Non-Newtonian Fluids Do Not Always Have Constant Viscosity

Total Page:16

File Type:pdf, Size:1020Kb

Non-Newtonian Fluids Do Not Always Have Constant Viscosity What is a fluid? Newtonian and Non- Careers in Fluid Mechanics Newtonian Fluids Aerodynamics of cars and A fluid is anything that flows. airplanes Liquids and even gases are classified as fluids. Bingham Plastics act as a rigid Renewable energy with wind body until a certain force is applied, turbines Did you know that silly then it acts as a liquid. Toothpaste putty can be considered a is a Bingham Plastic. Hydraulic systems in cars fluid? Designing sports equipment Pseudo-plastics (shear thinning) (golf balls) decrease in viscosity when more force is applied. Example of Pump systems pseudo-plastics include: nail polish, lava, ketchup, and whipped cream. Viscosity is a property that can Fluids Word Search determine if a fluid will act like a solid. Viscosity is a measure of the resistance of the fluid when it is deformed. Basically it’s the “thickness” of the fluid. Dilatants (shear thickening) increases in viscosity as more force Water has low viscosity, but honey is applied. Cornstarch and silly has high viscosity. putty are both dilatants. Try to find all the words in bold Newtonian and Non- Newtonian Fluids Expanding Your Horizons th Newtonian fluids have constant October 15 2010 viscosity. The more you push on the fluid, the more the fluid moves. They act how you would expect a liquid to act. Examples of Newtonian fluids are water, oil, and gasoline. Non-Newtonian fluids do not always have constant viscosity. They don’t behave like a normal liquid would. There are several different types of Non-Newtonian fluids. Presented By: Dr. A. Banerjee Several different types: Missouri University of Science and Technology & Mechanical & Aerospace Engineering Pamela Roach 400 W. 13th St. Rolla, MO 65409 Bingham Plastic Phone: (573) 341-4661 Email: [email protected] Pseudo-plastic Dilatant Pool Filled with a Non-Newtonian Fluid Link: http://www.youtube.com/watch?v=f2XQ97XHjVw.
Recommended publications
  • Bingham Yield Stress and Bingham Plastic Viscosity of Homogeneous Non-Newtonian Slurries
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cape Peninsula University of Technology BINGHAM YIELD STRESS AND BINGHAM PLASTIC VISCOSITY OF HOMOGENEOUS NON-NEWTONIAN SLURRIES by Brian Tonderai Zengeni Student Number: 210233265 Dissertation submitted in partial fulfilment of the requirements for the degree and which counts towards 50% of the final mark Master of Technology Mechanical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology Supervisor: Prof. Graeme John Oliver Bellville Campus October 2016 CPUT copyright information The dissertation/thesis may not be published either in part (in scholarly, scientific or technical journals), or as a whole (as a monograph), unless permission has been obtained from the University DECLARATION I, Brian Tonderai Zengeni, declare that the contents of this dissertation represent my own unaided work, and that the dissertation has not previously been submitted for academic examination towards any qualification. Furthermore, it represents my own opinions and not necessarily those of the Cape Peninsula University of Technology. October 2016 Signed Date i ABSTRACT This dissertation presents how material properties (solids densities, particle size distributions, particle shapes and concentration) of gold tailings slurries are related to their rheological parameters, which are yield stress and viscosity. In this particular case Bingham yield stresses and Bingham plastic viscosities. Predictive models were developed from analysing data in a slurry database to predict the Bingham yield stresses and Bingham plastic viscosities from their material properties. The overall goal of this study was to develop a validated set of mathematical models to predict Bingham yield stresses and Bingham plastic viscosities from their material properties.
