Cyborg Heart: the Aective Apparatus of Bodily Production of ICD Patients

Total Page:16

File Type:pdf, Size:1020Kb

Cyborg Heart: the Aective Apparatus of Bodily Production of ICD Patients Science & Technology Studies 2/2013 Cyborg Heart: The A! ective Apparatus of Bodily Production of ICD Patients Pernille Bjørn and Randi Markussen We argue that a cyborg approach both emphasizes the complexity in treating patients with implantable cardioverter de" brillators (ICDs) attached to home monitoring devices, and makes it possible to decipher modern perspectives in the notion of ‘Patient 2.0’ and other representations of patients. We attempt to open up the notion of Patient 2.0 exempli" ed by ICD patients by drawing on the cyborg idea as developed by Donna Haraway as well as her understanding of science and the body as an apparatus of bodily production. We include the feminists Rosi Braidotti, Anne Balsamo, Geo! Bowker, and Leigh Star in discussing the cyborg, its infrastructures and a! ective potentials. We analyse modern imaginaries of remote monitoring as they are portrayed on the websites of the two largest manufacturers of ICD technologies, and based on an analysis of the apparatus of bodily production involved when patients visit a hospital to have their illness monitored we propose the analytical device cyborg heart to capture an a! ective apparatus of bodily production in the clinic and the idea of an enlarged sense of community as opposed to modern imaginaries of patient empowerment. Finally we discuss how the device cyborg heart di! ers from the notion logic of care. Keywords: cyborg, patient, healthcare Life is beyond pleasure and pain – it is Introduction a process of becoming, of stretching the boundaries of endurance. ! ere is noth- In 1982 Ridley Scott released his " lm Blade ing self-evident or automatic about life. Runner, based on Philip K. Dick’s book Do It is not a habit, though it can become Androids Dream of Electric Sheep? (Dick, an addiction. One has to ‘jump-start’ 1968). ! e " lm’s futuristic image suggests into life each and every day; the electro- that androids are stronger and more capable magnetic charge needs to be renewed than humans. Androids could only be told constantly. ! ere is nothing natural or apart from humans by the use of advanced given about it. (Braidotti, 2006: 211) equipment to detect feelings and emotions through their eyes, and the most advanced Science14 & Technology Studies, Vol. 26 (2013) No. 2, 14-28 Science & Technology Studies 2/2013 androids were not even aware that they starting point in her cyborg con" guration. were not human, since they were given false (Haraway, 1991: 150). ! e ICD device is a memories of non-existent childhoods. ! e small, battery-powered electrical impulse portrayal of androids in Blade Runner calls generator programmed to detect cardiac into question what it means to be human arrhythmia and correct it by delivering a or machine. ! e ambiguity of several chock of electricity. It is implanted under characters urges us to ask, what does it mean the skin. ! e device appeared in the US in to live in a time dominated by scienti" c and 1980 and in Denmark in 1989. More and technological imaginaries (Balsamo, 1997)? more people are under treatment, both Although the characters in Blade Runner are those surviving severe heart problems and science " ction, the question remains highly heart attacks. Increasingly ICD are also relevant in order to appreciate what ‘Patient used prophylactic (Køber et al., 2006). ICD 2.0’ is about? patients appear as any human in the society, ‘Patient 2.0’ is a modern term. ‘Patient’ as it is invisible for others how they embody literally means su# ering, and refers to complex contemporary human-machine people who are a# ected by the action of relations. One needs ‘blade runners’ so to others, i.e. medical institutions, doctors speak, doctors with advanced equipment to etc. ! e digits ‘2.0’ refer to a new version tell the di# erence. of a web-based information infrastructure. Haraway’s cyborg " guration (1991: Following the modern idea of progress 149) builds on a blurring of key modern the implied suggestion seems to be that distinctions, such as human versus machine, ‘2.0’ possesses the potential to empower/ organic versus inorganic, and natural emancipate patients by o# ering them more versus arti" cial, which contemporary opportunities of participating in their own scienti" c approaches in biology as treatment. Emancipation literally means, ‘to well as communication sciences have come out from under the hand of’ (Lerner, brought about (Haraway, 1991: 149). ! e 1986: 237). ! us ‘2.0’ denotes not only new, approach di# ers from sciences operating but better than ‘1.0’ in the sense that the on essential categories of the human, the patient potentially becomes less dependent organism, the machine etc. and challenges on other people and gain more freedom. distinctions between what belongs to ! e idea is not that the patient becomes nature and what belongs to culture. ! ose ‘more patient’ as the numbers