Genetics of Charcot-Marie-Tooth Disease Type 4A: Mutations

Total Page:16

File Type:pdf, Size:1020Kb

Genetics of Charcot-Marie-Tooth Disease Type 4A: Mutations 358 LETTER TO JMG J Med Genet: first published as 10.1136/jmg.2004.022178 on 1 April 2005. Downloaded from Genetics of Charcot-Marie-Tooth disease type 4A: mutations, inheritance, phenotypic variability, and founder effect R Claramunt, L Pedrola, T Sevilla, A Lo´pez de Munain, J Berciano, A Cuesta, B Sa´nchez-Navarro, J M Milla´n, G M Saifi, J R Lupski, J J Vı´lchez, C Espino´s, F Palau ............................................................................................................................... J Med Genet 2005;42:358–365. doi: 10.1136/jmg.2004.022178 harcot-Marie-Tooth (CMT) disease is a motor and sensory neuropathy with clinical and genetic hetero- Key points Cgeneity. Patients usually present in the first or second decade of life with distal muscle atrophy in the legs, areflexia, N We investigated the genetics and inheritance of the foot deformity (mainly pes cavus), and steppage gait. In most GDAP1 gene and phenotype expression in a series of cases, hands are also involved as the disease progresses. CMT 106 isolated and 19 familial cases with Charcot- is the most frequent inherited neuropathy, with a prevalence Marie-Tooth disease and Spanish ancestry, for whom in Spain of 28 in 100 000.1 Based on electrophysiological mutations in the PMP22, MPZ, and GJB1 genes had studies and histopathologic findings in nerve biopsies, CMT previously been excluded. has been subcategorised into two main and distinct N We also investigated the existence of founder effects neuropathies: (i) demyelinating CMT (CMT1, MIM 118200) for some recurrent mutations and the origin of these associated with reduction in a nerve conduction velocities (NCVs) in all nerves and segmental demyelination and mutations in patients from different countries. remyelination (‘‘onion bulbs’’); and (ii) axonal CMT (CMT2, N We found mutations in seven isolated patients, three MIM 118220) associated with normal or almost normal autosomal recessive families, and two autosomal NCVs and loss of myelinated axons. Other phenotypes are dominant families. Six out of seven isolated patients associated with motor and sensory nerve involvement: were homozygotes or compound heterozygotes with De´je´rine-Sottas neuropathy (DSN, MIM 145900) is a severe autosomal recessive inheritance and one patient demyelinating neuropathy with onset in infancy, delayed carried a de novo dominant mutation. The mutation motor milestones, and NCVs less than 10 m/s; congenital detection rate in the sporadic patients was 5.6%. hypomyelinating neuropathy (CHN, MIM 605253) is a Patients with homozygous or compound heterozygous http://jmg.bmj.com/ dysmyelinating neuropathy characterised by infantile hypo- genotypes showed a severe disease, whereas hetero- tonia, distal muscle weakness, and marked reduction of zygous patients from the two autosomal dominant NCVs; hereditary neuropathy with liability to pressure palsies families that segregated the R120W mutation showed (HNPP, MIM 162500) is a milder sensory and motor a milder phenotype. neuropathy with periodic episodes of numbness, muscular N We also report a de novo mutation, T157P, which has weakness, and atrophy.2 not been previously described. Haplotype analysis of Genetic heterogeneity is characteristic of the disease not the CMT4A locus confirmed a unique origin for the just because of the large number of genes and loci associated on September 26, 2021 by guest. Protected copyright. with CMT (currently 21 genes),3–5 but also because the Q163X mutation in 13 Spanish chromosomes and six disease may segregate with different Mendelian patterns. The American Hispanic chromosomes. A common origin most frequent pattern of inheritance is autosomal dominant, for two Spanish chromosomes and two Moroccan but autosomal recessive and X linked segregation are also chromosomes carrying the S194X was also confirmed. observed. N We concluded that: (i) although it used to be The relationship of the type of CMT, demyelinating or considered that CMT4A was inherited as an autosomal axonal, with specific genes is not perfect. For instance, MPZ recessive disorder, some mutations may be expressed mutations are usually manifested clinically as an autosomal in heterozygous patients and segregate dominantly in dominant demyelinating neuropathy, CMT1B.67 However, some families; (ii) GDAP1 mutations are relatively some mutations in MPZ have also been found in patients with frequent in our population, thus, the gene could be 89 axonal neuropathy (CMT2-P0). Moreover, some patients included in the routine genetic testing of CMT with mutation in MPZ expressed the disease as either DSN or regardless of the inheritance pattern; and (iii) the most 10 11 CHN. On the other hand, mutations in the same gene may frequent mutation, Q163X, is the result of a founder be expressed with a different Mendelian pattern. Mutations effect as the consequence of a unique origin. in the PMP22 gene are expressed as dominant mutations, but there are some mutations in PMP22 that convey an autosomal