20. Rheology & Linear Elasticity

Total Page:16

File Type:pdf, Size:1020Kb

20. Rheology & Linear Elasticity 20. Rheology & Linear Elasticity I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 20. Rheology & Linear Elasticity Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slide-lava 10/29/18 GG303 2 20. Rheology & Linear Elasticity Ductile (plastic) Behavior http://www.hilo.hawaii.edu/~csav/gallery/scientists/LavaHammerL.jpg http://hvo.wr.usgs.gov/kilauea/update/images.html 10/29/18 GG303 3 http://upload.wikimedia.org/wikipedia/commons/8/89/Ropy_pahoehoe.jpg 20. Rheology & Linear Elasticity Elastic Behavior https://thegeosphere.pbworks.com/w/page/24663884/Sumatra http://www.earth.ox.ac.uk/__Data/assets/image/0006/3021/seismic_hammer.jpg 10/29/18 GG303 4 20. Rheology & Linear Elasticity Brittle Behavior (fracture) 10/29/18 GG303 5 http://upload.wikimedia.org/wikipedia/commons/8/89/Ropy_pahoehoe.jpg 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior A Elasticity 1 Deformation is reversible when load is removed 2 Stress (σ) is related to strain (ε) 3 Deformation is not time dependent if load is constant 4 Examples: Seismic (acoustic) waves, http://www.fordogtrainers.com rubber ball 10/29/18 GG303 6 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior A Elasticity 1 Deformation is reversible when load is removed 2 Stress (σ) is related to strain (ε) 3 Deformation is not time dependent if load is constant 4 Examples: Seismic (acoustic) waves, rubber ball 10/29/18 GG303 7 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior B Viscosity 1 Deformation is irreversible when load is removed 2 Stress (σ) is related to strain rate (ε ! ) 3 Deformation is time dependent if load is constant 4 Examples: Lava flows, corn syrup http://wholefoodrecipes.net 10/29/18 GG303 8 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior B Viscosity 1 Deformation is irreversible when load is removed 2 Stress (σ) is related to strain rate (ε ! ) 3 Deformation is time dependent if load is constant 4 Examples: Lava flows, corn syrup 10/29/18 GG303 9 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior C Plasticity 1 No deformation until yield strength is locally exceeded; then irreversible deformation occurs under a constant load 2 Deformation can increase with time under a constant load 3 Examples: plastics, soils http://www.therapyputty.com/images/stretch6.jpg 10/29/18 GG303 10 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior C Brittle Deformation 1 Discontinuous deformation 2 Failure surfaces separate http://www.thefeeherytheory.com 10/29/18 GG303 11 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior D Elasto-plastic rheology 10/29/18 GG303 12 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior E Visco-plastic rheology 10/29/18 GG303 13 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior F Power-law creep n (−Q/RT) 1 ε!= (σ1 − σ3) e 2 Example: rock salt 10/29/18 GG303 14 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior G Linear vs. nonlinear behavior 10/29/18 GG303 15 20. Rheology & Linear Elasticity II Rheology: Macroscopic deformation behavior H Rheology=f (σij ,fluid pressure, strain rate, chemistry, temperature) I Rheologic equation of real rocks = ? 