Peripheral Neuropathy in Mitochondrial Disorders
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Chapter 7: Monogenic Forms of Diabetes
CHAPTER 7 MONOGENIC FORMS OF DIABETES Mark A. Sperling, MD, and Abhimanyu Garg, MD Dr. Mark A. Sperling is Emeritus Professor and Chair, University of Pittsburgh, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA. Dr. Abhimanyu Garg is Professor of Internal Medicine and Chief of the Division of Nutrition and Metabolic Diseases at University of Texas Southwestern Medical Center, Dallas, TX. SUMMARY Types 1 and 2 diabetes have multiple and complex genetic influences that interact with environmental triggers, such as viral infections or nutritional excesses, to result in their respective phenotypes: young, lean, and insulin-dependence for type 1 diabetes patients or older, overweight, and often manageable by lifestyle interventions and oral medications for type 2 diabetes patients. A small subset of patients, comprising ~2%–3% of all those diagnosed with diabetes, may have characteristics of either type 1 or type 2 diabetes but have single gene defects that interfere with insulin production, secretion, or action, resulting in clinical diabetes. These types of diabetes are known as MODY, originally defined as maturity-onset diabetes of youth, and severe early-onset forms, such as neonatal diabetes mellitus (NDM). Defects in genes involved in adipocyte development, differentiation, and death pathways cause lipodystrophy syndromes, which are also associated with insulin resistance and diabetes. Although these syndromes are considered rare, more awareness of these disorders and increased availability of genetic testing in clinical and research laboratories, as well as growing use of next generation, whole genome, or exome sequencing for clinically challenging phenotypes, are resulting in increased recognition. A correct diagnosis of MODY, NDM, or lipodystrophy syndromes has profound implications for treatment, genetic counseling, and prognosis. -
Dissertation Philip Böhler
Three Tales of Death: New Pathways in the Induction, Inhibition and Execution of Apoptosis Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Philip Böhler aus Bonn Düsseldorf, Juni 2019 aus dem Institut für Molekulare Medizin I der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Berichterstatter: 1. Prof. Dr. Sebastian Wesselborg 2. Prof. Dr. Henrike Heise Tag der mündlichen Prüfung: 29. Oktober 2019 “Where the first primal cell was, there was I also. Where man is, there am I. When the last life crawls under freezing stars, there will I be.” — DEATH, in: Mort, by Terry Pratchett “Right away I found out something about biology: it was very easy to find a question that was very interesting, and that nobody knew the answer to.” — Richard Feynman, in: Surely You're Joking, Mr. Feynman! Acknowledgements (Danksagung) Acknowledgements (Danksagung) Viele Menschen haben zum Gelingen meiner Forschungsarbeit und dieser Dissertation beigetragen, und nicht alle können hier namentlich erwähnt werden. Dennoch möchte ich einige besonders hervorheben. An erster Stelle möchte ich Professor Sebastian Wesselborg danken, der diese Dissertation als Erstgutachter betreut hat und der mir die Möglichkeit gab, die dazugehörigen experimentellen Arbeiten am Institut für Molekulare Medizin durchzuführen. Er und Professor Björn Stork, dem ich für die herzliche Aufnahme in seine Arbeitsgruppe danke, legten durch die richtige Mischung aus aktiver Förderung und dem Freiraum zur Umsetzung eigener wissenschaftlicher Ideen die ideale Grundlage für die Forschungsprojekte, aus denen diese Dissertation entstand. Professorin Henrike Heise, die sich freundlicherweise zur Betreuung dieser Dissertation als Zweitgutachterin bereiterklärt hat, gilt ebenfalls mein herzlicher Dank. -
Huang Grad.Sunysb 0771E 10211
SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Development of a quantitative assay for mitochondrial fusion and characterization of a lipid signaling pathway on the mitochondrial surface A Dissertation Presented by Huiyan Huang to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Molecular and Cellular Pharmacology Stony Brook University August 2010 Stony Brook University The Graduate School Huiyan Huang We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Michael A. Frohman, M.D., Ph.D. - Dissertation Advisor Professor Department of Pharmacological Sciences Daniel F. Bogenhagen, MD - Chairperson of the Defense Professor Department of Pharmacological Sciences Robert S. Haltiwanger, Ph.D. Professor Department of Biochemistry and Structural Biology Deborah A. Brown, Ph.D. Professor Department of Biochemistry and Structural Biology This dissertation is accepted by the Graduate School. Lawrence Martin Dean of the Graduate School ii Abstract of the Dissertation Development of a quantitative assay for mitochondrial fusion and characterization of a lipid signaling pathway on the mitochondrial surface by Huiyan Huang Doctor of Philosophy in Molecular and Cellular Pharmacology Stony Brook University 2010 Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). -
