a), and a century later British physician in degree of evolution that the corpus striatum” Thomas Willis (1621–1675) implicated the corpus
    [Show full text]
  • Cerebellar Disease in the Dog and Cat
    CEREBELLAR DISEASE IN THE DOG AND CAT: A LITERATURE REVIEW AND CLINICAL CASE STUDY (1996-1998) b y Diane Dali-An Lu BVetMed A thesis submitted for the degree of Master of Veterinary Medicine (M.V.M.) In the Faculty of Veterinary Medicine University of Glasgow Department of Veterinary Clinical Studies Division of Small Animal Clinical Studies University of Glasgow Veterinary School A p ril 1 9 9 9 © Diane Dali-An Lu 1999 ProQuest Number: 13815577 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13815577 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY lib ra ry ll5X C C ^ Summary SUMMARY________________________________ The aim of this thesis is to detail the history, clinical findings, ancillary investigations and, in some cases, pathological findings in 25 cases of cerebellar disease in dogs and cats which were presented to Glasgow University Veterinary School and Hospital during the period October 1996 to June 1998. Clinical findings were usually characteristic, although the signs could range from mild tremor and ataxia to severe generalised ataxia causing frequent falling over and difficulty in locomotion.
    [Show full text]
  • Botulinum Neurotoxin Injections in Childhood Opisthotonus
    toxins Article Botulinum Neurotoxin Injections in Childhood Opisthotonus Mariam Hull 1,2,* , Mered Parnes 1,2 and Joseph Jankovic 2 1 Section of Pediatric Neurology and Developmental Neuroscience, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX 77030, USA; [email protected] 2 Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] * Correspondence: [email protected] Abstract: Opisthotonus refers to abnormal axial extension and arching of the trunk produced by excessive contractions of the paraspinal muscles. In childhood, the abnormal posture is most often related to dystonia in the setting of hypoxic injury or a number of other acquired and genetic etiologies. The condition is often painful, interferes with ambulation and quality of life, and is challenging to treat. Therapeutic options include oral benzodiazepines, oral and intrathecal baclofen, botulinum neurotoxin injections, and deep brain stimulation. Management of opisthotonus within the pediatric population has not been systematically reviewed. Here, we describe a series of seven children who presented to our institution with opisthotonus in whom symptom relief was achieved following administration of botulinum neurotoxin injections. Keywords: opisthotonus; opisthotonos; axial dystonia; botulinum toxin Key Contribution: This is the first series of pediatric patients with opisthotonus treated with bo- tulinum neurotoxin injections. Botulinum neurotoxin injections should be added to the armamentar- ium of treatment options in children with axial dystonia, including opisthotonos. Citation: Hull, M.; Parnes, M.; 1. Introduction Jankovic, J. Botulinum Neurotoxin Injections in Childhood Opisthotonus. Opisthotonus, derived from the Greek “opistho” meaning behind and “tonos” mean- Toxins 2021, 13, 137.
    [Show full text]
  • Neurological Emergencies Natasha Olby Vetmb, Phd, MRCVS, DACVIM (Neurology) College of Veterinary Medicine, NCSU, Raleigh, NC In
    Neurological Emergencies Natasha Olby VetMB, PhD, MRCVS, DACVIM (Neurology) College of Veterinary Medicine, NCSU, Raleigh, NC Introduction Neurological emergencies are common and require a cool head, careful patient assessment and prompt action! While there are many instances when an owner perceives their patient to be in a crisis when in fact they are not, any rapidly changing neurological dysfunction should be considered an emergency and the patient evaluated immediately. This presentation will give an overview of alterations in mentation, seizures and paralysis using case examples. An important general point is that you should have emergency protocols available as they improve outcomes in any emergency situation. Altered Mentation: Stupor and Coma Terms used to describe mental status include terms that describe level of consciousness (e.g. stupor, coma) and terms that describe behavior (e.g. dementia, hysteria). Level of consciousness is controlled by the ascending reticular activating system (ARAS). This mass of neurons extends through the brainstem to project to the thalamus and from there to the cortex. The ability to interact appropriately with the surrounding environment depends on the ability to process and integrate sensory information and to combine this information with learned information. The forebrain, and in particular the cerebrum and limbic system, is vital for normal behavior. Stupor is defined as decreased consciousness, but responsive to strong stimuli: these patients tend to be in sternal or lateral recumbency and are difficult to rouse. Coma is defined as unresponsive to stimuli. Stupor and coma are considered to be emergencies. Causes of changes in mental status There are numerous different causes of changes in mental status.
    [Show full text]
  • Neurodegeneration with Brain Iron Accumulation: Two Additional Cases with Dystonic Opisthotonus
    Freely available online Case report Neurodegeneration with Brain Iron Accumulation: Two Additional Cases with Dystonic Opisthotonus Sahil Mehta* & Vivek Lal Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, IN Abstract Background: Specific phenomenology and pattern of involvement in movement disorders point toward a probable clinical diagnosis. For example, forehead chorea usually suggests Huntington’s disease; feeding dystonia suggests neuroacanthocytosis and risus sardonicus is commonly seen in Wilson’s disease. Dystonic opisthotonus has been described as a characteristic feature of neurodegeneration with brain iron accumulation (NBIA) related to PANK2 and PLA2G6 mutations. Case report: We describe two additional patients in their 30s with severe extensor truncal dystonia causing opisthotonic posturing in whom evaluation revealed the diagnosis of NBIA confirmed by genetic testing. Discussion: Dystonic opisthotonus may be more common in NBIA than it is reported and its presence especially in a young patient should alert the neurologists to a possibility of probable NBIA. Keywords: Opisthotonus, dystonia, neurodegeneration with brain iron accumulation, secondary, phenomenology, genetics, botulinum toxin Citation: Mehta S, Lal V. Neurodegeneration with brain iron accumulation: Two additional cases with dystonic opisthotonus. Tremor Other Hyperkinet Mov. 2019; 9. doi: 10.7916/tohm.v0.683 *To whom correspondence should be addressed. E-mail: [email protected] Editor: Elan D. Louis, Yale University, USA Received: June 14, 2019 Accepted: July 24, 2019 Published: August 21, 2019 Copyright © 2019 Mehta S, Lal V. This is an open-access article distributed under the terms of the Creative Commons Attribution–Noncommercial–No Derivatives License, which permits the user to copy, distribute, and transmit the work provided that the original authors and source are credited; that no commercial use is made of the work; and that the work is not altered or transformed.
    [Show full text]