Atomic Emission Spectra Experiment

Total Page:16

File Type:pdf, Size:1020Kb

Atomic Emission Spectra Experiment Atomic emission spectra experiment Contents 1 Overview 1 2 Equipment 1 3 Measuring the grating spacing using the sodium D-lines 4 4 Measurement of hydrogen lines and the Rydberg Constant 5 5 Measurement of mercury lines 6 6 Measurement of helium lines 6 A Review of Interference and Diffraction 6 1 Overview In this experiment, we will use a grating spectrometer to measure the emission spectrum of hydrogen, mercury and helium gas. We will measure the Rydberg constant, and identify as many atomic transitions as possible. Remember that you will be graded on the clarity and completeness of your report, the accuracy of your experimental data and calculations, and the insightfulness of your conclusions. 2 Equipment 1. Spectrometer (Sargent-Welch, Model S-75903-80) 2. Diffraction grating (6000 lines per centimeter, black block says “down” on one side) 3. Hydrogen, mercury and helium discharge tubes 4. Discharge tube power supply (5kV, 10 mA) 5. High intensity mercury and sodium discharge lamp 1 Figure 1: Clockwise from left: spectrometer, discharge tube power supply with hydrogen tube, spare tube box, spectrometer light shields, and diffraction grating. 2 Spectrometer components The collimator is an optical device used to direct a narrow beam of parallel light at the prism (or grating). It is rigidly attached to the base and is factory adjusted to have its optical axis perpendicular to the central vertical axis of the instrument. At the front of the collimator is an adjustable slit designed to operate smoothly and retain good parallelism of jaws at all slit openings. The telescope is the optical instrument used to view the emergent light. It is rigidly attached to a bracket supported on the central shaft in such a way that its optical axis is always at the same plane as the optical axis of the collimator, yet it can be rotated about the axis of the prism table and clamped independently. It contains a focusing eyepiece and a built in cross hair. The eyepiece tube is provided with a small opening into which light may be passed to illuminate the cross-hairs. This is particularly useful for viewing faint spectra when the background setting is too dark to make the cross-hair setting precise. The cross-hairs can be illuminated through a small hole above the eyepiece. The prism table is used to hold the prism or grating in alignment with the telescope and collimator. It can be rotated through 360 degrees or locked in position with the locking screw beneath the table. Its top surface is parallel to the optical axis of the telescope and collimator. A vertical post and spring hold the prism or grating rigidly on the table. An especially designed light shield is provided to eliminate stray light. The shield consists of an inner sleeve and an outer hood. The degree scale and the angstrom scales are mounted on the base. The outermost scale is the master angstrom scale. It is rigidly attached to the base and is immovable. The outer scale on the rotatable center dial is the vernier for the master angstrom scale. One side of the vernier is labeled for use with the prism while the other side is labeled for use with the grating. The innermost scale is the degree scale. Spectrometer setup The spectrometer is a precision instrument and rather expensive; please treat it with care. Note that the movable parts that can rotate, such as the grating table and the telescope arm, have clamping screws. DO NOT FORCIBLY MOVE ONE OF THESE PARTS WITH THE CLAMP SCREW TIGHT. IF ANY PART THAT YOU WANT TO TURN RESISTS MOVEMENT, ASK THE INSTRUCTOR FOR HELP. 1. Adjust the telescope for parallel rays (a) Point the telescope at some distant object through an open window or at the far wall of a large room (b) Focus the eyepiece on the cross hairs in the telescope by first withdrawing the eyepiece and then slowly pushing it inward with a slight turning motion until the cross hairs appear in sharp focus. 3 (c) Move the telescope sleeve out or in until the object selected is in clear focus (d) Test for parallax between cross hairs and distant object by moving the head slightly to left and right while sighting through the telescope. If any relative motion appears between the two, repeat the previous two steps until no par- allax can be observed. The telescope is now in proper adjustment and should remain so. However it is good practice to recheck the adjustment periodically by repeating the above procedure. 2. Adjust the collimator for parallel rays (a) Having first adjusted the telescope, rotate the telescope arm until the telescope and collimator tubes are aligned end to end. (b) Direct the instrument toward a light wall or white paper. Open the adjustable slit wide to admit plenty of light. (c) Sight on the slit through the telescope and adjust the slit tube in and out of the collimator tube until the slit edges are in sharp focus and parallax between cross hairs an d slit image has been eliminated. The collimator is not adjusted. In any subsequent applications, if the instrument appears to be out of focus, first readjust the eyepiece to obtain sharp focus on the cross hairs. Then, if the slit is out of focus or parallax exists, repeat all steps in the given order above. 