10/29/18 GG303 16 20. Rheology & Linear Elasticity II Rheology (cont.) J Experimental results Axial stress Plastic Elastic Increasing confining pressure Pc = confining pressure Compression test data on Tennessee marble II from Wawersik and Fairhurst, 1970 10/29/18 GG303 17 20. Rheology & Linear Elasticity III Linear elasticity x A Force and displacement F of a spring (from Hooke, 1676): F= kx 1 F = force 2 k = spring constant k Dimensions:F/L F 3 x = displacement Dimensions: length L) x 10/29/18 GG303 18 20. Rheology & Linear Elasticity σ III Linear elasticity (cont.) B Hooke’s Law for L0+ΔL L0 uniaxial stress: σ = Eε ε=ΔL/L0 1 σ = uniaxial stress 2 E = Young’s modulus Dimensions: stress E 3 ε = strain σ (elongation) Dimensionless ε 10/29/18 GG303 19 20. Rheology & Linear Elasticity Typical rock moduli and strengths Young’s Poisson’s Modulus Ratio (GPa) Uniaxial Strengths (MPa) Rock type Emin Emax νmin νmax Rock type Tensile Tensile Comp. Comp. (low) (high) (low) (high) Quartzite 70 105 0.11 0.25 Quartzite 17 28 200 304 Gneiss 16 103 0.10 0.40 Gneiss 3 21 73 340 Basalt 16 101 0.13 0.38 Basalt 2 28 42 355 Granite 10 74 0.10 0.39 Granite 3 39 30 324 Limestone 1 92 0.08 0.39 Limestone 2 40 48 210 Sandstone 10 46 0.10 0.40 Sandstone 3 7 40 179 Shale 10 44 0.10 0.19 Shale 2 5 36 172 Coal 1.5 3.7 0.33 0.37 Coal 1.9 3.2 14 30 10/29/18 GG303 20 20. Rheology & Linear Elasticity σ1 III Linear elasticity (cont.) B Hooke’s Law for uniaxial L +ΔL stress (cont.): ε1 = σ1/E 0 L0 ε=ΔL/L0 1 σ2 = σ3 = 0 2 ε2 = ε3 = -νε1 a ν = Poisson’s ratio b ν is diMensionless c Strain in one direction tends to induce strain in another direction 10/29/18 GG303 21 20. Rheology & Linear Elasticity σ1 III Linear elasticity (cont.) C Linear elasticity in 3D for L +ΔL 0 L0 homogeneous isotropic ε=ΔL/L0 materials By superposition: 1 εxx = σxx/E – (σyy+σzz)(ν/E) 2 εyy = σyy/E – (σzz+σxx)(ν/E) 3 εzz = σzz/E – (σxx+σyy)(ν/E) 10/29/18 GG303 22 20. Rheology & Linear Elasticity σ1 III Linear elasticity (cont.) C Linear elasticity in 3D for homogeneous isotropic L0+ΔL L0 ε=ΔL/L materials (cont.) 0 4 Directions of principal stresses and principal strains coincide 5 Extension in one direction can occur without tension 6 Compression in one direction can occur without shortening 10/29/18 GG303 23 20. Rheology & Linear Elasticity III Linear elasticity E Special cases 1 Isotropic (hydrostatic) stress a σ1 = σ2 = σ3 b No shear stress 2 Uniaxial strain x a εxx= ε1≠ 0 b εyy = εzz = 0 10/29/18 GG303 24 20. Rheology & Linear Elasticity III Linear elasticity E Special cases 3 Plane stress (2D) σz = 0 “Thin plate” case 4 Plane strain (2D) εz = 0 a Displacement in z- direction is constant (e.g., zero) b Plate is confined between rigid walls c “Thick plate” case 10/29/18 GG303 25 20. Rheology & Linear Elasticity III Linear elasticity E Special cases 5 Pure shear stress (2D) σxx= -σyy; σzz=0 10/29/18 GG303 26 20. Rheology & Linear Elasticity III Linear elasticity F Strain energy (W0) for uniaxial stress σxxdydz 1 2 W = (1/2)(σxxdydz) (εxxdx) ε dx 3 W = (1/2) (σxxεxx) (dxdydz) xx 4 W0 = W/(dxdydz) W0 = strain energy density 5 W0 = (1/2)(σxxεxx) 10/29/18 GG303 27 20. Rheology & Linear Elasticity IIILinear elasticity G Strain energy (W0) in 3D σxxdydz W0 = (1/2)(σ1ε1+σ2ε2+σ3ε3) εxxdx 10/29/18 GG303 28 20. Rheology & Linear Elasticity III Linear elasticity 4 β = compressibility D Relationships among β = 1/K different elastic moduli ∆ = εxx+εyy+ εzz= -p/K 1 G = μ = shear modulus p = pressure G = E/(2[1+ν]) 5 P-wave speed: Vp ε = σ /2G xy xy ⎛ 4 ⎞ 2 λ = Lame' constant Vp = K + µ ρ ⎝⎜ 3 ⎠⎟ λ = Ev/([1 + ν][1 - 2ν]) 6 S-wave speed: Vs 3 K = bulk modulus K = E/(3[1 - 2ν]) 10/29/18 GG303 29.
