Case Report: Exome Sequencing Achieved a Definite Diagnosis in A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mitoxplorer, a Visual Data Mining Platform To
mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, Cecilia Garcia-Perez, José Villaveces, Salma Gamal, Giovanni Cardone, Fabiana Perocchi, et al. To cite this version: Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, et al.. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dy- namics and mutations. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkz1128. hal-02394433 HAL Id: hal-02394433 https://hal-amu.archives-ouvertes.fr/hal-02394433 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz1128 Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz1128/5651332 by Bibliothèque de l'université la Méditerranée user on 04 December 2019 mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim1,†, Prasanna Koti1,†, Adrien Bonnard2, Fabio Marchiano3, Milena Durrbaum¨ 1, Cecilia Garcia-Perez4, Jose Villaveces1, Salma Gamal1, Giovanni Cardone1, Fabiana Perocchi4, Zuzana Storchova1,5 and Bianca H. -
Analysis of Gene Expression in the Nervous System Identifies Key Genes and Novel Candidates for Health and Disease
Neurogenetics (2017) 18:81–95 DOI 10.1007/s10048-017-0509-5 ORIGINAL ARTICLE Analysis of gene expression in the nervous system identifies key genes and novel candidates for health and disease Sarah M Carpanini1 & Thomas M Wishart1 & Thomas H Gillingwater2 & Jean C Manson1 & Kim M Summers1 Received: 13 July 2016 /Accepted: 20 January 2017 /Published online: 11 February 2017 # The Author(s) 2017. This article is published with open access at Springerlink.com Abstract The incidence of neurodegenerative diseases in the pathways and gene ontology term annotation. Additionally a developed world has risen over the last century, concomitant number of poorly annotated genes were implicated by this with an increase in average human lifespan. A major chal- approach in nervous system function. Exploiting gene expres- lenge is therefore to identify genes that control neuronal health sion data available in the public domain allowed us to validate and viability with a view to enhancing neuronal health during key nervous system genes and, importantly, to identify additional ageing and reducing the burden of neurodegeneration. genes with minimal functional annotation but with the same Analysis of gene expression data has recently been used to expression pattern. These genes are thus novel candidates for infer gene functions for a range of tissues from co-expression a role in neurological health and disease and could now be networks. We have now applied this approach to further investigated to confirm their function and regulation transcriptomic datasets from the mammalian nervous system during ageing and neurodegeneration. available in the public domain. We have defined the genes critical for influencing neuronal health and disease in different Keywords Mice . -
A Genomic Approach to Delineating the Occurrence of Scoliosis in Arthrogryposis Multiplex Congenita
G C A T T A C G G C A T genes Article A Genomic Approach to Delineating the Occurrence of Scoliosis in Arthrogryposis Multiplex Congenita Xenia Latypova 1, Stefan Giovanni Creadore 2, Noémi Dahan-Oliel 3,4, Anxhela Gjyshi Gustafson 2, Steven Wei-Hung Hwang 5, Tanya Bedard 6, Kamran Shazand 2, Harold J. P. van Bosse 5 , Philip F. Giampietro 7,* and Klaus Dieterich 8,* 1 Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, 38000 Grenoble, France; [email protected] 2 Shriners Hospitals for Children Headquarters, Tampa, FL 33607, USA; [email protected] (S.G.C.); [email protected] (A.G.G.); [email protected] (K.S.) 3 Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada; [email protected] 4 School of Physical & Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada 5 Shriners Hospitals for Children, Philadelphia, PA 19140, USA; [email protected] (S.W.-H.H.); [email protected] (H.J.P.v.B.) 6 Alberta Congenital Anomalies Surveillance System, Alberta Health Services, Edmonton, AB T5J 3E4, Canada; [email protected] 7 Department of Pediatrics, University of Illinois-Chicago, Chicago, IL 60607, USA 8 Institut of Advanced Biosciences, Université Grenoble Alpes, Inserm, U1209, CHU Grenoble Alpes, 38000 Grenoble, France * Correspondence: [email protected] (P.F.G.); [email protected] (K.D.) Citation: Latypova, X.; Creadore, S.G.; Dahan-Oliel, N.; Gustafson, Abstract: Arthrogryposis multiplex congenita (AMC) describes a group of conditions characterized A.G.; Wei-Hung Hwang, S.; Bedard, by the presence of non-progressive congenital contractures in multiple body areas. -
