Rheology of Petroleum Fluids

Total Page:16

File Type:pdf, Size:1020Kb

Rheology of Petroleum Fluids ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 20, 2012 Rheology of Petroleum Fluids Hans Petter Rønningsen, Statoil, Norway ABSTRACT NEWTONIAN FLUIDS Among the areas where rheology plays In gas reservoirs, the flow properties of an important role in the oil and gas industry, the simplest petroleum fluids, i.e. the focus of this paper is on crude oil hydrocarbons with less than five carbon rheology related to production. The paper atoms, play an essential role in production. gives an overview of the broad variety of It directly impacts the productivity. The rheological behaviour, and corresponding viscosity of single compounds are well techniques for investigation, encountered defined and mixture viscosity can relatively among petroleum fluids. easily be calculated. Most often reservoir gas viscosity is though measured at reservoir INTRODUCTION conditions as part of reservoir fluid studies. Rheology plays a very important role in The behaviour is always Newtonian. The the petroleum industry, in drilling as well as main challenge in terms of measurement and production. The focus of this paper is on modelling, is related to very high pressures crude oil rheology related to production. (>1000 bar) and/or high temperatures (170- Drilling and completion fluids are not 200°C) which is encountered both in the covered. North Sea and Gulf of Mexico. Petroleum fluids are immensely complex Hydrocarbon gases also exist dissolved mixtures of hydrocarbon compounds, in liquid reservoir oils and thereby impact ranging from the simplest gases, like the fluid viscosity and productivity of these methane, to large asphaltenic molecules reservoirs. Reservoir oils are also normally with molecular weights of thousands. This Newtonian fluids, but the variation in chemical variation is reflected in a large viscosity can be extremely large, both as a variation in viscosities, ranging from result of chemical variation, ranging from fractions of a centipoise to millions of light, low-viscous gas condensates to highly centipoise, and rheological behaviour, from viscous heavy oils, and temperature perfectly Newtonian to highly non- variation, which always has a large, and Newtonian, visco-elastic and nearly solid- fairly predictable impact on the Newtonian like. Description and rheological viscosity. Fig. 1 shows an example of a characterization of petroleum fluids thus rather heavy North Sea oil with nearly requires a broad variety of experimental perfectly Newtonian behaviour, even at a techniques and modelling approaches. low temperature. This is quite typical also of much heavier oils. The mentioned temperature variation of the viscosity of 11 these Newtonian fluids, is most often very representative of the fluid at real field well described by a so-called Arrhenius conditions. relation, i.e. a linear relationship between the logarithm of the viscosity and the 25 inverse temperature1: 30°C 20 40°C s) 50°C 15 60°C (mPa (1) 70°C 80°C 10 90°C where Ea is the flow activation energy. Viscosity 5 6608/10-6 30 0 25 0.7 0.76 0.82 0.88 0.94 20 Crude oil density at 15°C (g/cc) 15 10 Shear stress,Pa Shear Figure 2. Correlation between density 18 5 and viscosity of North Sea crude oils . 0 0 20406080100 Shear rate, 1/s NON-NEWTONIAN FLUIDS Figure 1. Example of perfectly The more ‘interesting’ rheological Newtonian behaviour of a 21 °API North behaviour of petroleum fluids is found Sea crude oil at 5 °C. among fluids containing either solid paraffin waxes or dispersed water. Depending on the At a given temperature, there is also volume fraction of dispersed, solid wax normally a simple relationship between the particles or water droplets, such fluids viscosity and the average molecular weight2 exhibit all degrees of non-Newtonian or density of the fluid18. The graph in Fig. 2 behaviour, which is described in some detail shows a useful correlation between density below. and Newtonian viscosity of North Sea crude As soon as paraffin (wax) crystals start oils, valid above the wax appearance to precipitate in a crude oil, the behaviour temperature of the oils. It has been found to starts to deviate from the Newtonian provide viscosity estimates typically within behaviour described above. In fact, the 10-15%, which may be acceptable as a first onset of deviation from simple Arrhenius estimate in many cases. temperature dependency is one method to Although they are typically Newtonian detect the onset of wax crystallization, or the and rheologically fairly simple, viscosity wax appearance temperature. The first wax measurements with heavy oils are not crystals have though a limited impact on trivial. There is no strict definition of viscosity and rheology. But as soon as the ‘heavy oil’, but here is meant an oil with a volume fraction of particles has reached a density higher than about 950 kg/m3. The