3 Measuring the grating spacing using the sodium D-lines The diffraction grating supplied has a nominal number of lines per inch of 15,000 (or 6000 per centimeter), but this should not be considered precise. One always finds the grating spacing, d, from a known optical wavelength because this is much more accurate than the control of grating manufacture. We will use the bright doublet known as the sodium D-lines, with wavelengths λ1 = 588.996nm and λ2 = 589.593nm. First, make the room as dark as possible. Turn of the overhead lights. Use a small pen light for use in reading your notes and the dials of the spectrometer. This will allow your eyes to remain adjusted to the darkness. Use the sodium lamp as the light source for the spectrometer. After focusing the spectrometer, adjust the slit width until the sodium yellow line is resolved. Adjust the position of the tube until the lines are as brilliant as possible. Record, as shown in Tab.1, the angular settings of the sodium d-line. You should use the vernier scale so as to read the angle to within a tenth of a degree. Also record the order number, m, of each measured yellow line and the angular position of the central maxima. Use this data to compute the grating spacing. If the deviations of the line to the left and the right of the central maximum differ by more than a degree, readjust the orientation of the grating until they are made more nearly 4 order angular m position 2θm θm sin θm m λ mλ d 1 (+) 1 (−) 2 (+) 2 (−) Table 1: Data table used to compute grating spacing. equal. If the diffracted lines to the right of the central maximum are much lower or higher in the field of view than the lines to the left, the table holding the grating is not level. This condition can be corrected by using the leveling screws. What is the diffraction grating spacing? How would your pattern look different if you had used a shorter wavelength light, such as blue light? Would this change your measured values of the slit spacing and slit width? Finally, identify the atomic transition that gives rise to the sodium D-lines. Why is this a doublet (as opposed to, say, a singlet or a triplet.) 4 Measurement of hydrogen lines and the Rydberg Constant Place a hydrogen discharge tube in the power supply and the diffraction grating on the table in the spectrometer. Place the entrance slit of the spectrometer as close as possible to the hydrogen tube without touching. Find the position of the spectrometer for which the hydrogen lines are as brilliant as possible. Record the angular positions, to the left and right of the central image, of all the hydrogen lines that are visible, in both first and second orders. These lines should include a red one, a blue-green one and a violet one. A far-violet one may also be visible, but the far-violet line is very faint and requires good eyes as well as optimum adjustment of the slit width, and reduction of background light, to perceive it at all. These lines are listed in reverse order as seen when going left or right from the central maximum (i.e. you will first see the violet, then blue-green, and then red). Record the angular positions of the lines you can see from both orders as shown in Tab.2 From your data and the grating spacing which you determined from the sodium D-lines in your previous experiment, determine the wavelength of each of the observed hydrogen lines. Plot your values of 1/λ against 1/n2. What shape do you expect for this graph? Does your data fit this? Make use of the Rydberg formula 1 1 1 = R 2 − 2 (1) λ n1 n2 where n1 and n2 are the various n values of the terms, to analyze your graph. From the slope of the graph, deduce the value of the Rydberg constant, R, and compare it with the accepted value. From the intercept, compute the series limit. Compare this to the Balmer 5 color angular 2 order position 2θm θm sin θm m d d sin θm λ 1/λ 1/n 1/n (+) (−) (+) (−) (+) (−) (+) (−) Table 2: Example data table used to compute hydrogen spectrum.
Recommended publications
  • Toward Quantum Simulation with Rydberg Atoms Thanh Long Nguyen
    Study of dipole-dipole interaction between Rydberg atoms : toward quantum simulation with Rydberg atoms Thanh Long Nguyen To cite this version: Thanh Long Nguyen. Study of dipole-dipole interaction between Rydberg atoms : toward quantum simulation with Rydberg atoms. Physics [physics]. Université Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066695. tel-01609840 HAL Id: tel-01609840 https://tel.archives-ouvertes.fr/tel-01609840 Submitted on 4 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DÉPARTEMENT DE PHYSIQUE DE L’ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : PHYSIQUE QUANTIQUE Study of dipole-dipole interaction between Rydberg atoms Toward quantum simulation with Rydberg atoms présentée par Thanh Long NGUYEN pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Soutenue le 18/11/2016 devant le jury composé de : Dr. Michel BRUNE Directeur de thèse Dr. Thierry LAHAYE Rapporteur Pr. Shannon WHITLOCK Rapporteur Dr. Bruno LABURTHE-TOLRA Examinateur Pr. Jonathan HOME Examinateur Pr. Agnès MAITRE Examinateur To my parents and my brother To my wife and my daughter ii Acknowledgement “Voici mon secret.
