Lecture 3: Simple Flows
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 10: Impulse and Momentum
ME 230 Kinematics and Dynamics Wei-Chih Wang Department of Mechanical Engineering University of Washington Kinetics of a particle: Impulse and Momentum Chapter 15 Chapter objectives • Develop the principle of linear impulse and momentum for a particle • Study the conservation of linear momentum for particles • Analyze the mechanics of impact • Introduce the concept of angular impulse and momentum • Solve problems involving steady fluid streams and propulsion with variable mass W. Wang Lecture 10 • Kinetics of a particle: Impulse and Momentum (Chapter 15) - 15.1-15.3 W. Wang Material covered • Kinetics of a particle: Impulse and Momentum - Principle of linear impulse and momentum - Principle of linear impulse and momentum for a system of particles - Conservation of linear momentum for a system of particles …Next lecture…Impact W. Wang Today’s Objectives Students should be able to: • Calculate the linear momentum of a particle and linear impulse of a force • Apply the principle of linear impulse and momentum • Apply the principle of linear impulse and momentum to a system of particles • Understand the conditions for conservation of momentum W. Wang Applications 1 A dent in an automotive fender can be removed using an impulse tool, which delivers a force over a very short time interval. How can we determine the magnitude of the linear impulse applied to the fender? Could you analyze a carpenter’s hammer striking a nail in the same fashion? W. Wang Applications 2 Sure! When a stake is struck by a sledgehammer, a large impulsive force is delivered to the stake and drives it into the ground. -
Mechanics of Materials Plasticity
Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in the Reference Module in Materials Science and Materials Engineering, published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Lubarda V.A., Mechanics of Materials: Plasticity. In: Saleem Hashmi (editor-in-chief), Reference Module in Materials Science and Materials Engineering. Oxford: Elsevier; 2016. pp. 1-24. ISBN: 978-0-12-803581-8 Copyright © 2016 Elsevier Inc. unless otherwise stated. All rights reserved. Author's personal copy Mechanics of Materials: Plasticity$ VA Lubarda, University of California, San Diego, CA, USA r 2016 Elsevier Inc. All rights reserved. 1 Yield Surface 1 1.1 Yield Surface in Strain Space 2 1.2 Yield Surface in Stress Space 2 2 Plasticity Postulates, Normality and Convexity -
An Effective Stress Equation for Unsaturated Granular Media in Pendular Regime
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2014-04-28 An Effective Stress Equation for Unsaturated Granular Media in Pendular Regime Khosravani, Sarah Khosravani, S. (2014). An Effective Stress Equation for Unsaturated Granular Media in Pendular Regime (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/24849 http://hdl.handle.net/11023/1443 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY An Effective Stress Equation for Unsaturated Granular Media in Pendular Regime by Sarah Khosravani A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF CIVIL ENGINEERING CALGARY, ALBERTA April, 2014 c Sarah Khosravani 2014 Abstract The mechanical behaviour of a wet granular material is investigated through a microme- chanical analysis of force transport between interacting particles with a given packing and distribution of capillary liquid bridges. A single effective stress tensor, characterizing the ten- sorial contribution of the matric suction and encapsulating evolving liquid bridges, packing, interfaces, and water saturation, is derived micromechanically. The physical significance of the effective stress parameter (χ) as originally introduced in Bishop’s equation is examined and it turns out that Bishop’s equation is incomplete. -
A Plasticity Model with Yield Surface Distortion for Non Proportional Loading
page 1 A plasticity model with yield surface distortion for non proportional loading. Int. J. Plast., 17(5), pages :703–718 (2001) M.L.M. FRANÇOIS LMT Cachan (ENS de Cachan /CNRS URA 860/Université Paris 6) ABSTRACT In order to enhance the modeling of metallic materials behavior in non proportional loadings, a modification of the classical elastic-plastic models including distortion of the yield surface is proposed. The new yield criterion uses the same norm as in the classical von Mises based criteria, and a "distorted stress" Sd replacing the usual stress deviator S. The obtained yield surface is then “egg-shaped” similar to those experimentally observed and depends on only one new material parameter. The theory is built in such a way as to recover the classical one for proportional loading. An identification procedure is proposed to obtain the material parameters. Simulations and experiments are compared for a 2024 T4 aluminum alloy for both proportional and nonproportional tension-torsion loading paths. KEYWORDS constitutive behavior; elastic-plastic material. SHORTENED TITLE A model for the distortion of yield surfaces. ADDRESS Marc François, LMT, 61 avenue du Président Wilson, 94235 Cachan CEDEX, France. E-MAIL [email protected] INTRODUCTION Most of the phenomenological plasticity models for metals use von Mises based yield criteria. This implies that the yield surface is a hypersphere whose center is the back stress X in the 5-dimensional space of stress deviator tensors. For proportional loadings, the exact shape of the yield surface has no importance since all the deviators governing plasticity remain colinear tensors. -