few tenths of a per cent, significant shear sample preparation and pretreatment w.r.t. rate dependency can be observed, gas saturation and stabilization prior to characteristic of non-Newtonian behaviour. measurements with such oils, has to be Fig. 3 shows a typical example of carried out very carefully in order to obtain pronounced shear-thinning behaviour of a measured viscosities which are waxy North Sea crude oil at different temperatures below the wax appearance 12 temperature. studied for decades. One milestone work is 6 2000 that of Davenport and Somper more than forty years ago, where they studied gelled 5°C 10° oil behaviour in both lab-scale rheometers 1500 15°C 20°C and a large-scale pipeline. Various aspects 30°C of gelling and restart behaviour of waxy 1000 North Sea oils have since been studied extensively7-9. 500 In addition to developing a yield stress, Apparent viscosity (mPa s) i.e. a certain threshold shear stress that has 0 to be imposed in order to start breaking the 0 100 200 300 400 500 600 gel structure and make it flow, the crude oil Shear rate (s-1) gels exhibit a complex time-dependent rheology. Due to lack of reversibility, the Figure 3. Shear-thinning behaviour of term thixotropy, though often used, is not waxy North Sea crude oil. actually the right word to describe this behaviour, rather time-dependent shear Modelling and predicting non- degradation. Newtonian viscosities is much harder than When subjected to a given shear stress, Newtonian, and few non-Newtonian the rheological response is characterized by viscosity models exist. However, using a an initial, transient elastic deformation, similar approach as modelling of the followed by a creep flow period at very low viscosity effect of dispersed water in crude shear rate, the length of which depends on oil, a semi-empirical non-Newtonian the shear stress, then a fairly rapid collapse viscosity model based on experimental data of the gel towards an equilibrium shear rate, for a large number of North Sea crude oils, characteristic for a given temperature. This has been developed3. The viscosity model is is illustrated in Fig. 4. directly linked to a thermodynamic model for calculating the fraction of solid wax as function of temperature and pressure4. CRUDE OIL GELS AND TIME- DEPENDENT RHEOLOGY Several subsea North Sea oil fields produce highly paraffinic, high pour point oils. In addition to the wax deposition challenges with these fluids, there are additional challenges related to transient operations such as shut-downs, cool-down and pipeline restart, due to their gelling Figure 4. Time development of shear tendency. The origin of this tendency is the rate when a gelled oil is subjected to a interaction between wax crystals in the constant shear stress7. crude oil upon cooling. When the volume fraction of solid wax particles exceeds about As shown by Rønningsen7, and recently four per cent5, these interactions cause a confirmed by Schüller et al.9, this overall three-dimensional network to form under behaviour can be expressed mathematically quiescent conditions. The properties and by a time-dependent Bingham plastic behaviour of such gelling oils has been 13 rheological equation of state: One feature of waxy crude oil gels that complicates the experimental (2) characterization, is the dependency of yield stress and gel breakdown not only on the where is the shear stress. The Bingham actual temperature (and pressure), but also on the thermal and shear history prior to the viscosity (B) is essentially constant and the measurement conditions5,11. This has its Bingham yield stress (y) breaks down according to a second-order rate equation origin in a complex interplay of various (Fig. 5), indicating that the progressive chemical constituents in the oil which is breakdown process, to a good only partly understood. The prevailing approximation, can be represented by a theory is that some of the polar constituents series of linear and parallel flow curves with of an oil act as a kind of natural wax progressively lower yield stress7. Schüller structure modifiers, similar to synthetic pour et al.9 also devised a method for using a point depressants, and that the effect of modern rheometer to obtain the time- these substances in terms of their ability to dependent yield parameters, incl. the time interact with wax crystals, strongly depend constant for yield stress breakdown. on their solubility state, and hence on the 160 history of heating and cooling. The (A-B)/(1+C*x)+B similarity to synthetic wax modifiers has 150 been demonstrated in several studies5,8. In 140 A = 141.0 Pa B = 61.0 Pa any case, the sensitivity to history may be -1 130 k = 0.07 min very large. It is also often referred to as the 120 minimum-maximum gelling point (or pour 110 point) phenomenon, since the gelling 100 temperature may be higher or lower Yield stress (Pa) depending on the thermal history as well.