go up, or distinctions ‘implode’ when sciences work ‘more entangled’ in the infrastructure as the by ‘translating the world into a problem of science " ction imaginary suggests. It reads coding and information processing,’ relying as a modern human centred term rather on command, control, and communication than a post human term. mechanisms that connect humans and We investigate controversies machines. Mind, body, and technologies regarding human versus post-human are ‘on very intimate terms’ (Haraway, 1991: perspectives through a cyborg lens and 165). focus on patients with an implantable Looking into the ICD device cardioverter de" brillator (ICD) hooked infrastructures, we are curious to learn up to a remote monitoring system. ! ese how sciences and stakeholders imagine patients are literally cyborgs as beings and manage ICD patients and what kind of relying on a cybernetic ‘command, realities they help bring about. ! e cyborg control and communication’ mechanism approach invites us to include popular the phenomenon that Haraway took as 15 Science & Technology Studies 2/2013 images of ICD patients, as well as the by biological feedback and monitored the practices implicated in their treatment. e# ects. In what follows, we explore how ICD ! e goal was to develop drugs and patients are imagined in the public space of devices that would make it possible for the Internet from the perspectives of two of a human to adapt to an extraterrestrial the largest ICD technology manufacturers. environment through what they called a In addition, we move to a heart clinic ‘participant evolution’. ! ey imagined that at a university hospital to decipher the scientists had a great role to play in making knowledge production in the treatment evolution progress much quicker than a of the patients, the infrastructures and ‘natural evolution’ was able to bring about. the involvement of the patients in the Paradoxically, the idea was to free astronauts collaboration. Subsequently, we bring the from a cumbersome arti" cial environment various theoretical as well as empirical that imitated worldly conditions in order for images together to discuss di# erences them to survive in outer space. According between modern and cyborg approaches to the historian Ronald Kline (2009), even in understanding patients and their ethical though those cyborg ideas involved serious implications. interventions into the human body, such We embark on this journey, by going as arti" cial organs, hypothermia, drugs, " fty years back in history and look at the sensory deprivation, and cardiovascular genealogy of the term cyborg in order models, Clynes and Kline thought of the to emphasize Haraway’s vision and its changes as strictly related to extraterrestrial implication for making sense of ICD patients survival conditions, without impinging on and open up the notion ‘Patient 2.0’. the human in his or her earthly habitat: ‘Cyborgs would be humans with some Cyborgs for Earthly Survival organs only temporarily altered or replaced by mechanical devices. On returning to When Donna Haraway coined the term earth, the devices would be removed and cyborg in the early 1980s, she was unaware normal body functions restored’ (Kline, of its former use in another " eld (Markussen 2009: 342). et al., 2000: 10). ! e term " rst appeared in Haraway’s cyborg vision in ‘Cyborg 1960 in connection to experiments in the Manifesto’ (Haraway, 1990) di# ers radically " eld of medical cybernetics (Kline, 2009: from those ideas, both in terms of the 333). Engaged in bioastronautics, Manfred perception of the body and of the authority Clynes and Nathan Kline introduced the of science. Despite their ambitions about term as an abbreviation for ‘cybernetic fusions of human and machine, Clynes organism’ (Clynes & Kline, 1960). ! ey and Kline’s cyborg imagery implies that built on Norbert Wiener’s de" nition of an ‘organic’ body can be extraordinarily cybernetics as the entire " eld of control manipulated without losing its and communication theory, whether in the characteristics or being marked. Haraway’s machine or the animal. ! e term was meant vision is cleared of the innocence as well as to indicate a literal fusion of human/animal the anthropocentrism that characterizes the and machine, as in the laboratory mouse early cyborg imagery. A distinction between they experimented with by implanting an a natural and a participant evolution is osmotic pump. ! e researchers used the irrelevant when it no longer makes sense pump to inject drugs at a rate controlled to speak of nature in the singular and as a base on which cultures build. In addition, 16 Pernille Bjørn and Randi Markussen her vision of science is very di# erent from implying immediate presence of such the heroic and anthropocentric idea of a objects or, what is the same thing, their science and scientists who transcend earthly " nal or unique determination of what conditions. Haraway’s slogan ‘Cyborgs can count as objective knowledge at a for earthly survival’ does away with the particular historical juncture.