Impact Dynamics of Newtonian and Non-Newtonian Fluid Droplets on Super Hydrophobic Substrate
IMPACT DYNAMICS OF NEWTONIAN AND NON-NEWTONIAN FLUID DROPLETS ON SUPER HYDROPHOBIC SUBSTRATE A Thesis Presented By Yingjie Li to The Department of Mechanical and Industrial Engineering in partial fulfillment of the requirements for the degree of Master of Science in the field of Mechanical Engineering Northeastern University Boston, Massachusetts December 2016 Copyright (©) 2016 by Yingjie Li All rights reserved. Reproduction in whole or in part in any form requires the prior written permission of Yingjie Li or designated representatives. ACKNOWLEDGEMENTS I hereby would like to appreciate my advisors Professors Kai-tak Wan and Mohammad E. Taslim for their support, guidance and encouragement throughout the process of the research. In addition, I want to thank Mr. Xiao Huang for his generous help and continued advices for my thesis and experiments. Thanks also go to Mr. Scott Julien and Mr, Kaizhen Zhang for their invaluable discussions and suggestions for this work. Last but not least, I want to thank my parents for supporting my life from China. Without their love, I am not able to complete my thesis. TABLE OF CONTENTS DROPLETS OF NEWTONIAN AND NON-NEWTONIAN FLUIDS IMPACTING SUPER HYDROPHBIC SURFACE .......................................................................... i ACKNOWLEDGEMENTS ...................................................................................... iii 1. INTRODUCTION .................................................................................................. 9 1.1 Motivation ........................................................................................................ -
Post-Newtonian Approximation
Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism Post-Newtonian Approximation Piotr Jaranowski Faculty of Physcis, University of Bia lystok,Poland 01.07.2013 P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism 1 Post-Newtonian gravity and gravitational-wave astronomy 2 Polarization waveforms in the SSB reference frame 3 Relativistic binary systems Leading-order waveforms (Newtonian binary dynamics) Leading-order waveforms without radiation-reaction effects Leading-order waveforms with radiation-reaction effects Post-Newtonian corrections Post-Newtonian spin-dependent effects 4 Effective one-body formalism EOB-improved 3PN-accurate Hamiltonian Usage of Pad´eapproximants EOB flexibility parameters P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Post-Newtonian gravity and gravitational-wave astronomy Polarization waveforms in the SSB reference frame Relativistic binary systems Effective one-body formalism 1 Post-Newtonian gravity and gravitational-wave astronomy 2 Polarization waveforms in the SSB reference frame 3 Relativistic binary systems Leading-order waveforms (Newtonian binary dynamics) Leading-order waveforms without radiation-reaction effects Leading-order waveforms with radiation-reaction effects Post-Newtonian corrections Post-Newtonian spin-dependent effects 4 Effective one-body formalism EOB-improved 3PN-accurate Hamiltonian Usage of Pad´eapproximants EOB flexibility parameters P. Jaranowski School of Gravitational Waves, 01{05.07.2013, Warsaw Relativistic binary systems exist in nature, they comprise compact objects: neutron stars or black holes. These systems emit gravitational waves, which experimenters try to detect within the LIGO/VIRGO/GEO600 projects. -
Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow Through Porous Media