Recommended publications
  • On Nonlinear Strain Theory for a Viscoelastic Material Model and Its Implications for Calving of Ice Shelves
    Journal of Glaciology (2019), 65(250) 212–224 doi: 10.1017/jog.2018.107 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re- use or in order to create a derivative work. On nonlinear strain theory for a viscoelastic material model and its implications for calving of ice shelves JULIA CHRISTMANN,1,2 RALF MÜLLER,2 ANGELIKA HUMBERT1,3 1Division of Geosciences/Glaciology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany 2Institute of Applied Mechanics, University of Kaiserslautern, Kaiserslautern, Germany 3Division of Geosciences, University of Bremen, Bremen, Germany Correspondence: Julia Christmann <[email protected]> ABSTRACT. In the current ice-sheet models calving of ice shelves is based on phenomenological approaches. To obtain physics-based calving criteria, a viscoelastic Maxwell model is required account- ing for short-term elastic and long-term viscous deformation. On timescales of months to years between calving events, as well as on long timescales with several subsequent iceberg break-offs, deformations are no longer small and linearized strain measures cannot be used. We present a finite deformation framework of viscoelasticity and extend this model by a nonlinear Glen-type viscosity. A finite element implementation is used to compute stress and strain states in the vicinity of the ice-shelf calving front.
    [Show full text]
  • 1 Fluid Flow Outline Fundamentals of Rheology
    Fluid Flow Outline • Fundamentals and applications of rheology • Shear stress and shear rate • Viscosity and types of viscometers • Rheological classification of fluids • Apparent viscosity • Effect of temperature on viscosity • Reynolds number and types of flow • Flow in a pipe • Volumetric and mass flow rate • Friction factor (in straight pipe), friction coefficient (for fittings, expansion, contraction), pressure drop, energy loss • Pumping requirements (overcoming friction, potential energy, kinetic energy, pressure energy differences) 2 Fundamentals of Rheology • Rheology is the science of deformation and flow – The forces involved could be tensile, compressive, shear or bulk (uniform external pressure) • Food rheology is the material science of food – This can involve fluid or semi-solid foods • A rheometer is used to determine rheological properties (how a material flows under different conditions) – Viscometers are a sub-set of rheometers 3 1 Applications of Rheology • Process engineering calculations – Pumping requirements, extrusion, mixing, heat transfer, homogenization, spray coating • Determination of ingredient functionality – Consistency, stickiness etc. • Quality control of ingredients or final product – By measurement of viscosity, compressive strength etc. • Determination of shelf life – By determining changes in texture • Correlations to sensory tests – Mouthfeel 4 Stress and Strain • Stress: Force per unit area (Units: N/m2 or Pa) • Strain: (Change in dimension)/(Original dimension) (Units: None) • Strain rate: Rate
    [Show full text]
  • Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow Through Porous Media
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow through Porous Media Permalink https://escholarship.org/uc/item/6zv599hc Author Wu, Y.S. Publication Date 1990-02-01 eScholarship.org Powered by the California Digital Library University of California Lawrence Berkeley Laboratory e UNIVERSITY OF CALIFORNIA EARTH SCIENCES DlVlSlON Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow through Porous Media Y.-S. Wu (Ph.D. Thesis) February 1990 TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. r- +. .zn Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. :0 DISCLAIMER I I This document was prepared as an account of work sponsored ' : by the United States Government. Neither the United States : ,Government nor any agency thereof, nor The Regents of the , I Univers~tyof California, nor any of their employees, makes any I warranty, express or implied, or assumes any legal liability or ~ : responsibility for the accuracy, completeness, or usefulness of t any ~nformation, apparatus, product, or process disclosed, or I represents that its use would not infringe privately owned rights. : Reference herein to any specific commercial products process, or I service by its trade name, trademark, manufacturer, or other- I wise, does not necessarily constitute or imply its endorsement, ' recommendation, or favoring by the United States Government , or any agency thereof, or The Regents of the University of Cali- , forma. The views and opinions of authors expressed herein do ' not necessarily state or reflect those of the United States : Government or any agency thereof or The Regents of the , Univers~tyof California and shall not be used for advertismg or I product endorsement purposes.