Some Bioinformatic Analyses of Human GDAP1 Gene Expression
Some bioinformatic analyses of human GDAP1 gene expression Khloud Mubarak Algothmi Thesis submitted, in fulfilment of the requirements for the degree of Doctor of Philosophy in Applied science. University of Canberra July 2015 Abstract Charcot- Marie-Tooth (CMT) represents a group of genetic disorders, which cause damage in the peripheral nervous system. It was identified and described in 1886 by Jean-Martin Charcot, Pierre Marie and Howard Henry Tooth. It is the most common inherited disorder of the peripheral nervous system, and affects approximately 1 in every 2,500 people. A severe form of CMT has been linked to mutations in the coding region of Ganglioside-induced Differentiation Associated Protein (GDAP1), a member of the glutathione transferase (GST) family which is located in the outer membrane of mitochondria. GDAP1 mutations cause axonal, demyelinating and intermediate forms of CMT. In some cases the same mutation can cause different CMT phenotypes. The overall hypothesis for this thesis was, that changes in the expression in GDAP1 may lead to these phenotypic differences. The methodology used to investigate the expression of human GDAP1 gene was a bioinformatic approach. The results demonstrated that in normal healthy tissues, GDAP1 had ubiquitous expression, particularly in neural and endocrine tissues. This pattern of expression was different to the expression of mouse GDAP1, where expression was predominantly in nervous tissues. GDAP1 has mainly been studied in the context of peripheral neuropathies, based on its genetic linkage with CMT disease. In this study, the expression of GDAP1 was shown to be altered in some other diseases, such as brain cancers. -
A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: a Simple System for Complex, Heterogeneous Diseases
International Journal of Molecular Sciences Review A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: A Simple System for Complex, Heterogeneous Diseases Weronika Rzepnikowska 1, Joanna Kaminska 2 , Dagmara Kabzi ´nska 1 , Katarzyna Bini˛eda 1 and Andrzej Kocha ´nski 1,* 1 Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; [email protected] (W.R.); [email protected] (D.K.); [email protected] (K.B.) 2 Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; [email protected] * Correspondence: [email protected] Received: 19 May 2020; Accepted: 15 June 2020; Published: 16 June 2020 Abstract: Charcot–Marie–Tooth (CMT) disease encompasses a group of rare disorders that are characterized by similar clinical manifestations and a high genetic heterogeneity. Such excessive diversity presents many problems. Firstly, it makes a proper genetic diagnosis much more difficult and, even when using the most advanced tools, does not guarantee that the cause of the disease will be revealed. Secondly, the molecular mechanisms underlying the observed symptoms are extremely diverse and are probably different for most of the disease subtypes. Finally, there is no possibility of finding one efficient cure for all, or even the majority of CMT diseases. Every subtype of CMT needs an individual approach backed up by its own research field. Thus, it is little surprise that our knowledge of CMT disease as a whole is selective and therapeutic approaches are limited. There is an urgent need to develop new CMT models to fill the gaps. -
One Multilocus Genomic Variation Is Responsible for a Severe Charcot–Marie–Tooth Axonal Form