Recommended publications
  • 10-1 CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams And
    EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams and Material Behavior 10.2 Material Characteristics 10.3 Elastic-Plastic Response of Metals 10.4 True stress and strain measures 10.5 Yielding of a Ductile Metal under a General Stress State - Mises Yield Condition. 10.6 Maximum shear stress condition 10.7 Creep Consider the bar in figure 1 subjected to a simple tension loading F. Figure 1: Bar in Tension Engineering Stress () is the quotient of load (F) and area (A). The units of stress are normally pounds per square inch (psi). = F A where: is the stress (psi) F is the force that is loading the object (lb) A is the cross sectional area of the object (in2) When stress is applied to a material, the material will deform. Elongation is defined as the difference between loaded and unloaded length ∆푙 = L - Lo where: ∆푙 is the elongation (ft) L is the loaded length of the cable (ft) Lo is the unloaded (original) length of the cable (ft) 10-1 EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy Strain is the concept used to compare the elongation of a material to its original, undeformed length. Strain () is the quotient of elongation (e) and original length (L0). Engineering Strain has no units but is often given the units of in/in or ft/ft. ∆푙 휀 = 퐿 where: is the strain in the cable (ft/ft) ∆푙 is the elongation (ft) Lo is the unloaded (original) length of the cable (ft) Example Find the strain in a 75 foot cable experiencing an elongation of one inch.
    [Show full text]
  • Arxiv:1910.01953V1 [Cond-Mat.Soft] 4 Oct 2019 Tion of the Load
    Geometric charges and nonlinear elasticity of soft metamaterials Yohai Bar-Sinai,1 Gabriele Librandi,1 Katia Bertoldi,1 and Michael Moshe2, ∗ 1School of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138 2Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel 91904 Problems of flexible mechanical metamaterials, and highly deformable porous solids in general, are rich and complex due to nonlinear mechanics and nontrivial geometrical effects. While numeric approaches are successful, analytic tools and conceptual frameworks are largely lacking. Using an analogy with electrostatics, and building on recent developments in a nonlinear geometric formu- lation of elasticity, we develop a formalism that maps the elastic problem into that of nonlinear interaction of elastic charges. This approach offers an intuitive conceptual framework, qualitatively explaining the linear response, the onset of mechanical instability and aspects of the post-instability state. Apart from intuition, the formalism also quantitatively reproduces full numeric simulations of several prototypical structures. Possible applications of the tools developed in this work for the study of ordered and disordered porous mechanical metamaterials are discussed. I. INTRODUCTION tic metamaterials out of an underlying nonlinear theory of elasticity. The hallmark of condensed matter physics, as de- A theoretical analysis of the elastic problem requires scribed by P.W. Anderson in his paper \More is Dif- solving the nonlinear equations of elasticity while satis- ferent" [1], is the emergence of collective phenomena out fying the multiple free boundary conditions on the holes of well understood simple interactions between material edges - a seemingly hopeless task from an analytic per- elements. Within the ever increasing list of such systems, spective.