Recommended publications
  • Professlonal Engllsh Medlcl NE and Dlagnostlcs Навчальний Посiбник
    MlHlcTEPcTBo освIти l нАуки укрА[ни Нацiональний авiацiйний унiверситет О. Г, Шостак, В. l, Базова PRoFESSloNAL ENGLlSH MEDlcl NE AND DlAGNoSTlcS навчальний посiбник КиТв 2015 ь- Еи_ встуII KypciB напря- Навча-гьrшай посiбrrик уrшадеrпш1 дIя студенть I_tv прог- му пi.щоmвки 6.051402 <Бiомедична iюrсенерЙ>, Назчальними (за професiйним. спряму- рамами мсциIIJIIни <<Iноземна мова i*.о*tо передбачено вивчення студеЕтами напряму <<Бiомедrтчtrа 1 ха- irженерiш десяти модулiв, що визначае струкгуру посlоника !а- Принципи побудови ракгер виIOтадеш{я навчаJIьного MaTepia,Try, посiбьм виповiдають також формаry Програми з англiйськоi курсу ESP l{о"" дrr" студекгiв немовних спецiа:ьностей, завданням та вимогам Болонського процесу. основна мета нrrвч€lJl"rrоrо посiбrпш<а - н2IвIIити майбугrriх фа- xl хьцьзбiомедщчноiiяженерiiосноВzl}\,IпрофесiйногоспiлкУвапня аrглйською мовою. Автори також ставиJIи перед собою завдання перекJlад/, рзвинути у оryдеrггЬ cTiйKi н{lвички читанЕя, реферу- в"r"{Я технiчноi лiтератури з метою oтриманIUI 1 використання rе- необхiдrоi дlя професiftrоi дiяльностi iнформачii,-ПосiбrшшС 0го можIIивlсть прове- умiшryе тексти дIя щrгff*щ що дае hiB навчаJъноrо деннЯ дисrсусЙ та максиIшаjБного заJýленrrя сryдекrЬ до завданrш з W2 процесу. Система вправ дозвоJuIс вимадачевi обиратлл ура- й**;" iнд.вiдrЙrло< здiбноСrей сryдеrrГiв (нагп,rсаШ11 Рефератiв, Ыш*ч* доповЙей викоIlrlнtlf рiзноманiпшо< коruунiмцiйшпоi вправ). TBopd шдл rив,m-Гьноiдiяльносгi, що гр5пrrуIorься ImypиBI@( з I*rJ,KoBo- ,"йrrrr* д""рел, пi,щrлrцrють моrшацiю сryдеrrгiв, а змiстовi iндшi- peaJБHolvfy жшггi ryашнi завдаш{я допомагitють розв!шrуш необхiдli В KoMyHiKжlrBHi навlrчr<и та здатнiсть до са},Iовираження, У посiбlшку викIIадено основи грitматики англйськоi мови. Слов- нrшс TepMiHiB до кожного роздiлу дOпомагае краще оволодiтк jIексичним матерiалом та дае змOry Еоповнити словниковии запас, засвоенtrя лексичного та rраматиqного матерiалу допоможе сту- сЕряму- деrrговi орiсrrryватиоя в zlнгломовнiй лiтераryрi фахового кIHIUI, брати участь у мiхсrародншr конфереrщiях, MODULE 1.