    [Show full text]
  • Computational Rheology (4K430)
    Computational Rheology (4K430) dr.ir. M.A. Hulsen [email protected] Website: http://www.mate.tue.nl/~hulsen under link ‘Computational Rheology’. – Section Polymer Technology (PT) / Materials Technology (MaTe) – Introduction Computational Rheology important for: B Polymer processing B Rheology & Material science B Turbulent flow (drag reduction phenomena) B Food processing B Biological flows B ... Introduction (Polymer Processing) Analysis of viscoelastic phenomena essential for predicting B Flow induced crystallization kinetics B Flow instabilities during processing B Free surface flows (e.g.extrudate swell) B Secondary flows B Dimensional stability of injection moulded products B Prediction of mechanical and optical properties Introduction (Surface Defects on Injection Molded Parts) Alternating dull bands perpendicular to flow direction with high surface roughness (M. Bulters & A. Schepens, DSM-Research). Introduction (Flow Marks, Two Color Polypropylene) Flow Mark Side view Top view Bottom view M. Bulters & A. Schepens, DSM-Research Introduction (Simulation flow front) 1 0.5 Steady Perturbed H 2y 0 ___ −0.5 −1 0 0.5 1 ___2x H Introduction (Rheology & Material Science) Simulation essential for understanding and predicting material properties: B Polymer blends (morphology, viscosity, normal stresses) B Particle filled viscoelastic fluids (suspensions) B Polymer architecture macroscopic properties (Brownian dynamics (BD), molecular dynamics (MD),⇒ Monte Carlo, . ) Multi-scale. ⇒ Introduction (Solid particles in a viscoelastic fluid) B Microstructure (polymer, particles) B Bulk rheology B Flow induced crystallization Introduction (Multiple particles in a viscoelastic fluid) Introduction (Flow induced crystallization) Introduction (Multi-phase flows) Goal and contents of the course Goal: Introduction of the basic numerical techniques used in Computational Rheology using the Finite Element Method (FEM).
