The Cybernetics Moment New Studies in American Intellectual and Cultural History Jeffrey Sklansky, Series Editor the Cybernetics Moment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DOCUMENT RESUME ED 266 C35 SE 046 420 International
DOCUMENT RESUME ED 266 C35 SE 046 420 TITLE International Cooperation in Science. Science Policy Study--Hearings Volume 7. Hearings before the Task Force on Science Policy of the Committee on Science and Technology, House of Representatives, Ninety-Ninth Congress, First Session (June 18, 19, 20, 27, 1985). No. 50. INSTITUTION Congress of the U.S., Washington, D.C. House Committee on Science and Technology. PUB DATE 85 NOTE 1,147p.; Photographs and pages containing small and light print may not reproduce well. For related documents, see SE 046 411-413 and SE 046 419. PUB TYPE Legal/Legislative/Regulatory Materials (09G) EDRS PRICE MF08/PC46 Plus Postage. DESCRIPTORS Financial Support; Hearings; Higher Education; *International Cooperation; *International Programs; Mathematics; Physics; Policy Formation; *Program Content; Psychology; Research Needs; *Sciences; *Scientific Research; *Technology; Training IDENTIFIERS Congress 99th; *Science Policy; UNESCO ABSTRACT These hearings on international cooperation in science focused on three issues: (1) international cooperation in big science; (2) the impact of international cooperation on research priorities; and (3) coordination in management of international cooperative research. Witnesses presenting testimony and/or prepared statements were: Victor Weisskopf; Sandra D. Toye; Walter A. McDougall; Harold Jaffe; Herbert Friedman; Joseph C. Gavin, Jr.; H. Guyford Stever; Kenneth S. Pedersen; John P. McTague (accompanied by Wallace Kornack); Charles Horner (accompanied by Jack Blanchard); John F. Clarke; Eugene Skolnikoff; and Rans-Otto Wuster. Witnesses' questions and answers are also included. Two appendices are provided. The first is the record of the briefing of the task force staff by the American Association for the Advancement of Science Consortium of Affiliates for International Programs (with these participants: Richard D. -
H. Guyford Stever 1916–2010
NATIONAL ACADEMY OF SCIENCES H. GUYFORD S TEVER 1 9 1 6 – 2 0 1 0 A Biographical Memoir by BY T. K E N N E TH F O W L E R Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2010 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. H. GUYFORD STEVER October 24, 1916–April 9, 2010 BY T. KENNET H FOWLER FTER A DISTINGUISHED CAREER OF SERVICe in academia, govern- Ament, and industry, Guy Stever died on April 9, 2010, at his home in Gaithersburg, Maryland. He was 9. During 1965-1976, he served as president of Carnegie Tech, then Carnegie-Mellon University; director of the National Science Foundation; and science adviser to Presidents Nixon and Ford. He was a member of Section 1 of the National Academy of Sciences, elected in 197, having already been elected to the National Academy of Engineering in 1965. He was awarded the National Medal of Science in 1991. I knew Guy best when I served with him on the Fusion Policy Advisory Committee of 1990, which played an important role in enabling Princeton finally to conduct experiments with tritium that yielded the first definitive demonstration of controlled fusion power, in 199. Guy was chair, a frequent role for him after his years in the White House. Just the year before, in 1989, he had completed a far more difficult assignment as chair of a panel overseeing booster-rocket redesign following the Challenger disaster. -
Bernard M. Oliver Oral History Interview
http://oac.cdlib.org/findaid/ark:/13030/kt658038wn Online items available Bernard M. Oliver Oral History Interview Daniel Hartwig Stanford University. Libraries.Department of Special Collections and University Archives Stanford, California November 2010 Copyright © 2015 The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Bernard M. Oliver Oral History SCM0111 1 Interview Overview Call Number: SCM0111 Creator: Oliver, Bernard M., 1916- Title: Bernard M. Oliver oral history interview Dates: 1985-1986 Physical Description: 0.02 Linear feet (1 folder) Summary: Transcript of an interview conducted by Arthur L. Norberg covering Oliver's early life, his education, and work experiences at Bell Laboratories and Hewlett-Packard. Subjects include television research, radar, information theory, organizational climate and objectives at both companies, Hewlett-Packard's associations with Stanford University, and Oliver's association with William Hewlett and David Packard. Language(s): The materials are in English. Repository: Department of Special Collections and University Archives Green Library 557 Escondido Mall Stanford, CA 94305-6064 Email: [email protected] Phone: (650) 725-1022 URL: http://library.stanford.edu/spc Information about Access Reproduction is prohibited. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. -
Mining Patient Journeys from Healthcare Narratives