    [Show full text]
  • Mapping Thixo-Visco-Elasto-Plastic Behavior
    Manuscript to appear in Rheologica Acta, Special Issue: Eugene C. Bingham paper centennial anniversary Version: February 7, 2017 Mapping Thixo-Visco-Elasto-Plastic Behavior Randy H. Ewoldt Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Gareth H. McKinley Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Abstract A century ago, and more than a decade before the term rheology was formally coined, Bingham introduced the concept of plastic flow above a critical stress to describe steady flow curves observed in English china clay dispersion. However, in many complex fluids and soft solids the manifestation of a yield stress is also accompanied by other complex rheological phenomena such as thixotropy and viscoelastic transient responses, both above and below the critical stress. In this perspective article we discuss efforts to map out the different limiting forms of the general rheological response of such materials by considering higher dimensional extensions of the familiar Pipkin map. Based on transient and nonlinear concepts, the maps first help organize the conditions of canonical flow protocols. These conditions can then be normalized with relevant material properties to form dimensionless groups that define a three-dimensional state space to represent the spectrum of Thixotropic Elastoviscoplastic (TEVP) material responses. *Corresponding authors: [email protected], [email protected] 1 Introduction One hundred years ago, Eugene Bingham published his first paper investigating “the laws of plastic flow”, and noted that “the demarcation of viscous flow from plastic flow has not been sharply made” (Bingham 1916). Many still struggle with unambiguously separating such concepts today, and indeed in many real materials the distinction is not black and white but more grey or gradual in its characteristics.
    [Show full text]
  • Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow Through Porous Media
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow through Porous Media Permalink https://escholarship.org/uc/item/6zv599hc Author Wu, Y.S. Publication Date 1990-02-01 eScholarship.org Powered by the California Digital Library University of California Lawrence Berkeley Laboratory e UNIVERSITY OF CALIFORNIA EARTH SCIENCES DlVlSlON Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow through Porous Media Y.-S. Wu (Ph.D. Thesis) February 1990 TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. r- +. .zn Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. :0 DISCLAIMER I I This document was prepared as an account of work sponsored ' : by the United States Government. Neither the United States : ,Government nor any agency thereof, nor The Regents of the , I Univers~tyof California, nor any of their employees, makes any I warranty, express or implied, or assumes any legal liability or ~ : responsibility for the accuracy, completeness, or usefulness of t any ~nformation, apparatus, product, or process disclosed, or I represents that its use would not infringe privately owned rights. : Reference herein to any specific commercial products process, or I service by its trade name, trademark, manufacturer, or other- I wise, does not necessarily constitute or imply its endorsement, ' recommendation, or favoring by the United States Government , or any agency thereof, or The Regents of the University of Cali- , forma. The views and opinions of authors expressed herein do ' not necessarily state or reflect those of the United States : Government or any agency thereof or The Regents of the , Univers~tyof California and shall not be used for advertismg or I product endorsement purposes.
    [Show full text]
  • Modification of Bingham Plastic Rheological Model for Better Rheological Characterization of Synthetic Based Drilling Mud
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Covenant University Repository Journal of Engineering and Applied Sciences 13 (10): 3573-3581, 2018 ISSN: 1816-949X © Medwell Journals, 2018 Modification of Bingham Plastic Rheological Model for Better Rheological Characterization of Synthetic Based Drilling Mud Anawe Paul Apeye Lucky and Folayan Adewale Johnson Department is Petroleum Engineering, Covenant University, Ota, Nigeria Abstract: The Bingham plastic rheological model has generally been proved by rheologists and researchers not to accurately represent the behaviour of the drilling fluid at very low shear rates in the annulus and at very high shear rate at the bit. Hence, a dimensionless stress correction factor is required to correct these anomalies. Hence, this study is coined with a view to minimizing the errors associated with Bingham plastic model at both high and low shear rate conditions bearing in mind the multiplier effect of this error on frictional pressure loss calculations in the pipes and estimation of Equivalent Circulating Density (ECD) of the fluid under downhole conditions. In an attempt to correct this anomaly, the rheological properties of two synthetic based drilling muds were measured by using an automated Viscometer. A comparative rheological analysis was done by using the Bingham plastic model and the proposed modified Bingham plastic model. Similarly, a model performance analysis of these results with that of power law and Herschel Buckley Model was done by using statistical analysis to measure the deviation of stress values in each of the models. The results clearly showed that the proposed model accurately predicts mud rheology better than the Bingham plastic and the power law models at both high and low shear rates conditions.