    [Show full text]
  • Fluid Inertia and End Effects in Rheometer Flows
    FLUID INERTIA AND END EFFECTS IN RHEOMETER FLOWS by JASON PETER HUGHES B.Sc. (Hons) A thesis submitted to the University of Plymouth in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY School of Mathematics and Statistics Faculty of Technology University of Plymouth April 1998 REFERENCE ONLY ItorriNe. 9oo365d39i Data 2 h SEP 1998 Class No.- Corrtl.No. 90 0365439 1 ACKNOWLEDGEMENTS I would like to thank my supervisors Dr. J.M. Davies, Prof. T.E.R. Jones and Dr. K. Golden for their continued support and guidance throughout the course of my studies. I also gratefully acknowledge the receipt of a H.E.F.C.E research studentship during the period of my research. AUTHORS DECLARATION At no time during the registration for the degree of Doctor of Philosophy has the author been registered for any other University award. This study was financed with the aid of a H.E.F.C.E studentship and carried out in collaboration with T.A. Instruments Ltd. Publications: 1. J.P. Hughes, T.E.R Jones, J.M. Davies, *End effects in concentric cylinder rheometry', Proc. 12"^ Int. Congress on Rheology, (1996) 391. 2. J.P. Hughes, J.M. Davies, T.E.R. Jones, ^Concentric cylinder end effects and fluid inertia effects in controlled stress rheometry, Part I: Numerical simulation', accepted for publication in J.N.N.F.M. Signed ...^.^Ms>3.\^^. Date Ik.lp.^.m FLUH) INERTIA AND END EFFECTS IN RHEOMETER FLOWS Jason Peter Hughes Abstract This thesis is concerned with the characterisation of the flow behaviour of inelastic and viscoelastic fluids in steady shear and oscillatory shear flows on commercially available rheometers.
    [Show full text]
  • Lecture 1: Introduction
    Lecture 1: Introduction E. J. Hinch Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties. In general, these differences arise because the fluid has a microstructure that influences the flow. In section 2, we will present a collection of some of the interesting phenomena arising from flow nonlinearities, the inhibition of stretching, elastic effects and normal stresses. In section 3 we will discuss a variety of devices for measuring material properties, a process known as rheometry. 1 Fluid Mechanical Preliminaries The equations of motion for an incompressible fluid of unit density are (for details and derivation see any text on fluid mechanics, e.g. [1]) @u + (u · r) u = r · S + F (1) @t r · u = 0 (2) where u is the velocity, S is the total stress tensor and F are the body forces. It is customary to divide the total stress into an isotropic part and a deviatoric part as in S = −pI + σ (3) where tr σ = 0. These equations are closed only if we can relate the deviatoric stress to the velocity field (the pressure field satisfies the incompressibility condition). It is common to look for local models where the stress depends only on the local gradients of the flow: σ = σ (E) where E is the rate of strain tensor 1 E = ru + ruT ; (4) 2 the symmetric part of the the velocity gradient tensor. The trace-free requirement on σ and the physical requirement of symmetry σ = σT means that there are only 5 independent components of the deviatoric stress: 3 shear stresses (the off-diagonal elements) and 2 normal stress differences (the diagonal elements constrained to sum to 0).
    [Show full text]
  • 20. Rheology & Linear Elasticity
    20. Rheology & Linear Elasticity I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 20. Rheology & Linear Elasticity Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slide-lava 10/29/18 GG303 2 20. Rheology & Linear Elasticity Ductile (plastic) Behavior http://www.hilo.hawaii.edu/~csav/gallery/scientists/LavaHammerL.jpg http://hvo.wr.usgs.gov/kilauea/update/images.html 10/29/18 GG303 3 http://upload.wikimedia.org/wikipedia/commons/8/89/Ropy_pahoehoe.jpg 20. Rheology & Linear Elasticity Elastic Behavior https://thegeosphere.pbworks.com/w/page/24663884/Sumatra http://www.earth.ox.ac.uk/__Data/assets/image/0006/3021/seismic_hammer.jpg 10/29/18 GG303 4 20. Rheology & Linear Elasticity Brittle Behavior (fracture) 10/29/18 GG303 5 http://upload.wikimedia.org/wikipedia/commons/8/89/Ropy_pahoehoe.jpg 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior A Elasticity 1 Deformation is reversible when load is removed 2 Stress (σ) is related to strain (ε) 3 Deformation is not time dependent if load is constant 4 Examples: Seismic (acoustic) waves, http://www.fordogtrainers.com rubber ball 10/29/18 GG303 6 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior A Elasticity 1 Deformation is reversible when load is removed 2 Stress (σ) is related to strain (ε) 3 Deformation is not time dependent if load is constant 4 Examples: Seismic (acoustic) waves, rubber ball 10/29/18 GG303 7 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior B Viscosity 1 Deformation is irreversible when load is removed 2 Stress (σ) is related to strain rate (ε ! ) 3 Deformation is time dependent if load is constant 4 Examples: Lava flows, corn syrup http://wholefoodrecipes.net 10/29/18 GG303 8 20.