recessive trait.12 13 CMT disease caused by mutations in the ganglioside- induced differentiation-associated protein 1 (GDAP1) gene is a severe autosomal recessive neuropathy originally reported Abbreviations: CHN, congenital hypomyelinating neuropathy; CMAP, in families with either demyelinating CMT4A neuropathy compound motor action potential; CMT disease, Charcot-Marie-Tooth 14 15 (MIM 214400) or axonal neuropathy with vocal cord disease; DSN, De´je´rine-Sottas neuropathy; NCVs, nerve conduction paresis (MIM 607706),16 which maps to the CMT4A locus on velocities; SNAP, sensory nerve action potential www.jmedgenet.com Letter to JMG 359 chromosome 8q21.1. GDAP1 is a 358 amino acid protein dideoxynucleotides and one of the PCR primers. All whose function is not well known. It is expressed in both the sequences on both strands were determined. J Med Genet: first published as 10.1136/jmg.2004.022178 on 1 April 2005. Downloaded from central and peripheral nervous system.16 17 A putative role as glutathione S-transferases has been postulated for Microsatellite and SNP genotyping GDAP1.16 17 Genotyping for the six microsatellite markers linked to the Mutations in the GDAP1 gene have been observed CMT4A locus was performed using a similar PCR protocol: particularly in patients from Mediterranean countries,15 16 18–22 4 min initial denaturation at 95˚C, 35 cycles of 30 s but also in those from other European regions.15 23 24 The most denaturation at 94˚C, 30 s annealing and elongation at 55˚C prevalent mutation in Spain is Q163X,16 which has also been (D8S279, D8S286, and D8S551)or58˚C(D8S1474, D8S1289, found in three North American Hispanic families.25 Moreover, and D8S84), and a 7 min final extension at 72˚C. PCR S194X, the most frequent mutation in North African products were run on a 12% non-denaturing polyacrylamide countries—Morocco, Tunisia15 19 21—has also been found in gel at 800 V for 10 h at room temperature. Allele fragments Spain.16 Haplotype analysis of one Moroccan family and one were visualised by silver staining. Allelic numbers for every Spanish family suggested a common origin of the S194X marker except D8S1474 are according to the Genome mutation found in both countries.18 Database (http://www.gdb.org/). D8S1474 alleles and fre- We report here the genetics of CMT4A investigated quencies were established in the general Spanish population. through genetic analysis of the GDAP1 gene and locus in a The determination of haplotype phase was based either on series 125 isolated or familial CMT patients with Spanish homozygosity or on analysis of parental samples, which ancestry. We show that the most frequent mutation, Q163X, allowed us to fully or partially define the phase. has a common origin in families from both Spain and North Analysis of the c.507T/G single nucleotide polymorphism America. We also present genetic data suggesting that (SNP) was performed by PCR amplification of exon 4 and CMT4A displays both autosomal recessive and autosomal restriction digestion with DdeI. After digestion the presence of dominant inheritance, and we document a possible correla- two bands of 168 and 120 bp indicates allele T, whereas a tion between the severity of the disease and genetic status. 288 bp undigested band indicates allele G. Both rs1025928 and rs959424 SNPs (UCSC Human Genome Browser, Human Genome Working Draft, http://genome.ucsc.edu/goldenPath/ METHODS septTracks.html) were investigated by SSCP analysis. Patients Estimation of Q163X mutation age was performed by A cohort of 161 patients belonging to 125 families with means of the maximum likelihood method implemented in Spanish ancestry and with a diagnosis of CMT disease, either the program BDMC21 v2.1 (available at http://www.rannala. axonal or demyelinating, was available for genetic analysis of org/labpages/software.html).27 The program parameter set- GDAP1. The cohort was distributed as follows: 106 isolated ting we used were: growth rate = 0.005, sample fraction = cases, 13 families with autosomal recessive inheritance 0.0000325 (assuming a carrier frequency of 1/200 in the (categorised thus because more than one sib was affected general population, a total population size of 40 million and parents were normal by examination or history), and six individuals, and a mutation rate of short tandem repeat families with autosomal dominant inheritance. Consan- (STR) linked markers of 0.0001). Program data settings were: guinity was observed in 10 isolated cases and three families. 13 mutant copies, which are the mutant alleles in our sample, In all cases mutations in the PMP22, MPZ, and GJB1 genes 16 and two segregating sites. Program option settings were: had previously been excluded. Mutation analysis and conditional on copy number = yes, number of Monte Carlo http://jmg.bmj.com/ 26 clinical descriptions for families LF38, LF249, and LF20 replicates = 10 000, initial time = 10, final time = 500, and has previously been reported. Mutation studies and clinical interval increments = 10. data of the Hispanic families HOU531, HOU364, and Exclusion of false paternity was performed by using 10 25 HOU726, have also been reported elsewhere.