    [Show full text]
  • Shear Thickening in Concentrated Suspensions: Phenomenology
    Shear thickening in concentrated suspensions: phenomenology, mechanisms, and relations to jamming Eric Brown School of Natural Sciences, University of California, Merced, CA 95343 Heinrich M. Jaeger James Franck Institute, The University of Chicago, Chicago, IL 60637 (Dated: July 22, 2013) Shear thickening is a type of non-Newtonian behavior in which the stress required to shear a fluid increases faster than linearly with shear rate. Many concentrated suspensions of particles exhibit an especially dramatic version, known as Discontinuous Shear Thickening (DST), in which the stress suddenly jumps with increasing shear rate and produces solid-like behavior. The best known example of such counter-intuitive response to applied stresses occurs in mixtures of cornstarch in water. Over the last several years, this shear-induced solid-like behavior together with a variety of other unusual fluid phenomena has generated considerable interest in the physics of densely packed suspensions. In this review, we discuss the common physical properties of systems exhibiting shear thickening, and different mechanisms and models proposed to describe it. We then suggest how these mechanisms may be related and generalized, and propose a general phase diagram for shear thickening systems. We also discuss how recent work has related the physics of shear thickening to that of granular materials and jammed systems. Since DST is described by models that require only simple generic interactions between particles, we outline the broader context of other concentrated many-particle systems such as foams and emulsions, and explain why DST is restricted to the parameter regime of hard-particle suspensions. Finally, we discuss some of the outstanding problems and emerging opportunities.
    [Show full text]
  • Fluid Inertia and End Effects in Rheometer Flows
    FLUID INERTIA AND END EFFECTS IN RHEOMETER FLOWS by JASON PETER HUGHES B.Sc. (Hons) A thesis submitted to the University of Plymouth in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY School of Mathematics and Statistics Faculty of Technology University of Plymouth April 1998 REFERENCE ONLY ItorriNe. 9oo365d39i Data 2 h SEP 1998 Class No.- Corrtl.No. 90 0365439 1 ACKNOWLEDGEMENTS I would like to thank my supervisors Dr. J.M. Davies, Prof. T.E.R. Jones and Dr. K. Golden for their continued support and guidance throughout the course of my studies. I also gratefully acknowledge the receipt of a H.E.F.C.E research studentship during the period of my research. AUTHORS DECLARATION At no time during the registration for the degree of Doctor of Philosophy has the author been registered for any other University award. This study was financed with the aid of a H.E.F.C.E studentship and carried out in collaboration with T.A. Instruments Ltd. Publications: 1. J.P. Hughes, T.E.R Jones, J.M. Davies, *End effects in concentric cylinder rheometry', Proc. 12"^ Int. Congress on Rheology, (1996) 391. 2. J.P. Hughes, J.M. Davies, T.E.R. Jones, ^Concentric cylinder end effects and fluid inertia effects in controlled stress rheometry, Part I: Numerical simulation', accepted for publication in J.N.N.F.M. Signed ...^.^Ms>3.\^^. Date Ik.lp.^.m FLUH) INERTIA AND END EFFECTS IN RHEOMETER FLOWS Jason Peter Hughes Abstract This thesis is concerned with the characterisation of the flow behaviour of inelastic and viscoelastic fluids in steady shear and oscillatory shear flows on commercially available rheometers.
    [Show full text]
  • A Review on Recent Developments in Magnetorheological Fluid Based Finishing Processes
    © 2018 JETIR June 2018, Volume 5, Issue 6 www.jetir.org (ISSN-2349-5162) A REVIEW ON RECENT DEVELOPMENTS IN MAGNETORHEOLOGICAL FLUID BASED FINISHING PROCESSES Kanthale V. S., Dr. Pande D. W. College of Engineering Pune, India ABSTRACT-The recent engineering applications demand the use of tough, high intensity and high temperature resistant materials in technology, which evolved the need for newer and better finishing techniques. The conventional machining or finishing methods are not workable for the hard materials like carbides; ceramics, die steel. Magnetorheological fluid assisted finishing process is a new technique under development and becoming popular in this epoch. With the use of external magnetic field, the rheological properties of the MR fluid can be controlled for polishing the surfaces of components. An extended survey of the material removal mechanism and subsequent evolution of analytical MR models are necessary for raising the finishing operation of the MR fluid process. Understanding the influence of various process parameters on the process performance measures such as surface finish and material removal rate. The objective of this study is to do a comprehensive, critical and extensive review of various material removal models based on MR fluid in terms of experimental mechanism, finding the effects of process parameters, characterization and rheological properties of MR fluid. This paper deals with various advancements in MR fluid based process and its allied processes have been discussed in the making the developments in the future in these processes. KEYWORDS: Magnetorheological fluid (MR fluid), Process parameter, Surface roughness, Material removal rate 1. INTRODUCTION The modern engineering applications have necessitated high precision manufacturing.