Clinical Report of a Neonate Carrying a Large Deletion in the 10P15.3P13
Shao et al. Mol Cytogenet (2021) 14:29 https://doi.org/10.1186/s13039-021-00546-1 CASE REPORT Open Access Clinical report of a neonate carrying a large deletion in the 10p15.3p13 region and review of the literature Qiao‑Yan Shao, Pei‑Lin Wu, Bi‑Yun Lin, Sen‑Jing Chen, Jian Liu and Su‑Qing Chen* Abstract Background: Terminal deletion of chromosome 10p is a rare chromosomal abnormality. We report a neonatal case with a large deletion of 10p15.3p13 diagnosed early because of severe clinical manifestations. Case presentation: Our patient presented with specifc facial features, hypoparathyroidism, sen sorineural deafness, renal abnormalities, and developmental retardation, and carried a 12.6 Mb deletion in the 10p15.3 p13 region. The terminal 10p deletion involved in our patient is the second largest reported terminal deletion reported to date, and includes the ZMYND11 and GATA3 genes and a partial critical region of the DiGeorge syndrome 2 gene (DGS2). Conclusion: On the basis of a literature review, this terminal 10p deletion in the present case is responsible for a spe‑ cifc contiguous gene syndrome. This rare case may help the understanding of the genotype–phenotype spectrum of terminal deletion of chromosome 10p. Keywords: 10p15.3 microdeletion syndrome, HDR syndrome, DiGeorge critical region 2, ZMYND11, GATA3 Background Here, we report a Chinese infant showing specifc Terminal deletion of chromosome 10p is a rare chromo- facial features, congenital hypoparathyroidism, sen- somal disorder. Te haploinsufciency in the distal region sorineural hearing loss, absence of the right kidney, a of 10p15.3 is responsible for 10p15.3 microdeletion syn- sacrococcygeal mass, a right frontal cyst, and psycho- drome (OMIM 608,668), characterized by specifc facial motor retardation. -
Inherited Neuropathies
407 Inherited Neuropathies Vera Fridman, MD1 M. M. Reilly, MD, FRCP, FRCPI2 1 Department of Neurology, Neuromuscular Diagnostic Center, Address for correspondence Vera Fridman, MD, Neuromuscular Massachusetts General Hospital, Boston, Massachusetts Diagnostic Center, Massachusetts General Hospital, Boston, 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology Massachusetts, 165 Cambridge St. Boston, MA 02114 and The National Hospital for Neurology and Neurosurgery, Queen (e-mail: [email protected]). Square, London, United Kingdom Semin Neurol 2015;35:407–423. Abstract Hereditary neuropathies (HNs) are among the most common inherited neurologic Keywords disorders and are diverse both clinically and genetically. Recent genetic advances have ► hereditary contributed to a rapid expansion of identifiable causes of HN and have broadened the neuropathy phenotypic spectrum associated with many of the causative mutations. The underlying ► Charcot-Marie-Tooth molecular pathways of disease have also been better delineated, leading to the promise disease for potential treatments. This chapter reviews the clinical and biological aspects of the ► hereditary sensory common causes of HN and addresses the challenges of approaching the diagnostic and motor workup of these conditions in a rapidly evolving genetic landscape. neuropathy ► hereditary sensory and autonomic neuropathy Hereditary neuropathies (HN) are among the most common Select forms of HN also involve cranial nerves and respiratory inherited neurologic diseases, with a prevalence of 1 in 2,500 function. Nevertheless, in the majority of patients with HN individuals.1,2 They encompass a clinically heterogeneous set there is no shortening of life expectancy. of disorders and vary greatly in severity, spanning a spectrum Historically, hereditary neuropathies have been classified from mildly symptomatic forms to those resulting in severe based on the primary site of nerve pathology (myelin vs. -
Mitochondrial Rhomboid PARL Regulates Cytochrome C Release During Apoptosis Via OPA1-Dependent Cristae Remodeling