Recommended publications
  • Mitoxplorer, a Visual Data Mining Platform To
    mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, Cecilia Garcia-Perez, José Villaveces, Salma Gamal, Giovanni Cardone, Fabiana Perocchi, et al. To cite this version: Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, et al.. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dy- namics and mutations. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkz1128. hal-02394433 HAL Id: hal-02394433 https://hal-amu.archives-ouvertes.fr/hal-02394433 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz1128 Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz1128/5651332 by Bibliothèque de l'université la Méditerranée user on 04 December 2019 mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim1,†, Prasanna Koti1,†, Adrien Bonnard2, Fabio Marchiano3, Milena Durrbaum¨ 1, Cecilia Garcia-Perez4, Jose Villaveces1, Salma Gamal1, Giovanni Cardone1, Fabiana Perocchi4, Zuzana Storchova1,5 and Bianca H.
    [Show full text]
  • Analysis of Gene Expression in the Nervous System Identifies Key Genes and Novel Candidates for Health and Disease
    Neurogenetics (2017) 18:81–95 DOI 10.1007/s10048-017-0509-5 ORIGINAL ARTICLE Analysis of gene expression in the nervous system identifies key genes and novel candidates for health and disease Sarah M Carpanini1 & Thomas M Wishart1 & Thomas H Gillingwater2 & Jean C Manson1 & Kim M Summers1 Received: 13 July 2016 /Accepted: 20 January 2017 /Published online: 11 February 2017 # The Author(s) 2017. This article is published with open access at Springerlink.com Abstract The incidence of neurodegenerative diseases in the pathways and gene ontology term annotation. Additionally a developed world has risen over the last century, concomitant number of poorly annotated genes were implicated by this with an increase in average human lifespan. A major chal- approach in nervous system function. Exploiting gene expres- lenge is therefore to identify genes that control neuronal health sion data available in the public domain allowed us to validate and viability with a view to enhancing neuronal health during key nervous system genes and, importantly, to identify additional ageing and reducing the burden of neurodegeneration. genes with minimal functional annotation but with the same Analysis of gene expression data has recently been used to expression pattern. These genes are thus novel candidates for infer gene functions for a range of tissues from co-expression a role in neurological health and disease and could now be networks. We have now applied this approach to further investigated to confirm their function and regulation transcriptomic datasets from the mammalian nervous system during ageing and neurodegeneration. available in the public domain. We have defined the genes critical for influencing neuronal health and disease in different Keywords Mice .
    [Show full text]
  • A Genomic Approach to Delineating the Occurrence of Scoliosis in Arthrogryposis Multiplex Congenita
    G C A T T A C G G C A T genes Article A Genomic Approach to Delineating the Occurrence of Scoliosis in Arthrogryposis Multiplex Congenita Xenia Latypova 1, Stefan Giovanni Creadore 2, Noémi Dahan-Oliel 3,4, Anxhela Gjyshi Gustafson 2, Steven Wei-Hung Hwang 5, Tanya Bedard 6, Kamran Shazand 2, Harold J. P. van Bosse 5 , Philip F. Giampietro 7,* and Klaus Dieterich 8,* 1 Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, 38000 Grenoble, France; [email protected] 2 Shriners Hospitals for Children Headquarters, Tampa, FL 33607, USA; [email protected] (S.G.C.); [email protected] (A.G.G.); [email protected] (K.S.) 3 Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; [email protected] 4 School of Physical & Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada 5 Shriners Hospitals for Children, Philadelphia, PA 19140, USA; [email protected] (S.W.-H.H.); [email protected] (H.J.P.v.B.) 6 Alberta Congenital Anomalies Surveillance System, Alberta Health Services, Edmonton, AB T5J 3E4, Canada; [email protected] 7 Department of Pediatrics, University of Illinois-Chicago, Chicago, IL 60607, USA 8 Institut of Advanced Biosciences, Université Grenoble Alpes, Inserm, U1209, CHU Grenoble Alpes, 38000 Grenoble, France * Correspondence: [email protected] (P.F.G.); [email protected] (K.D.) Citation: Latypova, X.; Creadore, S.G.; Dahan-Oliel, N.; Gustafson, Abstract: Arthrogryposis multiplex congenita (AMC) describes a group of conditions characterized A.G.; Wei-Hung Hwang, S.; Bedard, by the presence of non-progressive congenital contractures in multiple body areas.