    [Show full text]
  • Gordon Pask's North American Archive At
    Gonçalo Furtado and Paul Pangaro, Gordon Pask’s North American Archive: Contents Listing, New York: Pangaro Inc, 2008-9 GORDON PASK’S NORTH AMERICAN ARCHIVE AT PANGARO Incorporated: CONTENTS LISTING Gonçalo Furtado, PhD (Oporto University) and Paul Pangaro, PhD (Pangaro Incorporated) CONTENTS INTRODUCTION by Gonçalo Furtado (page 2 to 3) NEW CONTENTS LISTING by Gonçalo Furtado and Paul Pangaro (page 4 to 145) BOX 1 (A - F) BOX 2 (A - F) BOX 3 (A - F) BOX 4 (A - F) BOX 5 (A - F) BOX 6 (A - B) BOX 7 (A ) BOX 8 (A - F) BOX 9 (A - D) BOX 10 (A - F) BOX 11 (A - F) BOX 12 (A - F) BOX 13 (A - F) 1 Gonçalo Furtado and Paul Pangaro, Gordon Pask’s North American Archive: Contents Listing, New York: Pangaro Inc, 2008-9 INTRODUCTION For several years Gordon Pask has been one of my main research interests. My PhD dissertation at the University College of London provided a thorough account of his life as well as his long interchanges with the fields of art and design. The following document consists of a description of materials related to him that are held at Godon Pask’s North American Archive. British maverick Gordon Pask was a world-renowned cybernetician, awarded the Wiener Gold Medal from the American Society of Cybernetics for his contribution to the field, and who became closely associated with the rise of second-order-cybernetics. For a clear understanding of his perspectives, I recommend works by his close colleagues, such as Ranulph Glanville and Paul Pangaro. As Pangaro stated: “Pask’s achievement was to establish a unifying framework that subsumes the subjectivity of human experience and the objectivity of scientific tradition.”1 The substantial 1993 festschrift published in Journal of Systems Research and edited by Glanville2 comprises texts that express the diversity of fields touched upon and influenced by Pask, as well as a description of his publications and projects.
    [Show full text]
  • Kathleen A. Powers Dissertation
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title The Cybernetic Origins of Life Permalink https://escholarship.org/uc/item/9d8678w5 Author Powers, Kathleen Alicia Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California The Cybernetic Origins of Life By Kathleen A. Powers A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Rhetoric and the Designated Emphasis in Science and Technology Studies in the Graduate Division of the University of California, Berkeley Committee in charge: Chair Professor David Bates Professor James Porter Professor Emeritus Gaetan Micco Professor Sandra Eder Fall 2020 1 Abstract The Cybernetic Origins of Life by Kathleen A. Powers Doctor of Philosophy in Rhetoric and the Designated Emphasis in Science and Technology Studies University of California, Berkeley Professor David Bates, Chair This dissertation elucidates the cybernetic response to the life question of post-World War II biology through an analysis of the writings and experiments of Warren S. McCulloch. The work of McCulloch, who was both a clinician and neurophysiologist, gave rise to what this dissertation refers to as a biological, medical cybernetics, influenced by vitalist conceptions of the organism as well as technical conceptions of the organ, the brain. This dissertation argues that the question ‘what is biological life?’ served as an organizing principle for the electrical, digital model of the brain submitted in “Of Digital Computers Called Brains” (1949) and the formal, mathematical model of the brain required by the McCulloch-Pitts neuron in “A Logical Calculus of the Ideas Immanent in Nervous Activity” (1943).
    [Show full text]
  • STAFFORD BEER Is an International Consultant in the Management Sciences
    BIOGRAPHIES OF CONTRIBUTORS STAFFORD BEER is an international consultant in the management sciences. For twenty years he was a manager himself, and has held the positions of company director, managing director, and Chairman of the Board. He is currently a director of the British software house, Metapraxis Ltd. In part-time academic appointments, he is visiting professor of cybernetics at Manchester University in the Business School, and adjunct professor of social sciences at Pennsylvania University in the Wharton School, where his previous position was in statistics and operations research. He is President of the World Organization of General Systems and Cybernetics, and holds its Wiener Memorial Gold Medal. His consultancy has covered small and large companies, national and international agencies, together with government-based contracts in some fifteen countries. He is cybernetics advisor to Ernst and Whinney in Canada. Publications cover more than two hundred items, and nine books. He has exhibited paintings, published poetry, teaches yoga, and lists his recreations as spinning wool and staying put in his remote Welsh cottage. Address: Prof.Stafford Beer Cwarel Isaf Pont Creuddyn Llanbedr Pont Steffan Dyfed SA48 8PG UK ERNST VON GLASERSFELD was born in 1917 of Austrian parents, went to school in Italy and Switzerland, briefly studied mathematics in Zuerich and Vienna, and survived the war as a farmer in IrelaMd. In 1948 he joined the research group of Silvio Ceccato who subsequently founded the Center for Cybernetics in Milan. In 1963 he received a contract from the U.S. Air Force Office of Scientific Research for work in computational linguistics, and in 1966 he and his team moved to Athens, Georgia.