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Mitochondrial Rhomboid PARL Regulates Cytochrome c Release during Apoptosis via OPA1-Dependent Cristae Remodeling Sara Cipolat,1,7 Tomasz Rudka,2,7 Dieter Hartmann,2,7 Veronica Costa,1 Lutgarde Serneels,2 Katleen Craessaerts,2 Kristine Metzger,2 Christian Frezza,1 Wim Annaert,3 Luciano D’Adamio,5 Carmen Derks,2 Tim Dejaegere,2 Luca Pellegrini,6 Rudi D’Hooge,4 Luca Scorrano,1,* and Bart De Strooper2,* 1 Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy 2 Neuronal Cell Biology and Gene Transfer Laboratory 3 Membrane Trafficking Laboratory Center for Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB4) and K.U.Leuven, Leuven, Belgium 4 Laboratory of Biological Psychology, K.U.Leuven, Leuven, Belgium 5 Albert Einstein College of Medicine, Bronx, NY 10461, USA 6 Centre de Recherche Robert Giffard, Universite` Laval, G1J 2G3 Quebec, Canada 7 These authors contribute equally to this work. *Contact: [email protected] (L.S.); [email protected] (B.D.S.) DOI 10.1016/j.cell.2006.06.021 SUMMARY been identified in D. melanogaster (Freeman, 2004), where they function as essential activators of the epidermal Rhomboids, evolutionarily conserved integral growth factor (EGF) signaling pathway, proteolytically membrane proteases, participate in crucial sig- cleaving the EGF receptor ligands Spitz, Gurken, and naling pathways. Presenilin-associated rhom- Keren. Since all Rhomboids share a conserved serine boid-like (PARL) is an inner mitochondrial protease catalytic dyad (Lemberg et al., 2005), it has membrane rhomboid of unknown function, been suggested that they are able to cleave proteins in whose yeast ortholog is involved in mito- the transmembrane domain. -
Abstracts from the 9Th Biennial Scientific Meeting of The
International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):15 DOI 10.1186/s13633-017-0054-x MEETING ABSTRACTS Open Access Abstracts from the 9th Biennial Scientific Meeting of the Asia Pacific Paediatric Endocrine Society (APPES) and the 50th Annual Meeting of the Japanese Society for Pediatric Endocrinology (JSPE) Tokyo, Japan. 17-20 November 2016 Published: 28 Dec 2017 PS1 Heritable forms of primary bone fragility in children typically lead to Fat fate and disease - from science to global policy a clinical diagnosis of either osteogenesis imperfecta (OI) or juvenile Peter Gluckman osteoporosis (JO). OI is usually caused by dominant mutations affect- Office of Chief Science Advsor to the Prime Minister ing one of the two genes that code for two collagen type I, but a re- International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):PS1 cessive form of OI is present in 5-10% of individuals with a clinical diagnosis of OI. Most of the involved genes code for proteins that Attempts to deal with the obesity epidemic based solely on adult be- play a role in the processing of collagen type I protein (BMP1, havioural change have been rather disappointing. Indeed the evidence CREB3L1, CRTAP, LEPRE1, P4HB, PPIB, FKBP10, PLOD2, SERPINF1, that biological, developmental and contextual factors are operating SERPINH1, SEC24D, SPARC, from the earliest stages in development and indeed across generations TMEM38B), or interfere with osteoblast function (SP7, WNT1). Specific is compelling. The marked individual differences in the sensitivity to the phenotypes are caused by mutations in SERPINF1 (recessive OI type obesogenic environment need to be understood at both the individual VI), P4HB (Cole-Carpenter syndrome) and SEC24D (‘Cole-Carpenter and population level. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Download Download
Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/) -
Ejhg2013112.Pdf
European Journal of Human Genetics (2014) 22, 184–191 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg ARTICLE Clinical, biochemical, cellular and molecular characterization of mitochondrial DNA depletion syndrome due to novel mutations in the MPV17 gene Johanna Uusimaa1,2,17, Julie Evans3,17, Conrad Smith3, Anna Butterworth4, Kate Craig4, Neil Ashley1, Chunyan Liao1, Janet Carver1, Alan Diot1, Lorna Macleod1, Iain Hargreaves5, Abdulrahman Al-Hussaini6, Eissa Faqeih6, Ali Asery6, Mohammed Al Balwi7, Wafaa Eyaid8, Areej Al-Sunaid8, Deirdre Kelly9, Indra van Mourik9, Sarah Ball10, Joanna Jarvis11, Arundhati Mulay12, Nedim Hadzic13, Marianne Samyn13, Alastair Baker13, Shamima Rahman14, Helen Stewart15, Andrew AM Morris16, Anneke Seller3, Carl Fratter3, Robert W Taylor4 and Joanna Poulton*,1 Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are severe autosomal recessive disorders associated with decreased mtDNA copy number in clinically affected tissues. The hepatocerebral form (mtDNA depletion in liver and brain) has been associated with mutations in the POLG, PEO1 (Twinkle), DGUOK and