    [Show full text]
  • Some Bioinformatic Analyses of Human GDAP1 Gene Expression
    Some bioinformatic analyses of human GDAP1 gene expression Khloud Mubarak Algothmi Thesis submitted, in fulfilment of the requirements for the degree of Doctor of Philosophy in Applied science. University of Canberra July 2015 Abstract Charcot- Marie-Tooth (CMT) represents a group of genetic disorders, which cause damage in the peripheral nervous system. It was identified and described in 1886 by Jean-Martin Charcot, Pierre Marie and Howard Henry Tooth. It is the most common inherited disorder of the peripheral nervous system, and affects approximately 1 in every 2,500 people. A severe form of CMT has been linked to mutations in the coding region of Ganglioside-induced Differentiation Associated Protein (GDAP1), a member of the glutathione transferase (GST) family which is located in the outer membrane of mitochondria. GDAP1 mutations cause axonal, demyelinating and intermediate forms of CMT. In some cases the same mutation can cause different CMT phenotypes. The overall hypothesis for this thesis was, that changes in the expression in GDAP1 may lead to these phenotypic differences. The methodology used to investigate the expression of human GDAP1 gene was a bioinformatic approach. The results demonstrated that in normal healthy tissues, GDAP1 had ubiquitous expression, particularly in neural and endocrine tissues. This pattern of expression was different to the expression of mouse GDAP1, where expression was predominantly in nervous tissues. GDAP1 has mainly been studied in the context of peripheral neuropathies, based on its genetic linkage with CMT disease. In this study, the expression of GDAP1 was shown to be altered in some other diseases, such as brain cancers.
    [Show full text]
  • Case Report: Exome Sequencing Achieved a Definite Diagnosis in A
    Jiang et al. BMC Neurology (2021) 21:96 https://doi.org/10.1186/s12883-021-02093-z CASE REPORT Open Access Case report: exome sequencing achieved a definite diagnosis in a Chinese family with muscle atrophy Hui Jiang1,2,3†, Chunmiao Guo4†, Jie Xie1,2,3†, Jingxin Pan5, Ying Huang1,2,3, Miaoxin Li1,2,3,6,7* and Yibin Guo2,3,8* Abstract Background: Due to large genetic and phenotypic heterogeneity, the conventional workup for Charcot-Marie- Tooth (CMT) diagnosis is often underpowered, leading to diagnostic delay or even lack of diagnosis. In the present study, we explored how bioinformatics analysis on whole-exome sequencing (WES) data can be used to diagnose patients with CMT disease efficiently. Case presentation: The proband is a 29-year-old female presented with a severe amyotrophy and distal skeletal deformity that plagued her family for over 20 years since she was 5-year-old. No other aberrant symptoms were detected in her speaking, hearing, vision, and intelligence. Similar symptoms manifested in her younger brother, while her parents and her older brother showed normal. To uncover the genetic causes of this disease, we performed exome sequencing for the proband and her parents. Subsequent bioinformatics analysis on the KGGSeq platform and further Sanger sequencing identified a novel homozygous GDAP1 nonsense mutation (c.218C > G, p.Ser73*) that responsible for the family. This genetic finding then led to a quick diagnosis of CMT type 4A (CMT4A), confirmed by nerve conduction velocity and electromyography examination of the patients. Conclusions: The patients with severe muscle atrophy and distal skeletal deformity were caused by a novel homozygous nonsense mutation in GDAP1 (c.218C > G, p.Ser73*), and were diagnosed as CMT4A finally.