    [Show full text]
  • Rough-Wall and Turbulent Transition Analyses for Bingham Plastics
    THOMAS, A.D. and WILSON, K.C. Rough-wall and turbulent transition analyses for Bingham plastics. Hydrotransport 17. The 17th International Conference on the Hydraulic Transport of Solids, The Southern African Institute of Mining and Metallurgy and the BHR Group, 2007. Rough-wall and turbulent transition analyses for Bingham plastics A.D. THOMAS* and K.C. WILSON† *Slurry Systems Pty Ltd, Australia †Queens University, Canada Some years ago, the authors developed an analysis of non- Newtonian pipe flow based on enhanced turbulent microscale and associated sub-layer thickening. This analysis, which can be used for various rheologic modelling equations, has in the past been applied to smooth-walled pipes. The present paper extends the analysis to rough walls, using the popular Bingham plastic equation as a representative rheological behaviour in order to prepare friction-factor plots for comparison with measured results. The conditions for laminar-turbulent transition for both smooth and rough walls are also considered, and comparisons are made with earlier correlations and with experimental data. Notation D internal pipe diameter f friction factor (Darcy-Weisbach) fT value of f at laminar-turbulent transition He Hedström number (see Equation [2]) k representative roughness height Re* shear Reynolds number (␳DU*/␮) Re*k Reynolds number based on roughness (␳kU*/ ␮) ReB Bingham plastic Reynolds number (␳VD/␩B) U local velocity at distance y from wall U* shear velocity (͌[␶o/␳]) V mean (flow) velocity VN mean (flow) velocity for a Newtonian fluid
    [Show full text]
  • Lecture 1: Introduction
    Lecture 1: Introduction E. J. Hinch Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties. In general, these differences arise because the fluid has a microstructure that influences the flow. In section 2, we will present a collection of some of the interesting phenomena arising from flow nonlinearities, the inhibition of stretching, elastic effects and normal stresses. In section 3 we will discuss a variety of devices for measuring material properties, a process known as rheometry. 1 Fluid Mechanical Preliminaries The equations of motion for an incompressible fluid of unit density are (for details and derivation see any text on fluid mechanics, e.g. [1]) @u + (u · r) u = r · S + F (1) @t r · u = 0 (2) where u is the velocity, S is the total stress tensor and F are the body forces. It is customary to divide the total stress into an isotropic part and a deviatoric part as in S = −pI + σ (3) where tr σ = 0. These equations are closed only if we can relate the deviatoric stress to the velocity field (the pressure field satisfies the incompressibility condition). It is common to look for local models where the stress depends only on the local gradients of the flow: σ = σ (E) where E is the rate of strain tensor 1 E = ru + ruT ; (4) 2 the symmetric part of the the velocity gradient tensor. The trace-free requirement on σ and the physical requirement of symmetry σ = σT means that there are only 5 independent components of the deviatoric stress: 3 shear stresses (the off-diagonal elements) and 2 normal stress differences (the diagonal elements constrained to sum to 0).
    [Show full text]
  • A Fluid Is Defined As a Substance That Deforms Continuously Under Application of a Shearing Stress, Regardless of How Small the Stress Is
    FLUID MECHANICS & BIOTRIBOLOGY CHAPTER ONE FLUID STATICS & PROPERTIES Dr. ALI NASER Fluids Definition of fluid: A fluid is defined as a substance that deforms continuously under application of a shearing stress, regardless of how small the stress is. To study the behavior of materials that act as fluids, it is useful to define a number of important fluid properties, which include density, specific weight, specific gravity, and viscosity. Density is defined as the mass per unit volume of a substance and is denoted by the Greek character ρ (rho). The SI units for ρ are kg/m3. Specific weight is defined as the weight per unit volume of a substance. The SI units for specific weight are N/m3. Specific gravity S is the ratio of the weight of a liquid at a standard reference temperature to the o weight of water. For example, the specific gravity of mercury SHg = 13.6 at 20 C. Specific gravity is a unit-less parameter. Density and specific weight are measures of the “heaviness” of a fluid. Example: What is the specific gravity of human blood, if the density of blood is 1060 kg/m3? Solution: ⁄ ⁄ Viscosity, shearing stress and shearing strain Viscosity is a measure of a fluid's resistance to flow. It describes the internal friction of a moving fluid. A fluid with large viscosity resists motion because its molecular makeup gives it a lot of internal friction. A fluid with low viscosity flows easily because its molecular makeup results in very little friction when it is in motion. Gases also have viscosity, although it is a little harder to notice it in ordinary circumstances.