    [Show full text]
  • Impulse and Momentum
    Impulse and Momentum All particles with mass experience the effects of impulse and momentum. Momentum and inertia are similar concepts that describe an objects motion, however inertia describes an objects resistance to change in its velocity, and momentum refers to the magnitude and direction of it's motion. Momentum is an important parameter to consider in many situations such as braking in a car or playing a game of billiards. An object can experience both linear momentum and angular momentum. The nature of linear momentum will be explored in this module. This section will discuss momentum and impulse and the interconnection between them. We will explore how energy lost in an impact is accounted for and the relationship of momentum to collisions between two bodies. This section aims to provide a better understanding of the fundamental concept of momentum. Understanding Momentum Any body that is in motion has momentum. A force acting on a body will change its momentum. The momentum of a particle is defined as the product of the mass multiplied by the velocity of the motion. Let the variable represent momentum. ... Eq. (1) The Principle of Momentum Recall Newton's second law of motion. ... Eq. (2) This can be rewritten with accelleration as the derivate of velocity with respect to time. ... Eq. (3) If this is integrated from time to ... Eq. (4) Moving the initial momentum to the other side of the equation yields ... Eq. (5) Here, the integral in the equation is the impulse of the system; it is the force acting on the mass over a period of time to .
    [Show full text]
  • SMALL DEFORMATION RHEOLOGY for CHARACTERIZATION of ANHYDROUS MILK FAT/RAPESEED OIL SAMPLES STINE RØNHOLT1,3*, KELL MORTENSEN2 and JES C
    bs_bs_banner A journal to advance the fundamental understanding of food texture and sensory perception Journal of Texture Studies ISSN 1745-4603 SMALL DEFORMATION RHEOLOGY FOR CHARACTERIZATION OF ANHYDROUS MILK FAT/RAPESEED OIL SAMPLES STINE RØNHOLT1,3*, KELL MORTENSEN2 and JES C. KNUDSEN1 1Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark 2Niels Bohr Institute, University of Copenhagen, Copenhagen Ø, Denmark KEYWORDS ABSTRACT Method optimization, milk fat, physical properties, rapeseed oil, rheology, structural Samples of anhydrous milk fat and rapeseed oil were characterized by small analysis, texture evaluation amplitude oscillatory shear rheology using nine different instrumental geometri- cal combinations to monitor elastic modulus (G′) and relative deformation 3 + Corresponding author. TEL: ( 45)-2398-3044; (strain) at fracture. First, G′ was continuously recorded during crystallization in a FAX: (+45)-3533-3190; EMAIL: fluted cup at 5C. Second, crystallization of the blends occurred for 24 h, at 5C, in [email protected] *Present Address: Department of Pharmacy, external containers. Samples were gently cut into disks or filled in the rheometer University of Copenhagen, Universitetsparken prior to analysis. Among the geometries tested, corrugated parallel plates with top 2, 2100 Copenhagen Ø, Denmark. and bottom temperature control are most suitable due to reproducibility and dependence on shear and strain. Similar levels for G′ were obtained for samples Received for Publication May 14, 2013 measured with parallel plate setup and identical samples crystallized in situ in the Accepted for Publication August 5, 2013 geometry. Samples measured with other geometries have G′ orders of magnitude lower than identical samples crystallized in situ.
    [Show full text]
  • On Nonlinear Strain Theory for a Viscoelastic Material Model and Its Implications for Calving of Ice Shelves
    Journal of Glaciology (2019), 65(250) 212–224 doi: 10.1017/jog.2018.107 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re- use or in order to create a derivative work. On nonlinear strain theory for a viscoelastic material model and its implications for calving of ice shelves JULIA CHRISTMANN,1,2 RALF MÜLLER,2 ANGELIKA HUMBERT1,3 1Division of Geosciences/Glaciology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany 2Institute of Applied Mechanics, University of Kaiserslautern, Kaiserslautern, Germany 3Division of Geosciences, University of Bremen, Bremen, Germany Correspondence: Julia Christmann <[email protected]> ABSTRACT. In the current ice-sheet models calving of ice shelves is based on phenomenological approaches. To obtain physics-based calving criteria, a viscoelastic Maxwell model is required account- ing for short-term elastic and long-term viscous deformation. On timescales of months to years between calving events, as well as on long timescales with several subsequent iceberg break-offs, deformations are no longer small and linearized strain measures cannot be used. We present a finite deformation framework of viscoelasticity and extend this model by a nonlinear Glen-type viscosity. A finite element implementation is used to compute stress and strain states in the vicinity of the ice-shelf calving front.