brain sciences Case Report One Multilocus Genomic Variation Is Responsible for a Severe Charcot–Marie–Tooth Axonal Form Federica Miressi 1,*, Corinne Magdelaine 1,2, Pascal Cintas 3 , Sylvie Bourthoumieux 1,4, Angélique Nizou 1, Paco Derouault 5, Frédéric Favreau 1,2 , Franck Sturtz 1,2 , Pierre-Antoine Faye 1,2 and Anne-Sophie Lia 1,2,5 1 Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; [email protected] (C.M.); [email protected] (S.B.); [email protected] (A.N.); [email protected] (F.F.); [email protected] (F.S.); [email protected] (P.-A.F.); [email protected] (A.-S.L.) 2 Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France 3 Service de Neurologie, Centre Hospitalier Universitaire à Limoges Toulouse, F-31000 Toulouse, France; [email protected] 4 Service de Cytogénétique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France 5 Service de Bioinformatique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France; [email protected] * Correspondence: [email protected] Received: 17 November 2020; Accepted: 9 December 2020; Published: 15 December 2020 Abstract: Charcot–Marie–Tooth (CMT) disease is a heterogeneous group of inherited disorders affecting the peripheral nervous system, with a prevalence of 1/2500. So far, mutations in more than 80 genes have been identified causing either demyelinating forms (CMT1) or axonal forms (CMT2). Consequentially, the genotype–phenotype correlation is not always easy to assess. Diagnosis could require multiple analysis before the correct causative mutation is detected. -
SUPPLEMENTARY MATERIAL Sanger Sequencing the Coding
NEFL-related Charcot-Marie-Tooth disease | 1 SUPPLEMENTARY MATERIAL Sanger sequencing The coding regions and flanking intronic regions of NEFL (GenBank accession number NM_006158.4) were PCR-amplified using AmpliTaq Gold 360 Master Mix (Applied Biosystems). Primer sequences and PCR conditions are available upon request. PCR products were cleaned up using the MultiScreen-PCR96 Filter Plate (Millipore). Sequencing reactions were performed using BigDye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems) and products were cleaned up using the Dye Terminator Removal Kit (Thermo Scientific ABgene). DNA fragments were separated on an ABI3730XL automatic DNA sequencer (Applied Biosystems). The resulting sequences were analysed with SeqScape software v2.5 (Applied Biosystems). Short tandem repeat analysis DNA was amplified for 16 short tandem repeat (STR) loci using the PowerPlex 16 HS System kit (Promega Corp.) as per the manufacturers' instructions. PCR products for STR analysis were run on an ABI3730XL automatic DNA sequencer (Applied Biosystems) and analyzed by GeneMapper software v4.0 (Applied Biosystems) for automated molecular mass sizing. Whole-exome sequencing The exomes of patient 2 were enriched using the SureSelect Human All Exon V5 capture kit (Agilent) and sequenced on the HiSeq 2000 platform (Illumina) at the John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA. The resulting 100bp paired-end sequence reads were mapped against the human reference genome assembly 19 (GRCh37) with the Burrows-Wheeler Aligner (BWA) package.1 Variant calling and indel realignment NEFL-related Charcot-Marie-Tooth disease | 2 were performed with FreeBayes.2 All variants were submitted to SeattleSeq for annotation (http://snp.gs.washington.edu/).3 VCF files were imported to the GEnomes management application (GEM.app)4 for further analysis and candidate variant identification (supplementary table 1). -
Mutation Frequency for Charcot-Marie-Tooth Disease Type 1
brief report August 2006 ⅐ Vol. 8 ⅐ No. 8 Mutation frequency for Charcot-Marie-Tooth disease type 1 in the Chinese population is similar to that in the global ethnic patients Shujuan Song, PhD1,4, Yuanzhi Zhang, MD1,4, Biao Chen, MD, PhD2, Yuanjin Zhang, MD3, Manjie Wang 1,4, Yueying Wang, MD1,4, Ming Yan, BS1,4, Junhua Zou 1,4, Yu Huang, PhD1,4, and Nanbert Zhong, MD1,4,5 Purpose: To investigate the genetic loci/mutations among the Chinese Charcot-Marie-Tooth disease type 1 (CMT1), which accounts for approximately 70% of Charcot-Marie-Tooth; and to study the genetic heterogeneity and mutation frequency. Methods: CMT1A duplication and mutations at loci of MPZ, Cx32/GJB1, EGR2, and LITAF/ SIMPLE were analyzed among 32 clinically diagnosed CMT1 patients of Chinese ancestry. Results: The CMT1A duplication