    [Show full text]
  • A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: a Simple System for Complex, Heterogeneous Diseases
    International Journal of Molecular Sciences Review A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: A Simple System for Complex, Heterogeneous Diseases Weronika Rzepnikowska 1, Joanna Kaminska 2 , Dagmara Kabzi ´nska 1 , Katarzyna Bini˛eda 1 and Andrzej Kocha ´nski 1,* 1 Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; [email protected] (W.R.); [email protected] (D.K.); [email protected] (K.B.) 2 Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; [email protected] * Correspondence: [email protected] Received: 19 May 2020; Accepted: 15 June 2020; Published: 16 June 2020 Abstract: Charcot–Marie–Tooth (CMT) disease encompasses a group of rare disorders that are characterized by similar clinical manifestations and a high genetic heterogeneity. Such excessive diversity presents many problems. Firstly, it makes a proper genetic diagnosis much more difficult and, even when using the most advanced tools, does not guarantee that the cause of the disease will be revealed. Secondly, the molecular mechanisms underlying the observed symptoms are extremely diverse and are probably different for most of the disease subtypes. Finally, there is no possibility of finding one efficient cure for all, or even the majority of CMT diseases. Every subtype of CMT needs an individual approach backed up by its own research field. Thus, it is little surprise that our knowledge of CMT disease as a whole is selective and therapeutic approaches are limited. There is an urgent need to develop new CMT models to fill the gaps.
    [Show full text]
  • One Multilocus Genomic Variation Is Responsible for a Severe Charcot–Marie–Tooth Axonal Form
    brain sciences Case Report One Multilocus Genomic Variation Is Responsible for a Severe Charcot–Marie–Tooth Axonal Form Federica Miressi 1,*, Corinne Magdelaine 1,2, Pascal Cintas 3 , Sylvie Bourthoumieux 1,4, Angélique Nizou 1, Paco Derouault 5, Frédéric Favreau 1,2 , Franck Sturtz 1,2 , Pierre-Antoine Faye 1,2 and Anne-Sophie Lia 1,2,5 1 Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; [email protected] (C.M.); [email protected] (S.B.); [email protected] (A.N.); [email protected] (F.F.); [email protected] (F.S.); [email protected] (P.-A.F.); [email protected] (A.-S.L.) 2 Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France 3 Service de Neurologie, Centre Hospitalier Universitaire à Limoges Toulouse, F-31000 Toulouse, France; [email protected] 4 Service de Cytogénétique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France 5 Service de Bioinformatique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France; [email protected] * Correspondence: [email protected] Received: 17 November 2020; Accepted: 9 December 2020; Published: 15 December 2020 Abstract: Charcot–Marie–Tooth (CMT) disease is a heterogeneous group of inherited disorders affecting the peripheral nervous system, with a prevalence of 1/2500. So far, mutations in more than 80 genes have been identified causing either demyelinating forms (CMT1) or axonal forms (CMT2). Consequentially, the genotype–phenotype correlation is not always easy to assess. Diagnosis could require multiple analysis before the correct causative mutation is detected.
    [Show full text]
  • SUPPLEMENTARY MATERIAL Sanger Sequencing the Coding
    NEFL-related Charcot-Marie-Tooth disease | 1 SUPPLEMENTARY MATERIAL Sanger sequencing The coding regions and flanking intronic regions of NEFL (GenBank accession number NM_006158.4) were PCR-amplified using AmpliTaq Gold 360 Master Mix (Applied Biosystems). Primer sequences and PCR conditions are available upon request. PCR products were cleaned up using the MultiScreen-PCR96 Filter Plate (Millipore). Sequencing reactions were performed using BigDye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems) and products were cleaned up using the Dye Terminator Removal Kit (Thermo Scientific ABgene). DNA fragments were separated on an ABI3730XL automatic DNA sequencer (Applied Biosystems). The resulting sequences were analysed with SeqScape software v2.5 (Applied Biosystems). Short tandem repeat analysis DNA was amplified for 16 short tandem repeat (STR) loci using the PowerPlex 16 HS System kit (Promega Corp.) as per the manufacturers' instructions. PCR products for STR analysis were run on an ABI3730XL automatic DNA sequencer (Applied Biosystems) and analyzed by GeneMapper software v4.0 (Applied Biosystems) for automated molecular mass sizing. Whole-exome sequencing The exomes of patient 2 were enriched using the SureSelect Human All Exon V5 capture kit (Agilent) and sequenced on the HiSeq 2000 platform (Illumina) at the John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA. The resulting 100bp paired-end sequence reads were mapped against the human reference genome assembly 19 (GRCh37) with the Burrows-Wheeler Aligner (BWA) package.1 Variant calling and indel realignment NEFL-related Charcot-Marie-Tooth disease | 2 were performed with FreeBayes.2 All variants were submitted to SeattleSeq for annotation (http://snp.gs.washington.edu/).3 VCF files were imported to the GEnomes management application (GEM.app)4 for further analysis and candidate variant identification (supplementary table 1).