MINING PATIENT JOURNEYS FROM HEALTHCARE NARRATIVES A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES 2014 By Azad Dehghan School of Computer Science Contents Abstract 14 Declaration 16 Copyright 17 Acknowledgements 18 1 Introduction 23 1.1 Hypotheses and research questions................... 25 1.2 Aim and objectives........................... 26 1.3 Contributions.............................. 27 1.4 Thesis structure............................. 28 2 Background 29 2.1 Text Mining............................... 29 2.1.1 Natural language processing.................. 30 2.1.2 Information extraction..................... 40 2.1.3 Named entity recognition.................... 47 2.1.4 Temporal information extraction................ 54 2.1.5 Temporal entity extraction................... 59 2.1.6 Temporal relation extraction.................. 66 2.2 Clinical Background.......................... 77 2.2.1 Clinical text........................... 77 2.2.2 Computer aided standardisation of clinical care........ 77 2.2.3 Health-related quality of life.................. 78 2.3 Summary................................ 81 2 3 Extraction of Health-related Concepts 83 3.1 Event Extraction............................ 84 3.1.1 Methods............................ 85 3.1.2 Data............................... 89 3.1.3 Experiments, results, and discussion.............. 91 3.2 Health-related Quality of Life Extraction................ 96 3.2.1 HrQoL Schema........................ -
Existing Cybernetics Foundations - B
SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Existing Cybernetics Foundations - B. M. Vladimirski EXISTING CYBERNETICS FOUNDATIONS B. M. Vladimirski Rostov State University, Russia Keywords: Cybernetics, system, control, black box, entropy, information theory, mathematical modeling, feedback, homeostasis, hierarchy. Contents 1. Introduction 2. Organization 2.1 Systems and Complexity 2.2 Organizability 2.3 Black Box 3. Modeling 4. Information 4.1 Notion of Information 4.2 Generalized Communication System 4.3 Information Theory 4.4 Principle of Necessary Variety 5. Control 5.1 Essence of Control 5.2 Structure and Functions of a Control System 5.3 Feedback and Homeostasis 6. Conclusions Glossary Bibliography Biographical Sketch Summary Cybernetics is a science that studies systems of any nature that are capable of perceiving, storing, and processing information, as well as of using it for control and regulation. UNESCO – EOLSS The second title of the Norbert Wiener’s book “Cybernetics” reads “Control and Communication in the Animal and the Machine”. However, it is not recognition of the external similaritySAMPLE between the functions of animalsCHAPTERS and machines that Norbert Wiener is credited with. That had been done well before and can be traced back to La Mettrie and Descartes. Nor is it his contribution that he introduced the notion of feedback; that has been known since the times of the creation of the first irrigation systems in ancient Babylon. His distinctive contribution lies in demonstrating that both animals and machines can be combined into a new, wider class of objects which is characterized by the presence of control systems; furthermore, living organisms, including humans and machines, can be talked about in the same language that is suitable for a description of any teleological (goal-directed) systems. -
Topological Aspects of Biosemiotics
tripleC 5(2): 49-63, 2007 ISSN 1726-670X http://tripleC.uti.at Topological Aspects of Biosemiotics Rainer E. Zimmermann IAG Philosophische Grundlagenprobleme, U Kassel / Clare Hall, UK – Cambridge / Lehrgebiet Philosophie, FB 13 AW, FH Muenchen, Lothstr. 34, D – 80335 München E-mail: [email protected] Abstract: According to recent work of Bounias and Bonaly cal terms with a view to the biosemiotic consequences. As this (2000), there is a close relationship between the conceptualiza- approach fits naturally into the Kassel programme of investigat- tion of biological life and mathematical conceptualization such ing the relationship between the cognitive perceiving of the that both of them co-depend on each other when discussing world and its communicative modeling (Zimmermann 2004a, preliminary conditions for properties of biosystems. More pre- 2005b), it is found that topology as formal nucleus of spatial cisely, such properties can be realized only, if the space of modeling is more than relevant for the understanding of repre- orbits of members of some topological space X by the set of senting and co-creating the world as it is cognitively perceived functions governing the interactions of these members is com- and communicated in its design. Also, its implications may well pact and complete. This result has important consequences for serve the theoretical (top-down) foundation of biosemiotics the maximization of complementarity in habitat occupation as itself. well as for the reciprocal contributions of sub(eco)systems with respect -
The Social System of Systems Intelligence – a Study Based on Search Engine Method