was detected in 62.5% (20/32) CMT1 patients. This duplication accounts for the major mutation for Chinese CMT1. Among 12 cases that have no CMT1A duplication detected, three point mutations including one (3.1%) in MPZ and two (6.3%) in Cx32 were identified. No mutation was detected in genes PMP22, EGR2 and LITAF among the remaining nine (28.1%) CMT1 patients. Conclusion: The mutation frequency for the Chinese CMT1 is similar to that seen in the global ethnic population. Molecular testing of the CMT1A duplication, along with the loci of MPZ and Cx32, may detect the majority of Chinese CMT1 patients. Genet Med 2006:8(8):532–535. Key Words: Chinese population, Charcot-Marie-Tooth type 1 (CMT1), Mutation screening, Mutation frequency, Genetic heterogeneity Charcot-Marie-Tooth disease type 1 (CMT1) is a peripheral patients, we have examined the CMT1A duplication, muta- neuropathy characterized by distal muscle weakness and atrophy, tions in genes PMP22, MPZ, CX32, EGR2 and LITAF from 32 reduced nerve conduction velocities (NCV), and demyelination unrelated patients of Chinese ancestry who were clinically di- and re-myelination with onion bulb formation on sural nerve agnosed as having CMT1. -
Genetics of Charcot-Marie-Tooth Disease Type 4A: Mutations
358 LETTER TO JMG J Med Genet: first published as 10.1136/jmg.2004.022178 on 1 April 2005. Downloaded from Genetics of Charcot-Marie-Tooth disease type 4A: mutations, inheritance, phenotypic variability, and founder effect R Claramunt, L Pedrola, T Sevilla, A Lo´pez de Munain, J Berciano, A Cuesta, B Sa´nchez-Navarro, J M Milla´n, G M Saifi, J R Lupski, J J Vı´lchez, C Espino´s, F Palau ............................................................................................................................... J Med Genet 2005;42:358–365. doi: 10.1136/jmg.2004.022178 harcot-Marie-Tooth (CMT) disease is a motor and sensory neuropathy with clinical and genetic hetero- Key points Cgeneity. Patients usually present in the first or second decade of life with distal muscle atrophy in the legs, areflexia, N We investigated the genetics and inheritance of the foot deformity (mainly pes cavus), and steppage gait. In most GDAP1 gene and phenotype expression in a series of cases, hands are also involved as the disease progresses. CMT 106 isolated and 19 familial cases with Charcot- is the most frequent inherited neuropathy, with a prevalence Marie-Tooth disease and Spanish ancestry, for whom in Spain of 28 in 100 000.1 Based on electrophysiological mutations in the PMP22, MPZ, and GJB1 genes had studies and histopathologic findings in nerve biopsies, CMT previously been excluded. has been subcategorised into two main and distinct N We also investigated the existence of founder effects neuropathies: (i) demyelinating CMT (CMT1, MIM 118200) for some recurrent mutations and the origin of these associated with reduction in a nerve conduction velocities (NCVs) in all nerves and segmental demyelination and mutations in patients from different countries. -
Molecular Diagnosis of Hereditary Neuropathies by Whole Exome Sequencing and Expanding the Phenotype Spectrum
ARCHIVES OF Arch Iran Med. July 2020;23(7):426-433 IRANIAN doi 10.34172/aim.2020.39 http://www.aimjournal.ir MEDICINE Open Original Article Access Molecular Diagnosis of Hereditary Neuropathies by Whole Exome Sequencing and Expanding the Phenotype Spectrum Sara Taghizadeh, MS1,2#; Raheleh Vazehan, MS3#; Maryam Beheshtian, MD, MPH1,3#; Farnaz Sadeghinia, MS1; Zohreh Fattahi, PhD1,3; Marzieh Mohseni, MS1,3; Sanaz Arzhangi, MS1; Shahriar Nafissi, MD4; Ariana Kariminejad, MD3; Hossein Najmabadi, PhD1,3*; Kimia Kahrizi, MD1* 1Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran 2Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran 3Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran 4Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran Abstract Background: Inherited peripheral neuropathies (IPNs) are a group of neuropathies affecting peripheral motor and sensory neurons. Charcot-Marie-Tooth (CMT) disease is the most common disease in this group. With recent advances in next-generation sequencing (NGS) technologies, more