    [Show full text]
  • Rheology of Petroleum Fluids
    ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 20, 2012 Rheology of Petroleum Fluids Hans Petter Rønningsen, Statoil, Norway ABSTRACT NEWTONIAN FLUIDS Among the areas where rheology plays In gas reservoirs, the flow properties of an important role in the oil and gas industry, the simplest petroleum fluids, i.e. the focus of this paper is on crude oil hydrocarbons with less than five carbon rheology related to production. The paper atoms, play an essential role in production. gives an overview of the broad variety of It directly impacts the productivity. The rheological behaviour, and corresponding viscosity of single compounds are well techniques for investigation, encountered defined and mixture viscosity can relatively among petroleum fluids. easily be calculated. Most often reservoir gas viscosity is though measured at reservoir INTRODUCTION conditions as part of reservoir fluid studies. Rheology plays a very important role in The behaviour is always Newtonian. The the petroleum industry, in drilling as well as main challenge in terms of measurement and production. The focus of this paper is on modelling, is related to very high pressures crude oil rheology related to production. (>1000 bar) and/or high temperatures (170- Drilling and completion fluids are not 200°C) which is encountered both in the covered. North Sea and Gulf of Mexico. Petroleum fluids are immensely complex Hydrocarbon gases also exist dissolved mixtures of hydrocarbon compounds, in liquid reservoir oils and thereby impact ranging from the simplest gases, like the fluid viscosity and productivity of these methane, to large asphaltenic molecules reservoirs. Reservoir oils are also normally with molecular weights of thousands.
    [Show full text]
  • Lecture 2: (Complex) Fluid Mechanics for Physicists
    Application of granular jamming: robots! Cornell (Amend and Lipson groups) in collaboration with Univ of1 Chicago (Jaeger group) Lecture 2: (complex) fluid mechanics for physicists S-RSI Physics Lectures: Soft Condensed Matter Physics Jacinta C. Conrad University of Houston 2012 Note: I have added links addressing questions and topics from lectures at: http://conradlab.chee.uh.edu/srsi_links.html Email me questions/comments/suggestions! 2 Soft condensed matter physics • Lecture 1: statistical mechanics and phase transitions via colloids • Lecture 2: (complex) fluid mechanics for physicists • Lecture 3: physics of bacteria motility • Lecture 4: viscoelasticity and cell mechanics • Lecture 5: Dr. Conrad!s work 3 Big question for today!s lecture How does the fluid mechanics of complex fluids differ from that of simple fluids? Petroleum Food products Examples of complex fluids: Personal care products Ceramic precursors Paints and coatings 4 Topic 1: shear thickening 5 Forces and pressures A force causes an object to change velocity (either in magnitude or direction) or to deform (i.e. bend, stretch). � dp� Newton!s second law: � F = m�a = dt p� = m�v net force change in linear mass momentum over time d�v �a = acceleration dt A pressure is a force/unit area applied perpendicular to an object. Example: wind blowing on your hand. direction of pressure force �n : unit vector normal to the surface 6 Stress A stress is a force per unit area that is measured on an infinitely small area. Because forces have three directions and surfaces have three orientations, there are nine components of stress. z z Example of a normal stress: δA δAx x δFx τxx = lim τxy δFy δAx→0 δAx τxx δFx y y Example of a shear stress: δFy τxy = lim δAx→0 δAx x x Convention: first subscript indicates plane on which stress acts; second subscript indicates direction in which the stress acts.
    [Show full text]