    [Show full text]
  • Mutation Frequency for Charcot-Marie-Tooth Disease Type 1
    brief report August 2006 ⅐ Vol. 8 ⅐ No. 8 Mutation frequency for Charcot-Marie-Tooth disease type 1 in the Chinese population is similar to that in the global ethnic patients Shujuan Song, PhD1,4, Yuanzhi Zhang, MD1,4, Biao Chen, MD, PhD2, Yuanjin Zhang, MD3, Manjie Wang 1,4, Yueying Wang, MD1,4, Ming Yan, BS1,4, Junhua Zou 1,4, Yu Huang, PhD1,4, and Nanbert Zhong, MD1,4,5 Purpose: To investigate the genetic loci/mutations among the Chinese Charcot-Marie-Tooth disease type 1 (CMT1), which accounts for approximately 70% of Charcot-Marie-Tooth; and to study the genetic heterogeneity and mutation frequency. Methods: CMT1A duplication and mutations at loci of MPZ, Cx32/GJB1, EGR2, and LITAF/ SIMPLE were analyzed among 32 clinically diagnosed CMT1 patients of Chinese ancestry. Results: The CMT1A duplication was detected in 62.5% (20/32) CMT1 patients. This duplication accounts for the major mutation for Chinese CMT1. Among 12 cases that have no CMT1A duplication detected, three point mutations including one (3.1%) in MPZ and two (6.3%) in Cx32 were identified. No mutation was detected in genes PMP22, EGR2 and LITAF among the remaining nine (28.1%) CMT1 patients. Conclusion: The mutation frequency for the Chinese CMT1 is similar to that seen in the global ethnic population. Molecular testing of the CMT1A duplication, along with the loci of MPZ and Cx32, may detect the majority of Chinese CMT1 patients. Genet Med 2006:8(8):532–535. Key Words: Chinese population, Charcot-Marie-Tooth type 1 (CMT1), Mutation screening, Mutation frequency, Genetic heterogeneity Charcot-Marie-Tooth disease type 1 (CMT1) is a peripheral patients, we have examined the CMT1A duplication, muta- neuropathy characterized by distal muscle weakness and atrophy, tions in genes PMP22, MPZ, CX32, EGR2 and LITAF from 32 reduced nerve conduction velocities (NCV), and demyelination unrelated patients of Chinese ancestry who were clinically di- and re-myelination with onion bulb formation on sural nerve agnosed as having CMT1.
    [Show full text]
  • Molecular Diagnosis of Hereditary Neuropathies by Whole Exome Sequencing and Expanding the Phenotype Spectrum
    ARCHIVES OF Arch Iran Med. July 2020;23(7):426-433 IRANIAN doi 10.34172/aim.2020.39 http://www.aimjournal.ir MEDICINE Open Original Article Access Molecular Diagnosis of Hereditary Neuropathies by Whole Exome Sequencing and Expanding the Phenotype Spectrum Sara Taghizadeh, MS1,2#; Raheleh Vazehan, MS3#; Maryam Beheshtian, MD, MPH1,3#; Farnaz Sadeghinia, MS1; Zohreh Fattahi, PhD1,3; Marzieh Mohseni, MS1,3; Sanaz Arzhangi, MS1; Shahriar Nafissi, MD4; Ariana Kariminejad, MD3; Hossein Najmabadi, PhD1,3*; Kimia Kahrizi, MD1* 1Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran 2Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran 3Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran 4Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran Abstract Background: Inherited peripheral neuropathies (IPNs) are a group of neuropathies affecting peripheral motor and sensory neurons. Charcot-Marie-Tooth (CMT) disease is the most common disease in this group. With recent advances in next-generation sequencing (NGS) technologies, more than 100 genes have been implicated for different types of CMT and other clinically and genetically inherited neuropathies. There are also a number of genes where neuropathy is a major feature of the disease such as spinocerebellar ataxia (SCA) and hereditary spastic paraplegia (HSP). We aimed to determine the genetic causes underlying IPNs in Iranian families. Methods: We performed whole exome sequencing (WES) for 58 PMP22 deletion-/duplication-negative unrelated Iranian patients with a spectrum of phenotypes and with a preliminary diagnosis of hereditary neuropathies. Results: Twenty-seven (46.6%) of the cases were genetically diagnosed with pathogenic or likely pathogenic variants.