    [Show full text]
  • 1 Fluid Flow Outline Fundamentals of Rheology
    Fluid Flow Outline • Fundamentals and applications of rheology • Shear stress and shear rate • Viscosity and types of viscometers • Rheological classification of fluids • Apparent viscosity • Effect of temperature on viscosity • Reynolds number and types of flow • Flow in a pipe • Volumetric and mass flow rate • Friction factor (in straight pipe), friction coefficient (for fittings, expansion, contraction), pressure drop, energy loss • Pumping requirements (overcoming friction, potential energy, kinetic energy, pressure energy differences) 2 Fundamentals of Rheology • Rheology is the science of deformation and flow – The forces involved could be tensile, compressive, shear or bulk (uniform external pressure) • Food rheology is the material science of food – This can involve fluid or semi-solid foods • A rheometer is used to determine rheological properties (how a material flows under different conditions) – Viscometers are a sub-set of rheometers 3 1 Applications of Rheology • Process engineering calculations – Pumping requirements, extrusion, mixing, heat transfer, homogenization, spray coating • Determination of ingredient functionality – Consistency, stickiness etc. • Quality control of ingredients or final product – By measurement of viscosity, compressive strength etc. • Determination of shelf life – By determining changes in texture • Correlations to sensory tests – Mouthfeel 4 Stress and Strain • Stress: Force per unit area (Units: N/m2 or Pa) • Strain: (Change in dimension)/(Original dimension) (Units: None) • Strain rate: Rate
    [Show full text]
  • Computational Rheology (4K430)
    Computational Rheology (4K430) dr.ir. M.A. Hulsen [email protected] Website: http://www.mate.tue.nl/~hulsen under link ‘Computational Rheology’. – Section Polymer Technology (PT) / Materials Technology (MaTe) – Introduction Computational Rheology important for: B Polymer processing B Rheology & Material science B Turbulent flow (drag reduction phenomena) B Food processing B Biological flows B ... Introduction (Polymer Processing) Analysis of viscoelastic phenomena essential for predicting B Flow induced crystallization kinetics B Flow instabilities during processing B Free surface flows (e.g.extrudate swell) B Secondary flows B Dimensional stability of injection moulded products B Prediction of mechanical and optical properties Introduction (Surface Defects on Injection Molded Parts) Alternating dull bands perpendicular to flow direction with high surface roughness (M. Bulters & A. Schepens, DSM-Research). Introduction (Flow Marks, Two Color Polypropylene) Flow Mark Side view Top view Bottom view M. Bulters & A. Schepens, DSM-Research Introduction (Simulation flow front) 1 0.5 Steady Perturbed H 2y 0 ___ −0.5 −1 0 0.5 1 ___2x H Introduction (Rheology & Material Science) Simulation essential for understanding and predicting material properties: B Polymer blends (morphology, viscosity, normal stresses) B Particle filled viscoelastic fluids (suspensions) B Polymer architecture macroscopic properties (Brownian dynamics (BD), molecular dynamics (MD),⇒ Monte Carlo, . ) Multi-scale. ⇒ Introduction (Solid particles in a viscoelastic fluid) B Microstructure (polymer, particles) B Bulk rheology B Flow induced crystallization Introduction (Multiple particles in a viscoelastic fluid) Introduction (Flow induced crystallization) Introduction (Multi-phase flows) Goal and contents of the course Goal: Introduction of the basic numerical techniques used in Computational Rheology using the Finite Element Method (FEM).