    [Show full text]
  • Architecture As the Cybernetic Self-Design of Boundary Conditions for Emergent Properties in Human Social Systems
    Cybernetics and Human Knowing. Vol. 16, nos. 1-2, pp. xx-xx Architecture as the Cybernetic Self-Design of Boundary Conditions for Emergent Properties in Human Social Systems Gianfranco Minati1 and Arne Collen2 Some concepts crucial in the contemporary interdisciplinary study of complex systems are reviewed, namely emergent properties of systems, the constructivist role of the observer, and approaches to modeling emergence. Considered is the generalization of boundary conditions to constraints able to induce processes of emergence and acquisition of new and emergent properties within human social systems. A cybernetic and systemic view of architecture is discussed beyond the functional aspects but with an emphasis on the constructivist representation by the observer. In this multi-layered system processes of emergence and acquisition of new properties occur. We propose the study of this system that is inclusive of its architecture, as a specific project able to unify, that is, cohere the various interrelated aspects of an architecture that is inherently part of the system. The human dimension is present in terms of the observer. By means of the cybernetics of architecture that humans experience, they come to know the emergent properties of architecturally designed places and dwellings for human inhabitation. Participation and responsibility for human social systems, inclusive of their architectures, bring into consideration the ethical dimension and its power to induce social emergence, which may be understood as an application of cybernetics to human knowing. Introduction In this paper we use the term architecture3 to refer to the art and science of designing buildings and structures to be used by human social systems.
    [Show full text]
  • The History Ofthe Sixth IIASA Symposium on Global Modelling
    GROPING IN THE DARK The First Decade of Global Modelling Donella Meadows John Richardson Gerhart Bruckmann This book is a real life history of global modelling. It is concerned with the major models and those who make them, the whole craft of modelling, and their principal results. A feature is the honesty, candour, and clarity with which the authors discuss what global modelling taught them about modelling and what it taught them about the world. It could be described as a book on the sociology of a new science struggling with problems too large for the participants but too important to ignore. This exciting and readable book is written forthose who make complex models of complex social systems, those who have to make these systems work, and those who live in and care about the social systems that modellers make and about which decision makers make decisions. Contents HIGHLIGHTS Lessons about the world Lessons about modelling Lessons about global modelling practice THE EDITORS' BIASES CHAPTER ONE. The History of the Sixth IIASA Symposium on Global Modelling A short editorial appreciation A lawyer's story CHAPTER TWO. What are global models and what have they taught us about the world? Models Computer models Global models What we may have learned so far Another way to think CHAPTER THREE. The cast of characters: an introduction to global models The Forrester/Meadows models The Mesarovic/Pestel model The Bariloche model The MOIRA model The SARU model The FUGI model The United Nations global model How global models differ and why How many worlds are there 7 CHAPTER FOUR.
    [Show full text]
  • Leveraging System Science When Doing System Engineering
    Leveraging System Science When Doing System Engineering Richard A. Martin INCOSE System Science Working Group and Tinwisle Corporation System Science and System Engineering Synergy • Every System Engineer has a bit of the scientific experimenter in them and we apply scientific knowledge to the spectrum of engineering domains that we serve. • The INCOSE System Science Working Group is examining and promoting the advancement and understanding of Systems Science and its application to System Engineering. • This webinar will report on these efforts to: – encourage advancement of Systems Science principles and concepts as they apply to Systems Engineering; – promote awareness of Systems Science as a foundation for Systems Engineering; and – highlight linkages between Systems Science theories and empirical practices of Systems Engineering. 7/10/2013 INCOSE Enchantment Chapter Webinar Presentation 2 Engineering or Science • “Most sciences look at certain classes of systems defined by types of components in the system. Systems science looks at systems of all types of components, and emphasizes types of relations (and interactions) between components.” George Klir – past President of International Society for the System Sciences • Most engineering looks at certain classes of systems defined by types of components in the system. Systems engineering looks at systems of all types of components, and emphasizes types of relations (and interactions) between components. 7/10/2013 INCOSE Enchantment Chapter Webinar Presentation 3 Engineer or Scientist
    [Show full text]
  • Social Studies of Science
    Social Studies of Science http://sss.sagepub.com/ Where are the Cyborgs in Cybernetics? Ronald Kline Social Studies of Science 2009 39: 331 DOI: 10.1177/0306312708101046 The online version of this article can be found at: http://sss.sagepub.com/content/39/3/331 Published by: http://www.sagepublications.com Additional services and information for Social Studies of Science can be found at: Email Alerts: http://sss.sagepub.com/cgi/alerts Subscriptions: http://sss.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav Citations: http://sss.sagepub.com/content/39/3/331.refs.html >> Version of Record - May 22, 2009 What is This? Downloaded from sss.sagepub.com at St Petersburg State University on January 11, 2014 ABSTRACT Cyborgs – cybernetic organisms, hybrids of humans and machines – have pervaded everyday life, the military, popular culture, and the academic world since the advent of cyborg studies in the mid 1980s. They have been a recurrent theme in STS in recent decades, but there are surprisingly few cyborgs referred to in the early history of cybernetics in the USA and Britain. In this paper, I analyze the work of the early cyberneticians who researched and built cyborgs. I then use that history of cyborgs as a basis for reinterpreting the history of cybernetics by critiquing cyborg studies that give a teleological account of cybernetics, and histories of cybernetics that view it as a unitary discipline. I argue that cyborgs were a minor research area in cybernetics, usually classified under the heading of ‘medical cybernetics’, in the USA and Britain from the publication of Wiener’s Cybernetics in 1948 to the decline of cybernetics among mainstream scientists in the 1960s.