    [Show full text]
  • Novel Compound Heterozygous Missense Mutations in GDAP1 Cause Charcot–Marie–Tooth Type 4A
    Journal of Genetics (2021)100:58 Ó Indian Academy of Sciences https://doi.org/10.1007/s12041-021-01307-0 (0123456789().,-volV)(0123456789().,-volV) RESEARCH ARTICLE Novel compound heterozygous missense mutations in GDAP1 cause Charcot–Marie–Tooth type 4A HUIQIN XUE1*, NEVEN MAKSEMOUS2, DAVID SIDHOM3, LAN MA1, SHAOHUI CHEN1, JIANRUI WU1, YU FENG4, LARISA M. HAUPT2 and LYN R. GRIFFITHS2 1Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan 030013, Shanxi, People’s Republic of China 2Genomics Research Centre, Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology (QUT), Q Block, 60 Musk Ave, Kelvin Grove Campus, Brisbane, QLD 4059, Australia 3The Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia 4Shanxi Medical University, Taiyuan 030002, Shanxi, People’s Republic of China *For correspondence. E-mail: [email protected]. Received 11 February 2020; revised 21 October 2020; accepted 29 March 2021 Abstract. Homozygous or compound heterozygous mutations in the GDAP1 gene cause Charcot–Marie–Tooth (CMT4A) that are consistent with an autosomal recessive mode of inheritance. The case reported in this study is clinically and genetically diagnosed with recessive CMT4A that is caused by a compound novel heterozygous GDAP1 mutation. The genomic DNA of the proband with the clinical diagnosis of CMT was screened for GDAP1 mutations using a targeted next-generation sequencing (NGS) gene-panel that comprised of 27 CMT genes. Two novel compound heterozygous amino acid changing variants were identified in the GDAP1 gene, c.246C[G p.His82Gln in exon 2 and c.614T[G p.Leu205Trp in exon 5.
    [Show full text]
  • GDAP1 Involvement in Mitochondrial Function and Oxidative Stress, Investigated in a Charcot-Marie-Tooth Model of Hipscs-Derived Motor Neurons
    biomedicines Article GDAP1 Involvement in Mitochondrial Function and Oxidative Stress, Investigated in a Charcot-Marie-Tooth Model of hiPSCs-Derived Motor Neurons Federica Miressi 1,* , Nesrine Benslimane 1, Frédéric Favreau 1,2 , Marion Rassat 1, Laurence Richard 1,3, Sylvie Bourthoumieu 1,4,Cécile Laroche 5,6, Laurent Magy 1,3, Corinne Magdelaine 1,2, Franck Sturtz 1,2 , Anne-Sophie Lia 1,2,7,† and Pierre-Antoine Faye 1,2,† 1 Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; [email protected] (N.B.); [email protected] (F.F.); [email protected] (M.R.); [email protected] (L.R.); [email protected] (S.B.); [email protected] (L.M.); [email protected] (C.M.); [email protected] (F.S.); [email protected] (A.-S.L.); [email protected] (P.-A.F.) 2 CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France 3 CHU Limoges, Service de Neurologie, F-87000 Limoges, France 4 CHU Limoges, Service de Cytogénétique, F-87000 Limoges, France 5 CHU Limoges, Service de Pédiatrie, F-87000 Limoges, France; [email protected] 6 CHU Limoges, Centre de Compétence des Maladies Héréditaires du Métabolisme, F-87000 Limoges, France 7 CHU Limoges, Service de Bioinformatique, F-87000 Limoges, France * Correspondence: [email protected] † These authors contributed equally to this work. Citation: Miressi, F.; Benslimane, N.; Favreau, F.; Rassat, M.; Richard, L.; Abstract: Mutations in the ganglioside-induced differentiation associated protein 1 (GDAP1) gene Bourthoumieu, S.; Laroche, C.; Magy, L.; Magdelaine, C.; Sturtz, F.; et al.
    [Show full text]