    [Show full text]
  • What Is Hooke's Law? 16 February 2015, by Matt Williams
    What is Hooke's Law? 16 February 2015, by Matt Williams Like so many other devices invented over the centuries, a basic understanding of the mechanics is required before it can so widely used. In terms of springs, this means understanding the laws of elasticity, torsion and force that come into play – which together are known as Hooke's Law. Hooke's Law is a principle of physics that states that the that the force needed to extend or compress a spring by some distance is proportional to that distance. The law is named after 17th century British physicist Robert Hooke, who sought to demonstrate the relationship between the forces applied to a spring and its elasticity. He first stated the law in 1660 as a Latin anagram, and then published the solution in 1678 as ut tensio, sic vis – which translated, means "as the extension, so the force" or "the extension is proportional to the force"). This can be expressed mathematically as F= -kX, where F is the force applied to the spring (either in the form of strain or stress); X is the displacement A historical reconstruction of what Robert Hooke looked of the spring, with a negative value demonstrating like, painted in 2004 by Rita Greer. Credit: that the displacement of the spring once it is Wikipedia/Rita Greer/FAL stretched; and k is the spring constant and details just how stiff it is. Hooke's law is the first classical example of an The spring is a marvel of human engineering and explanation of elasticity – which is the property of creativity.
    [Show full text]
  • Crack Tip Elements and the J Integral
    EN234: Computational methods in Structural and Solid Mechanics Homework 3: Crack tip elements and the J-integral Due Wed Oct 7, 2015 School of Engineering Brown University The purpose of this homework is to help understand how to handle element interpolation functions and integration schemes in more detail, as well as to explore some applications of FEA to fracture mechanics. In this homework you will solve a simple linear elastic fracture mechanics problem. You might find it helpful to review some of the basic ideas and terminology associated with linear elastic fracture mechanics here (in particular, recall the definitions of stress intensity factor and the nature of crack-tip fields in elastic solids). Also check the relations between energy release rate and stress intensities, and the background on the J integral here. 1. One of the challenges in using finite elements to solve a problem with cracks is that the stress field at a crack tip is singular. Standard finite element interpolation functions are designed so that stresses remain finite a everywhere in the element. Various types of special b c ‘crack tip’ elements have been designed that 3L/4 incorporate the singularity. One way to produce a L/4 singularity (the method used in ABAQUS) is to mesh L the region just near the crack tip with 8 noded elements, with a special arrangement of nodal points: (i) Three of the nodes (nodes 1,4 and 8 in the figure) are connected together, and (ii) the mid-side nodes 2 and 7 are moved to the quarter-point location on the element side.
    [Show full text]
  • Linear Elasticity
    10 Linear elasticity When you bend a stick the reaction grows noticeably stronger the further you go — until it perhaps breaks with a snap. If you release the bending force before it breaks, the stick straightens out again and you can bend it again and again without it changing its reaction or its shape. That is elasticity. Robert Hooke (1635–1703). In elementary mechanics the elasticity of a spring is expressed by Hooke’s law English physicist. Worked on elasticity, built tele- which says that the force necessary to stretch or compress a spring is propor- scopes, and the discovered tional to how much it is stretched or compressed. In continuous elastic materials diffraction of light. The Hooke’s law implies that stress is proportional to strain. Some materials that we famous law which bears his name is from 1660. usually think of as highly elastic, for example rubber, do not obey Hooke’s law He stated already in 1678 except under very small deformation. When stresses grow large, most materials the inverse square law for gravity, over which he deform more than predicted by Hooke’s law. The proper treatment of non-linear got involved in a bitter elasticity goes far beyond the simple linear elasticity which we shall discuss in controversy with Newton. this book. The elastic properties of continuous materials are determined by the under- lying molecular structure, but the relation between material properties and the molecular structure and arrangement in solids is complicated, to say the least. Luckily, there are broad classes of materials that may be described by a few Thomas Young (1773–1829).