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow through Porous Media Permalink https://escholarship.org/uc/item/6zv599hc Author Wu, Y.S. Publication Date 1990-02-01 eScholarship.org Powered by the California Digital Library University of California Lawrence Berkeley Laboratory e UNIVERSITY OF CALIFORNIA EARTH SCIENCES DlVlSlON Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow through Porous Media Y.-S. Wu (Ph.D. Thesis) February 1990 TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. r- +. .zn Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. :0 DISCLAIMER I I This document was prepared as an account of work sponsored ' : by the United States Government. Neither the United States : ,Government nor any agency thereof, nor The Regents of the , I Univers~tyof California, nor any of their employees, makes any I warranty, express or implied, or assumes any legal liability or ~ : responsibility for the accuracy, completeness, or usefulness of t any ~nformation, apparatus, product, or process disclosed, or I represents that its use would not infringe privately owned rights. : Reference herein to any specific commercial products process, or I service by its trade name, trademark, manufacturer, or other- I wise, does not necessarily constitute or imply its endorsement, ' recommendation, or favoring by the United States Government , or any agency thereof, or The Regents of the University of Cali- , forma. The views and opinions of authors expressed herein do ' not necessarily state or reflect those of the United States : Government or any agency thereof or The Regents of the , Univers~tyof California and shall not be used for advertismg or I product endorsement purposes. -
Fluid Inertia and End Effects in Rheometer Flows
FLUID INERTIA AND END EFFECTS IN RHEOMETER FLOWS by JASON PETER HUGHES B.Sc. (Hons) A thesis submitted to the University of Plymouth in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY School of Mathematics and Statistics Faculty of Technology University of Plymouth April 1998 REFERENCE ONLY ItorriNe. 9oo365d39i Data 2 h SEP 1998 Class No.- Corrtl.No. 90 0365439 1 ACKNOWLEDGEMENTS I would like to thank my supervisors Dr. J.M. Davies, Prof. T.E.R. Jones and Dr. K. Golden for their continued support and guidance throughout the course of my studies. I also gratefully acknowledge the receipt of a H.E.F.C.E research studentship during the period of my research. AUTHORS DECLARATION At no time during the registration for the degree of Doctor of Philosophy has the author been registered for any other University award. This study was financed with the aid of a H.E.F.C.E studentship and carried out in collaboration with T.A. Instruments Ltd. Publications: 1. J.P. Hughes, T.E.R Jones, J.M. Davies, *End effects in concentric cylinder rheometry', Proc. 12"^ Int. Congress on Rheology, (1996) 391. 2. J.P. Hughes, J.M. Davies, T.E.R. Jones, ^Concentric cylinder end effects and fluid inertia effects in controlled stress rheometry, Part I: Numerical simulation', accepted for publication in J.N.N.F.M. Signed ...^.^Ms>3.\^^. Date Ik.lp.^.m FLUH) INERTIA AND END EFFECTS IN RHEOMETER FLOWS Jason Peter Hughes Abstract This thesis is concerned with the characterisation of the flow behaviour of inelastic and viscoelastic fluids in steady shear and oscillatory shear flows on commercially available rheometers. -
Yield Surface Effects on Stablity and Failure
XXIV ICTAM, 21-26 August 2016, Montreal, Canada YIELD SURFACE EFFECTS ON STABLITY AND FAILURE William M. Scherzinger * Solid Mechanics, Sandia National Laboratories, Albuquerque, New Mexico, USA Summary This work looks at the effects of yield surface description on the stability and failure of metal structures. We consider a number of different yield surface descriptions, both isotropic and anisotropic, that are available for modeling material behavior. These yield descriptions can all reproduce the same nominal stress-strain response for a limited set of load paths. However, for more general load paths the models can give significantly different results that can have a large effect on stability and failure. Results are shown for the internal pressurization of a cylinder and the differences in the predictions are quantified. INTRODUCTION Stability and failure in structures is an important field of study that provides solutions to many practical problems in solid mechanics. The boundary value problems require careful consideration of the geometry, the boundary conditions, and the material description. In metal structures the material is usually described with an elastic-plastic constitutive model, which can account for many effects observed in plastic deformation. Crystal plasticity models can account for many microstructural effects, but these models are often too fine scaled for production modeling and simulation. In this work we limit the study to rate independent continuum plasticity models. When using a continuum plasticity model, the hardening behavior is important and much attention is focused on it. Equally important, but less well understood, is the effect of the yield surface description. For classical continuum metal plasticity models that assume associated flow the yield surface provides a definition for the elastic region of stress space along with the direction of plastic flow when the stress state is on the yield surface. -
Durability of Adhesively Bonded Joints in Aerospace Structures