In Essays on Systems Intelligence, eds. Raimo P. Hämäläinen and Esa Saarinen: pp. 119-133 Espoo: Aalto University, School of Science and Technology, Systems Analysis Laboratory Chapter 5 The Social System of Systems Intelligence – A Study Based on Search Engine Method Kalevi Kilkki This essay offers an preliminary study on systems intelligence as a social system based on four cornerstones: writings using the terminology of systems intelligence, search engines, models to describe the behavior of social phenomena, and a theory of social systems. As a result we provide an illustration of systems intelligence field as a network of key persons. The main conclusion is that the most promising area for systems intelligence as social system is to systematically apply positive psychology to develop organizational management and to solve our everyday problems. Introduction The social system of systems intelligence is an ambitious topic, particularly for a person without any formal studies in sociology. Moreover, systems intelligence is a novel area of science and, hence, the development of its social structures is in early phase. It is even possible to argue that there is not yet any social system of systems intelligence. The approach of this study is based on four cornerstones: first, the literature that has used concept of systems intelligence, second, search engines, third, models to describe the behavior of social phenomena, and forth, a theory of social systems. As a result we may be able to say something novel about the development of systems intelligence as a social system. As to the social systems this essay relies on the grand theory developed by Niklas Luhmann (Luhmann 1995). -
Generative Models, Structural Similarity, and Mental Representation
The Mind as a Predictive Modelling Engine: Generative Models, Structural Similarity, and Mental Representation Daniel George Williams Trinity Hall College University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy August 2018 The Mind as a Predictive Modelling Engine: Generative Models, Structural Similarity, and Mental Representation Daniel Williams Abstract I outline and defend a theory of mental representation based on three ideas that I extract from the work of the mid-twentieth century philosopher, psychologist, and cybernetician Kenneth Craik: first, an account of mental representation in terms of idealised models that capitalize on structural similarity to their targets; second, an appreciation of prediction as the core function of such models; and third, a regulatory understanding of brain function. I clarify and elaborate on each of these ideas, relate them to contemporary advances in neuroscience and machine learning, and favourably contrast a predictive model-based theory of mental representation with other prominent accounts of the nature, importance, and functions of mental representations in cognitive science and philosophy. For Marcella Montagnese Preface Declaration This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. -
Claude Elwood Shannon (1916–2001) Solomon W
Claude Elwood Shannon (1916–2001) Solomon W. Golomb, Elwyn Berlekamp, Thomas M. Cover, Robert G. Gallager, James L. Massey, and Andrew J. Viterbi Solomon W. Golomb Done in complete isolation from the community of population geneticists, this work went unpublished While his incredibly inventive mind enriched until it appeared in 1993 in Shannon’s Collected many fields, Claude Shannon’s enduring fame will Papers [5], by which time its results were known surely rest on his 1948 work “A mathematical independently and genetics had become a very theory of communication” [7] and the ongoing rev- different subject. After his Ph.D. thesis Shannon olution in information technology it engendered. wrote nothing further about genetics, and he Shannon, born April 30, 1916, in Petoskey, Michi- expressed skepticism about attempts to expand gan, obtained bachelor’s degrees in both mathe- the domain of information theory beyond the matics and electrical engineering at the University communications area for which he created it. of Michigan in 1936. He then went to M.I.T., and Starting in 1938 Shannon worked at M.I.T. with after spending the summer of 1937 at Bell Tele- Vannevar Bush’s “differential analyzer”, the an- phone Laboratories, he wrote one of the greatest cestral analog computer. After another summer master’s theses ever, published in 1938 as “A sym- (1940) at Bell Labs, he spent the academic year bolic analysis of relay and switching circuits” [8], 1940–41 working under the famous mathemati- in which he showed that the symbolic logic of cian Hermann Weyl at the Institute for Advanced George Boole’s nineteenth century Laws of Thought Study in Princeton, where he also began thinking provided the perfect mathematical model for about recasting communications on a proper switching theory (and indeed for the subsequent mathematical foundation. -
A Dictionary of Cybernetics