MPV17 genes, the latter encoding a mitochondrial inner membrane protein of unknown function. The aims of this study were to clarify further the clinical, biochemical, cellular and molecular genetic features associated with MDS due to MPV17 gene mutations. We identified 12 pathogenic mutations in the MPV17 gene, of which 11 are novel, in 17 patients from 12 families. All patients manifested liver disease. Poor feeding, hypoglycaemia, raised serum lactate, hypotonia and faltering growth were common presenting features. mtDNA depletion in liver was demonstrated in all seven cases where liver tissue was available. Mosaic mtDNA depletion was found in primary fibroblasts by PicoGreen staining. -
Crystal Structure and Interaction Studies of Human Iucrj DHTKD1 Provide Insight Into a Mitochondrial ISSN 2052-2525 Megacomplex in Lysine Catabolism Biologyjmedicine
research papers Crystal structure and interaction studies of human IUCrJ DHTKD1 provide insight into a mitochondrial ISSN 2052-2525 megacomplex in lysine catabolism BIOLOGYjMEDICINE Gustavo A. Bezerra,a‡ William R. Foster,a‡ Henry J. Bailey,a‡ Kevin G. Hicks,b Sven W. Sauer,c Bianca Dimitrov,c Thomas J. McCorvie,a Ju¨rgen G. Okun,c Jared Rutter,b Stefan Ko¨lkerc and Wyatt W. Yuea* Received 31 January 2020 Accepted 22 May 2020 aStructural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom, bDepartment of Biochemistry, University of Utah School of Medicine, USA, and cDivision of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Edited by L. A. Passmore, MRC Laboratory of Germany. *Correspondence e-mail: [email protected] Molecular Biology, UK ‡ These authors contributed equally to this DHTKD1 is a lesser-studied E1 enzyme among the family of 2-oxoacid work. dehydrogenases. In complex with E2 (dihydrolipoamide succinyltransferase, DLST) and E3 (dihydrolipoamide dehydrogenase, DLD) components, Keywords: human DHTKD1; 2-oxoadipate; 2- DHTKD1 is involved in lysine and tryptophan catabolism by catalysing the oxoacid dehydrogenase; thiamine diphosphate; oxidative decarboxylation of 2-oxoadipate (2OA) in mitochondria. Here, the lysine catabolism; cryo-EM; enzyme mechan- ˚ isms; multi-protein complexes. 1.9 A resolution crystal structure of human DHTKD1 is solved in complex with the thiamine diphosphate co-factor. The structure reveals how the DHTKD1 EMDB reference: EMD-11014 active site is modelled upon the well characterized homologue 2-oxoglutarate (2OG) dehydrogenase but engineered specifically to accommodate its PDB reference: DHTKD1, 6sy1 preference for the longer substrate of 2OA over 2OG. -
MPV17-Related Hepatocerebral Mitochondrial DNA Depletion Syndrome
MPV17-related hepatocerebral mitochondrial DNA depletion syndrome Description MPV17-related hepatocerebral mitochondrial DNA depletion syndrome is an inherited disorder that can cause liver disease and neurological problems. The signs and symptoms of this condition begin in infancy and typically include vomiting, diarrhea, and an inability to grow or gain weight at the expected rate (failure to thrive). Many affected infants have a buildup of a chemical called lactic acid in the body (lactic acidosis) and low blood sugar (hypoglycemia). Within the first weeks of life, infants develop liver disease that quickly progresses to liver failure. The liver is frequently enlarged ( hepatomegaly) and liver cells often have a reduced ability to release a digestive fluid called bile (cholestasis). Rarely, affected children develop liver cancer. After the onset of liver disease, many affected infants develop neurological problems, which can include developmental delay, weak muscle tone (hypotonia), and reduced sensation in the limbs (peripheral neuropathy). Individuals with MPV17-related hepatocerebral mitochondrial DNA depletion syndrome typically survive only into infancy or early childhood. MPV17-related hepatocerebral mitochondrial DNA depletion syndrome is most frequently seen in the Navajo population of the southwestern United States. In this population, the condition is known as Navajo neurohepatopathy. People with Navajo neurohepatopathy tend to have a longer life expectancy than those with MPV17-related hepatocerebral mitochondrial DNA depletion syndrome. In addition to the signs and symptoms described above, people with Navajo neurohepatopathy may have problems with sensing pain that can lead to painless bone fractures and self-mutilation of the fingers or toes. Individuals with Navajo neurohepatopathy may lack feeling in the clear front covering of the eye (corneal anesthesia), which can lead to open sores and scarring on the cornea, resulting in impaired vision.