than 100 genes have been implicated for different types of CMT and other clinically and genetically inherited neuropathies. There are also a number of genes where neuropathy is a major feature of the disease such as spinocerebellar ataxia (SCA) and hereditary spastic paraplegia (HSP). We aimed to determine the genetic causes underlying IPNs in Iranian families. Methods: We performed whole exome sequencing (WES) for 58 PMP22 deletion-/duplication-negative unrelated Iranian patients with a spectrum of phenotypes and with a preliminary diagnosis of hereditary neuropathies. Results: Twenty-seven (46.6%) of the cases were genetically diagnosed with pathogenic or likely pathogenic variants. -
Novel Compound Heterozygous Missense Mutations in GDAP1 Cause Charcot–Marie–Tooth Type 4A
Journal of Genetics (2021)100:58 Ó Indian Academy of Sciences https://doi.org/10.1007/s12041-021-01307-0 (0123456789().,-volV)(0123456789().,-volV) RESEARCH ARTICLE Novel compound heterozygous missense mutations in GDAP1 cause Charcot–Marie–Tooth type 4A HUIQIN XUE1*, NEVEN MAKSEMOUS2, DAVID SIDHOM3, LAN MA1, SHAOHUI CHEN1, JIANRUI WU1, YU FENG4, LARISA M. HAUPT2 and LYN R. GRIFFITHS2 1Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan 030013, Shanxi, People’s Republic of China 2Genomics Research Centre, Institute of Health and Biomedical Innovation (IHBI), School of Biomedical Sciences, Queensland University of Technology (QUT), Q Block, 60 Musk Ave, Kelvin Grove Campus, Brisbane, QLD 4059, Australia 3The Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia 4Shanxi Medical University, Taiyuan 030002, Shanxi, People’s Republic of China *For correspondence. E-mail: [email protected]. Received 11 February 2020; revised 21 October 2020; accepted 29 March 2021 Abstract. Homozygous or compound heterozygous mutations in the GDAP1 gene cause Charcot–Marie–Tooth (CMT4A) that are consistent with an autosomal recessive mode of inheritance. The case reported in this study is clinically and genetically diagnosed with recessive CMT4A that is caused by a compound novel heterozygous GDAP1 mutation. The genomic DNA of the proband with the clinical diagnosis of CMT was screened for GDAP1 mutations using a targeted next-generation sequencing (NGS) gene-panel that comprised of 27 CMT genes. Two novel compound heterozygous amino acid changing variants were identified in the GDAP1 gene, c.246C[G p.His82Gln in exon 2 and c.614T[G p.Leu205Trp in exon 5. -
GDAP1 Involvement in Mitochondrial Function and Oxidative Stress, Investigated in a Charcot-Marie-Tooth Model of Hipscs-Derived Motor Neurons
biomedicines Article GDAP1 Involvement in Mitochondrial Function and Oxidative Stress, Investigated in a Charcot-Marie-Tooth Model of hiPSCs-Derived Motor Neurons Federica Miressi 1,* , Nesrine Benslimane 1, Frédéric Favreau 1,2 , Marion Rassat 1, Laurence Richard 1,3, Sylvie Bourthoumieu 1,4,Cécile Laroche 5,6, Laurent Magy 1,3, Corinne Magdelaine 1,2, Franck Sturtz 1,2 , Anne-Sophie Lia 1,2,7,† and Pierre-Antoine Faye 1,2,† 1 Maintenance Myélinique et Neuropathies Périphériques, EA6309, University of Limoges, F-87000 Limoges, France; [email protected] (N.B.); [email protected] (F.F.); [email protected] (M.R.); [email protected] (L.R.); [email protected] (S.B.); [email protected] (L.M.); [email protected] (C.M.); [email protected] (F.S.); [email protected] (A.-S.L.); [email protected] (P.-A.F.) 2 CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France 3 CHU Limoges, Service de Neurologie, F-87000 Limoges, France 4 CHU Limoges, Service de Cytogénétique, F-87000 Limoges, France 5 CHU Limoges, Service de Pédiatrie, F-87000 Limoges, France; [email protected] 6 CHU Limoges, Centre de Compétence des Maladies Héréditaires du Métabolisme, F-87000 Limoges, France 7 CHU Limoges, Service de Bioinformatique, F-87000 Limoges, France * Correspondence: [email protected] † These authors contributed equally to this work. Citation: Miressi, F.; Benslimane, N.; Favreau, F.; Rassat, M.; Richard, L.; Abstract: Mutations in the ganglioside-induced differentiation associated protein 1 (GDAP1) gene Bourthoumieu, S.; Laroche, C.; Magy, L.; Magdelaine, C.; Sturtz, F.; et al.