    [Show full text]
  • Linear Elastostatics
    6.161.8 LINEAR ELASTOSTATICS J.R.Barber Department of Mechanical Engineering, University of Michigan, USA Keywords Linear elasticity, Hooke’s law, stress functions, uniqueness, existence, variational methods, boundary- value problems, singularities, dislocations, asymptotic fields, anisotropic materials. Contents 1. Introduction 1.1. Notation for position, displacement and strain 1.2. Rigid-body displacement 1.3. Strain, rotation and dilatation 1.4. Compatibility of strain 2. Traction and stress 2.1. Equilibrium of stresses 3. Transformation of coordinates 4. Hooke’s law 4.1. Equilibrium equations in terms of displacements 5. Loading and boundary conditions 5.1. Saint-Venant’s principle 5.1.1. Weak boundary conditions 5.2. Body force 5.3. Thermal expansion, transformation strains and initial stress 6. Strain energy and variational methods 6.1. Potential energy of the external forces 6.2. Theorem of minimum total potential energy 6.2.1. Rayleigh-Ritz approximations and the finite element method 6.3. Castigliano’s second theorem 6.4. Betti’s reciprocal theorem 6.4.1. Applications of Betti’s theorem 6.5. Uniqueness and existence of solution 6.5.1. Singularities 7. Two-dimensional problems 7.1. Plane stress 7.2. Airy stress function 7.2.1. Airy function in polar coordinates 7.3. Complex variable formulation 7.3.1. Boundary tractions 7.3.2. Laurant series and conformal mapping 7.4. Antiplane problems 8. Solution of boundary-value problems 1 8.1. The corrective problem 8.2. The Saint-Venant problem 9. The prismatic bar under shear and torsion 9.1. Torsion 9.1.1. Multiply-connected bodies 9.2.
    [Show full text]
  • Infinitesimal Strain
    GG303 Lecture 15 8/24/03 1 FINITE STRAIN AND INFINITESIMAL STRAIN I Main Topics (on infinitesimal strain) A The finite strain tensor [E] B Deformation paths for finite strain C Infinitesimal strain and the infinitesimal strain tensor ε II The finite strain tensor [E] A Used to find the changes in the squares of lengths of line segments in a deformed body. B Definition of [E] in terms of the deformation gradient tensor [F] Recall the coordinate transformation equations: x′ abx 1 = or [] X′ = [][] F X y′ cdy dx′ abdx 2 = or [] dX′ = [][] F dX dy′ cddy dx T If = []dX, then [ dx dy ]= [] dX ; transposing a matrix is switching dy its rows and columns 222 dx TT 3 ()ds= () dx+ () dy= [] dx dy = [][]dX dX= [][][] dX I dX , dy 10 where I = is the identity matrix. 01 222 dx′ T 4 ()ds′ = () dx′ + () dy′ = [] dx′′ dy = []dX′ [] dX′ dy′ Now dX’ can be expressed as [F][dX] (see eq. II.B.2). Making this substitution into eq. (4) and proceeding with the algebra 2 T TT 5 ()ds′ = [][][] F dX[][][] F dX= [][] dX F[][] F dX 22 TT T 6 ()ds′ − () ds′ = [][] dX F[][] F dX− [][][] dX I dX 22 TT 7 ()ds′ − () ds′ = [][] dX[] F[] F− I[] dX 1 221 TT T 8 ()ds′ − () ds′ = [][] dX F[] F− I[] dX≡ [][][] dX E dX 2{}2 [] 1 T 9 []EF≡ [][]FI− = finite strain tensor 2[] Stephen Martel 15-1 University of Hawaii GG303 Lecture 15 8/24/03 2 IIIDeformation paths Consider two different finite strains described by the following two coordinate transformation equations: ′ ab ax by x1 11x 11+ = = = []FX1 [] y ′ cdy cx+ dy A 1 11 11 Deformation 1 ′ ab ax by
    [Show full text]