    [Show full text]
  • Kybernetisk Fagdag
    Fredag 7. november 2014 Kybernetisk fagdag • Arrangeres av NTNUs Institutt for teknisk kybernetikk i Glassgården, Elektrobygget på NTNU Gløshaugen. Gratis og åpent for alle interesserte • Ti norske næringslivsbedrifter fra alle typer bransjer kommer for å snakke om spennende bruk av kybernetikk i praksis, om alt fra verdens minste helikoptre til verdens største styrte konstruksjon • Ti av instituttets PhD-stipendiater vil også presentere postere som viser hva de forsker på. Disse posterne stilles ut i vrimleområdet i Glassgården, og kan besøkes i de to pausene og lunsjen • Auditorium EL5 i Glassgården, Elektrobygget, NTNU Gløshaugen: – Kl. 09.30-10.00: Institutt for teknisk kybernetikk: Velkommen og presentasjon av instituttet ved Morten Breivik, Instituttleder – Kl. 10.00-10.25: Kongsberg Seatex: eBird - Control of Marine Seismic Streamers ved Ola Erik Fjellstad, IPR Manager – Kl. 10.25-10.50: Prox Dynamics: Developing World-Leading Nano UAV Technology ved Jørgen Syvertsen, R&D Engineer – Kl. 10.50-11.10: Pause med kybernetisk mingling og postere på vrimleområde i Glassgården – Kl. 11.10-11.35: Prediktor: Kybernetikk i miniformat: Klokke for ikke -blodig måling av blodsukker ved Steinar Sælid, Chief Technology Officer – Kl. 11.35-12.00: Cybernetica: Kybernetikk for lønnsom prosessdrift ved Peter Singstad, Managing Director Fredag 7. november 2014 Kybernetisk fagdag • Auditorium EL5 i Glassgården, Elektrobygget, NTNU Gløshaugen: – Kl. 13.00-13.25: Marine Cybernetics: Fra 0-100 på 10 år ved Øyvind Smogeli, Chief Operating Officer – Kl. 13.25-13.50: Maritime Robotics: Fra D-blokka til virkeligheten ved Vegard Hovstein, Managing Director – Kl. 13.50-14.10: Pause med kybernetisk mingling og postere på vrimleområde i Glassgården • Auditorium EL3 i Glassgården, Elektrobygget, NTNU Gløshaugen: (NB! Skifte av auditorium) – Kl.