Durability of adhesive bonded joints in aerospace structures Washington State University Date: 11/08/2017 AMTAS Fall meeting Seattle, WA Durability of Bonded Aircraft Structure • Principal Investigators & Researchers • Lloyd Smith • Preetam Mohapatra, Yi Chen, Trevor Charest • FAA Technical Monitor • Ahmet Oztekin • Other FAA Personnel Involved • Larry Ilcewicz • Industry Participation • Boeing: Will Grace, Peter VanVoast, Kay Blohowiak 2 Durability of adhesive bonded joints in aerospace structures 1. Influence of yield criteria Yield criterion 2. Biaxial tests (Arcan) Plasticity 3. Cyclic tests Hardening rule 4. FEA model Nonlinearity in Bonded Joints 1. Creep, non-linear response Tension (closed form) 2. Ratcheting, experiment Time Dependence 3. Creep, model development Shear (FEA) 4. Ratcheting, model application Approach: Plasticity vPrimary Research Aim: Modeling of adhesive plasticity to describe nonlinear stress-strain response. ØSub Task: 1. Identify the influence of yield criterion and hardening rule on bonded joints (complete) 2. Characterizing hardening rule (complete Dec 2017) 3. Characterizing yield criterion (complete Dec 2017) 4. Numerically combining hardening rule and yield criterion (complete Feb 2017) Approach: Plasticity 1. Identify yield criterion and hardening rule of bonded joints • Input properties: Bulk and Thin film adhesive properties in Tension. 60 Characterization of Tensile properties 55 50 45 40 35 30 25 Bulk Tension: Tough Adheisve 20 Tensile Stress [MPa] Bulk Tension: Standard Adhesive 15 10 Thin film Tension: Tough Adhesive 5 Thin film Tension: Standard Adhesive 0 0 0.05 0.1 0.15 0.2 0.25 0.3 Axial Strain Approach: Plasticity 1. Identify the influence of yield criterion and hardening rule on bonded joints • Background: Investigate yield criterion and hardening rule of bonded joints. -
Lecture 1: Introduction
Lecture 1: Introduction E. J. Hinch Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties. In general, these differences arise because the fluid has a microstructure that influences the flow. In section 2, we will present a collection of some of the interesting phenomena arising from flow nonlinearities, the inhibition of stretching, elastic effects and normal stresses. In section 3 we will discuss a variety of devices for measuring material properties, a process known as rheometry. 1 Fluid Mechanical Preliminaries The equations of motion for an incompressible fluid of unit density are (for details and derivation see any text on fluid mechanics, e.g. [1]) @u + (u · r) u = r · S + F (1) @t r · u = 0 (2) where u is the velocity, S is the total stress tensor and F are the body forces. It is customary to divide the total stress into an isotropic part and a deviatoric part as in S = −pI + σ (3) where tr σ = 0. These equations are closed only if we can relate the deviatoric stress to the velocity field (the pressure field satisfies the incompressibility condition). It is common to look for local models where the stress depends only on the local gradients of the flow: σ = σ (E) where E is the rate of strain tensor 1 E = ru + ruT ; (4) 2 the symmetric part of the the velocity gradient tensor. The trace-free requirement on σ and the physical requirement of symmetry σ = σT means that there are only 5 independent components of the deviatoric stress: 3 shear stresses (the off-diagonal elements) and 2 normal stress differences (the diagonal elements constrained to sum to 0). -
Apollonian Circle Packings: Dynamics and Number Theory
APOLLONIAN CIRCLE PACKINGS: DYNAMICS AND NUMBER THEORY HEE OH Abstract. We give an overview of various counting problems for Apol- lonian circle packings, which turn out to be related to problems in dy- namics and number theory for thin groups. This survey article is an expanded version of my lecture notes prepared for the 13th Takagi lec- tures given at RIMS, Kyoto in the fall of 2013. Contents 1. Counting problems for Apollonian circle packings 1 2. Hidden symmetries and Orbital counting problem 7 3. Counting, Mixing, and the Bowen-Margulis-Sullivan measure 9 4. Integral Apollonian circle packings 15 5. Expanders and Sieve 19 References 25 1. Counting problems for Apollonian circle packings An Apollonian circle packing is one of the most of beautiful circle packings whose construction can be described in a very simple manner based on an old theorem of Apollonius of Perga: Theorem 1.1 (Apollonius of Perga, 262-190 BC). Given 3 mutually tangent circles in the plane, there exist exactly two circles tangent to all three. Figure 1. Pictorial proof of the Apollonius theorem 1 2 HEE OH Figure 2. Possible configurations of four mutually tangent circles Proof. We give a modern proof, using the linear fractional transformations ^ of PSL2(C) on the extended complex plane C = C [ f1g, known as M¨obius transformations: a b az + b (z) = ; c d cz + d where a; b; c; d 2 C with ad − bc = 1 and z 2 C [ f1g. As is well known, a M¨obiustransformation maps circles in C^ to circles in C^, preserving angles between them.