    [Show full text]
  • Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems
    NfST Nisr National institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 946 Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems Vincent A. Hackley and Chiara F. Ferraris rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.
    [Show full text]
  • Chapter 3 Newtonian Fluids
    CM4650 Chapter 3 Newtonian Fluid 1/23/2020 Mechanics Chapter 3: Newtonian Fluids CM4650 Polymer Rheology Michigan Tech Navier-Stokes Equation v vv p 2 v g t 1 © Faith A. Morrison, Michigan Tech U. Chapter 3: Newtonian Fluid Mechanics TWO GOALS •Derive governing equations (mass and momentum balances •Solve governing equations for velocity and stress fields QUICK START V W x First, before we get deep into 2 v (x ) H derivation, let’s do a Navier-Stokes 1 2 x1 problem to get you started in the x3 mechanics of this type of problem solving. 2 © Faith A. Morrison, Michigan Tech U. 1 CM4650 Chapter 3 Newtonian Fluid 1/23/2020 Mechanics EXAMPLE: Drag flow between infinite parallel plates •Newtonian •steady state •incompressible fluid •very wide, long V •uniform pressure W x2 v1(x2) H x1 x3 3 EXAMPLE: Poiseuille flow between infinite parallel plates •Newtonian •steady state •Incompressible fluid •infinitely wide, long W x2 2H x1 x3 v (x ) x1=0 1 2 x1=L p=Po p=PL 4 2 CM4650 Chapter 3 Newtonian Fluid 1/23/2020 Mechanics Engineering Quantities of In more complex flows, we can use Interest general expressions that work in all cases. (any flow) volumetric ⋅ flow rate ∬ ⋅ | average 〈 〉 velocity ∬ Using the general formulas will Here, is the outwardly pointing unit normal help prevent errors. of ; it points in the direction “through” 5 © Faith A. Morrison, Michigan Tech U. The stress tensor was Total stress tensor, Π: invented to make the calculation of fluid stress easier. Π ≡ b (any flow, small surface) dS nˆ Force on the S ⋅ Π surface V (using the stress convention of Understanding Rheology) Here, is the outwardly pointing unit normal of ; it points in the direction “through” 6 © Faith A.
    [Show full text]
  • A Fluid Is Defined As a Substance That Deforms Continuously Under Application of a Shearing Stress, Regardless of How Small the Stress Is
    FLUID MECHANICS & BIOTRIBOLOGY CHAPTER ONE FLUID STATICS & PROPERTIES Dr. ALI NASER Fluids Definition of fluid: A fluid is defined as a substance that deforms continuously under application of a shearing stress, regardless of how small the stress is. To study the behavior of materials that act as fluids, it is useful to define a number of important fluid properties, which include density, specific weight, specific gravity, and viscosity. Density is defined as the mass per unit volume of a substance and is denoted by the Greek character ρ (rho). The SI units for ρ are kg/m3. Specific weight is defined as the weight per unit volume of a substance. The SI units for specific weight are N/m3. Specific gravity S is the ratio of the weight of a liquid at a standard reference temperature to the o weight of water. For example, the specific gravity of mercury SHg = 13.6 at 20 C. Specific gravity is a unit-less parameter. Density and specific weight are measures of the “heaviness” of a fluid. Example: What is the specific gravity of human blood, if the density of blood is 1060 kg/m3? Solution: ⁄ ⁄ Viscosity, shearing stress and shearing strain Viscosity is a measure of a fluid's resistance to flow. It describes the internal friction of a moving fluid. A fluid with large viscosity resists motion because its molecular makeup gives it a lot of internal friction. A fluid with low viscosity flows easily because its molecular makeup results in very little friction when it is in motion. Gases also have viscosity, although it is a little harder to notice it in ordinary circumstances.