    [Show full text]
  • Mathematical - Mathematical Modelling of Systems – Experimental - Building Actual Miniature Models Or Computer Based Models (Simulation) Cybernetics and Informatics
    Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno Norbert Wiener 26.11.1894 - 18.03.1964 Biocybernetics Lecture outline • Cybernetics • Cybernetic systems • Feedback • Principles of information theory • Information system • Information processes in living organism • Control and regulation • Principles of modelling Norbert Wiener • N. Wiener: (1948) Definitions • Cybernetics is the science dealing with general features and laws regulating information flow, information processing and control processes in organised systems (technical, biological or social character). • System - a set of elements, between which certain relations exist • Modelling – the main method in cybernetics: – Simplified expression of objective reality. – It should be understood as a set of relations between elements – Choice of model must reflect the specific goal – For an accurate modelling of a system, it is necessary to know its structure and function • Applied cybernetics involves the modelling of systems in specific regions of human activity, e.g. technical cybernetics, biocybernetics and social cybernetics. These models can be: – Mathematical - mathematical modelling of systems – Experimental - building actual miniature models or computer based models (simulation) Cybernetics and informatics The cybernetics can be assumed a broad theoretical background of informatics and some other branches of science or knowledge (economy, management, sociology etc.) Biomedical Cybernetics • Main goal: analysis and modelling
    [Show full text]
  • Kathleen A. Powers Dissertation
    The Cybernetic Origins of Life By Kathleen A. Powers A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Rhetoric and the Designated Emphasis in Science and Technology Studies in the Graduate Division of the University of California, Berkeley Committee in charge: Chair Professor David Bates Professor James Porter Professor Emeritus Gaetan Micco Professor Sandra Eder Fall 2020 1 Abstract The Cybernetic Origins of Life by Kathleen A. Powers Doctor of Philosophy in Rhetoric and the Designated Emphasis in Science and Technology Studies University of California, Berkeley Professor David Bates, Chair This dissertation elucidates the cybernetic response to the life question of post-World War II biology through an analysis of the writings and experiments of Warren S. McCulloch. The work of McCulloch, who was both a clinician and neurophysiologist, gave rise to what this dissertation refers to as a biological, medical cybernetics, influenced by vitalist conceptions of the organism as well as technical conceptions of the organ, the brain. This dissertation argues that the question ‘what is biological life?’ served as an organizing principle for the electrical, digital model of the brain submitted in “Of Digital Computers Called Brains” (1949) and the formal, mathematical model of the brain required by the McCulloch-Pitts neuron in “A Logical Calculus of the Ideas Immanent in Nervous Activity” (1943). I argue that, in discussions in these papers of how the brain responds to stimuli, there is a concept of biological life as perceptual life, rendering the brain a biological object with technical attributes whose activity is the activity of world-building.
    [Show full text]
  • Iot and Fourth Order Cybernetics GISFI
    1 IOT AND FOURTH ORDER CYBERNETICS GISFI - 5G “NETWORKED SOCIETY” SEPTEMBER 01, 2014 Bipin Pradeep Kumar [[email protected]] 2 Cybernetics Κυβερνητική: kyvernitikí - steer, navigate, govern ̱ ̱ “the study of self-governance” Plato (Alcibiades, 350 BC) "the scientific study of control and John: “You're like a machine communication in the animal and the underneath, right? But sort of alive machine.” outside?” Norbert Wiener (Cybernetics: Or Terminator: “I'm a cybernetic Control and Communication in the organism. Living tissue over a Animal and the Machine, 1948) metal endoskeleton” John and the Terminator (Terminator II, 1991) Bipin.Kumar[[email protected]] 3 Automatic Regulatory System (Self Regulatory Mechanisms) Feedback loop 250 BC 1781 1927 2011 20XX Water Clock Steam Engine Negative Feedback Learning Thermostat Meta-materials (Ktesibios) (James Watt) Amplifier (Nest Labs) Emergence (Harold Stephen) Medical Cybernetics Autopoiesis Bipin.Kumar[[email protected]] 4 Types of Cybernetics Two major types of Cybernetic systems Evolving new structure New 6 principles and 2 Laws ( System subsumed from Laws of State Control Systems) “Principles of Systems and Syste Syste Cybernetics: an evolutionary m m perspective”, Heylighen 4 Orders of Cybernetics Morphostatic Morphogenetic • System internally dynamic • System internally dynamic • Structurally Stable • Dynamic structure • Governed by negative • Governed by negative & feedback loops positive feedback loops • Feedback loops contained • Feedback loops to within system external systems Ex: Thermostat Ex: Living organisms, human society Bipin.Kumar[[email protected]] 5 Holons and Holarchies “Ghost in the machine”, Arthur Koestler, 1967 Holon - Is something that is simultaneously a part of a whole Me and a whole itself Organs Holons are autonomous, self-reliant units Tissues that possess a degree of independence and handle contingencies without asking Cells higher authorities for instructions.
    [Show full text]