Annenberg School for Communication Departmental Papers (ASC) University of Pennsylvania Year 1986 A Dictionary of Cybernetics Klaus Krippendorff University of Pennsylvania, kkrippendorff@asc.upenn.edu This paper is posted at ScholarlyCommons. http://repository.upenn.edu/asc papers/224 A DICTIONARY OF CYBERNETICS by Klaus Krippendorff University of Pennsylvania version 2/2/86 A dictionary like the discipline whose terminology it aims to clarify is constantly in flux. It is aided by communal efforts and in turn aids communication within the community of users. Critical comments and suggestions, especially for including new or omitting useless entries, for improving the wording, for references that may need to be added should be directed to: Klaus Krippendorff The Annenberg School of Communications University of Pennsylvania Philadelphia PA 19104 NOTE: This dictionary is not intended to represent the American Society for Cybernetics nor the opinions of any of its members: neither does it replace the current Cybernetics Glossary. Klaus Krippendorff has been kind enough to make his work available to ASC members in order to stimulate discussion on the language of cybernetics. as well as on the idea of a dictionary itself. ABSOLUTE DISCRIMINATION: ->LIMIT OF ABSOLUTE DISCRIMINATION ADAPTATION: STABILITY of success in the face of a changing environment. Two kinds of adaptation are distinguished. (a) Darwinian adaptation after Darwin who observed how organisms change their internal STRUCTURE when their environment makes existing forms no longer viable. E.g., Ashby's HOMEOSTAT searches for a new pattern of behavior as soon as disturbances in its surroundings drive or threaten to drive its essential VARIABLEs outside specified limits. -
The Artist's Emergent Journey the Metaphysics of Henri Bergson, and Also Those by Eric Voegelin Against Gnosticism2
Vol 1 No 2 (Autumn 2020) Online: jps.library.utoronto.ca/index.php/nexj Visit our WebBlog: newexplorations.net The Artist’s Emergent Journey Clinton Ignatov—The McLuhan Institute—[email protected] To examine computers as a medium in the style of Marshall McLuhan, we must understand the origins of his own perceptions on the nature of media and his deep-seated religious impetus for their development. First we will uncover McLuhan’s reasoning in his description of the artist and the occult origins of his categories of hot and cool media. This will prepare us to recognize these categories when they are reformulated by cyberneticist Norbert Wiener and ethnographer Sherry Turkle. Then, as we consider the roles “black boxes” play in contemporary art and theory, many ways of bringing McLuhan’s insights on space perception and the role of the artist up to date for the work of defining and explaining cyberspace will be demonstrated. Through this work the paradoxical morality of McLuhan’s decision to not make moral value judgments will have been made clear. Introduction In order to bring Marshall McLuhan into the 21st century it is insufficient to retrieve his public persona. This particular character, performed in the ‘60s and ‘70s on the global theater’s world stage, was tailored to the audiences of its time. For our purposes today, we’ve no option but an audacious attempt to retrieve, as best we can, the whole man. To these ends, while examining the media of our time, we will strive to delicately reconstruct the human-scale McLuhan from what has been left in both his public and private written corpus. -
CURRICULUM VITAE Name: RUDOMIN ZEVNOVATY PABLO Born
CURRICULUM VITAE Name: RUDOMIN ZEVNOVATY PABLO Born: June 15, 1934 Mexico, D.F. Academic degrees: 1956 B.Sc. Biology. National School of Biological Sciences. National Polytechnicum Institute, Mexico. 1963 M.Sc. Physiology. Center of Research and Advanced Studies National Polytechnic Institute, Mexico. 1965 Ph.D. Physiology. Center of Research and Advanced Studies. National Polytechnic Institute, Mexico. Profesional experience: 1953-56 Assistant of Physiology, Laboratory of Neurophysiology, National Polytechnic Institute, Mexico 1955-56 Research Associate. Department of Physiology. National Institute of Neumology, Mexico. 1957-59 Investigator, Dept. of Physiology, National Institute of Cardiology, Mexico. 1959-60 John Simon Guggenheim Foundation Fellow at the Rockefeller Institute, N.Y. E.U.A. 1960 Investigator, Marine Biological Institute, Woods Hole. 1960-61 Rockefeller Foundation Fellow. Dept. of Physiology, Institute of Medical Pathology. Siena, Italy. 1961-66 Associate Professor, Dept. of Physiology. Center for Research and Advanced Studies. Mexico 1966-72 Professor, Dept. of Physiology. Center for Research and Advanced Studies. Mexico 1968-69 Visiting Scientist, Laboratory of Neurophysiology and Lab. of Neural Control NINDS. Bethesda, MD 1972-74 Head of the Section of Neural Control. Professor Dept. of Physiology, Center for Research and Advanced Studies. Mexico 1974 Visiting Professor. Hebrew University, Jerusalem. 1976 Visiting Professor. Marine Biomedical Institute. Universidad de Texas Galveston, Tx. E.U.A. 1977 Visiting Professor. Physiolgy Dept. Medical School. Göteborg University. Göteborg, Sweden. 1977 Visiting Professor. Hebrew University. Jerusalem, Israel 1978 Visiting Professor. Marine Biomedical Institute. University of Texas. Galveston, Tex. E.U.A 1980 Visiting Professor. Physiolgy Dept. Medical School. Göteborg University. Göteborg, Sweden. 1983 Visiting Professor. Dept. of Pharmacology and Physiol.