    [Show full text]
  • The Abbott Guide to Rheology Prof Steven Abbott
    The Abbott Guide to Rheology Prof Steven Abbott Steven Abbott TCNF Ltd, Ipswich, UK and Visiting Professor, University of Leeds, UK [email protected] www.stevenabbott.co.uk Version history: First words written 7 November 2018 First draft issued 25 November 2018 Version 1.0.0 8 December 2018 Version 1.0.1 9 December 2018 Version 1.0.2 16 October 2019 Copyright © 2018/9 Steven Abbott This book is distributed under the Creative Commons BY-ND, Attribution and No-Derivatives license. Contents Preface 4 1 Setting the scene 6 1.1 Never measure a viscosity 8 2 Shear-rate dependent viscosity 10 2.1.1 Shear thinning and your process 12 2.1.2 What causes shear thinning? 13 2.1 Thixotropy 17 2.1.1 What to do with the relaxation times 19 2.1.2 What to do with thixotropy measurements 21 3 Yield Stress 22 3.1 Yield Strain 25 3.2 Using yield stress or strain values 26 4 Semi-Solids 27 4.1 G', G'' and tanδ 28 4.1.1 Storage and Loss 30 4.2 TTE/TTS/WLF 30 4.3 How do we use G':G'' and WLF information? 32 4.3.1 Your own G':G'', WLF insights 34 4.4 Are G':G'' all we need? 35 5 Interconversions 36 5.1 Relaxation and creep 37 5.2 The power of interconversions 40 5.3 Entanglement 43 5.4 Mc from Likhtman-McLeish theory 45 5.5 Impossible interconversions? 47 5.6 What can we do with interconversions? 48 6 Beyond linearity 49 6.1 LAOS 49 7 Particle rheology 50 7.1 Low Shear and Yield Stress 50 7.1.1 Yield stress 52 7.1.2 Microrheology 53 7.2 High Shear 54 7.2.1 Increasing φm 55 7.3 Particle Size Distributions 56 7.4 Hydrodynamic and Brownian modes 58 7.4.1 The Péclet number 59 7.5 Shear thickening 60 7.6 Can we apply particle rheology to the real world? 61 8 Summary 63 Preface "Maybe we should check out the rheology of this system" is the sort of sentence that can create panic and alarm in many people.
    [Show full text]
  • Ductile Deformation - Concepts of Finite Strain
    327 Ductile deformation - Concepts of finite strain Deformation includes any process that results in a change in shape, size or location of a body. A solid body subjected to external forces tends to move or change its displacement. These displacements can involve four distinct component patterns: - 1) A body is forced to change its position; it undergoes translation. - 2) A body is forced to change its orientation; it undergoes rotation. - 3) A body is forced to change size; it undergoes dilation. - 4) A body is forced to change shape; it undergoes distortion. These movement components are often described in terms of slip or flow. The distinction is scale- dependent, slip describing movement on a discrete plane, whereas flow is a penetrative movement that involves the whole of the rock. The four basic movements may be combined. - During rigid body deformation, rocks are translated and/or rotated but the original size and shape are preserved. - If instead of moving, the body absorbs some or all the forces, it becomes stressed. The forces then cause particle displacement within the body so that the body changes its shape and/or size; it becomes deformed. Deformation describes the complete transformation from the initial to the final geometry and location of a body. Deformation produces discontinuities in brittle rocks. In ductile rocks, deformation is macroscopically continuous, distributed within the mass of the rock. Instead, brittle deformation essentially involves relative movements between undeformed (but displaced) blocks. Finite strain jpb, 2019 328 Strain describes the non-rigid body deformation, i.e. the amount of movement caused by stresses between parts of a body.
    [Show full text]