    [Show full text]
  • The Hydrogen Atom (Finite Difference Equation/Discrete Wave Vectors/Bohr-Rydberg Formula) FREDERICK T
    Proc. Natl. Acad. Sci. USA Vol. 83, pp. 5753-5755, August 1986 Chemistry Discrete wave mechanics: The hydrogen atom (finite difference equation/discrete wave vectors/Bohr-Rydberg formula) FREDERICK T. WALL Department of Chemistry, B-017, University of California at San Diego, La Jolla, CA 92093 Contributed by Frederick T. Wall, March 31, 1986 ABSTRACT The quantum mechanical problem of the hy- its wave vector energy counterpart.* If V is small compared drogen atom is treated by use of a finite difference equation in to mc2, then V and l9 are substantially the same, but for large place of Schrodinger's differential equation. The exact solu- negative values of V, the two can be significantly different. tion leads to a wave vector energy expression that is readily The next question to be answered is how the potential en- converted to the Bohr-Rydberg formula. (The calculations ergy is introduced into the finite difference equation. In our here reported are limited to spherically symmetric states.) The problem, we shall write that wave vectors reduce to the familiar solutions of Schrodinger's equation as c -- w. The internal consistency and limiting be- O(r - A) - 2(X + V/mc2)4(r) + /(r + A) = 0, [2] havior provide support for the view that the equations em- ployed could well constitute an approach to a relativistic for- with mulation of wave mechanics. X = = (1 - 26/E)"2 [3] In an earlier paper (1), I set forth a simple difference equa- EI/E tion for the wave mechanical description of a free particle. This was accompanied by a postulatory basis for interpreting where & is the wave vector energy, and certain parameters related to the energy, thus appearing to provide a possible connection to relativity.
    [Show full text]
  • Note to 8.13 Students
    Note to 8.13 students: Feel free to look at this paper for some suggestions about the lab, but please reference/acknowledge me as if you had read my report or spoken to me in person. Also note that this is only one way to do the lab and data analysis, and there are nearly an infinite number of other things to do that would be better. I made some mistakes doing this lab. Here are a couple I found (and some more tips): Use a smaller step and get more precise data than what we had. Then fit • a curve, don’t just pick out a peak. The Hg calibration is actually something like a sin wave instead of a cubic. • Also don’t follow the old version of Melissionos word for word. They use an optical system with a prism oppose to a diffraction grating. We took data strategically so we could use unweighted fits • The mystery tube was actually N, whoops my bad. We later found a • drawer full of tubes and compared the colors. It was obviously N. Again whoops, it was our first experiment okay?! 1 Optical Spectroscopy Rachel Bowens-Rubin∗ MIT Department of Physics (Dated: July 12, 2010) The spectra of mercury, hydrogen, deuterium, sodium, and an unidentified mystery tube were measured using a monochromator to determine diffrent properties of their spectra. The spectrum of mercury was used to calibrate for error due to optics in the monochronomator. The measurements of the Balmer series lines were used to determine the Rydberg constants for hydrogen and deuterium, 7 7 1 7 7 1 Rh =1.0966 10 0.0002 10 m− and Rd=1.0970 10 0.0003 10 m− .
    [Show full text]
  • Quantum Mechanics for Beginners OUP CORRECTED PROOF – FINAL, 10/3/2020, Spi OUP CORRECTED PROOF – FINAL, 10/3/2020, Spi
    OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi Quantum Mechanics for Beginners OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi Quantum Mechanics for Beginners with applications to quantum communication and quantum computing M. Suhail Zubairy Texas A&M University 1 OUP CORRECTED PROOF – FINAL, 10/3/2020, SPi 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © M. Suhail Zubairy 2020 The moral rights of the author have been asserted First Edition published in 2020 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing
    [Show full text]
  • Quantum Mechanics
    Quantum Mechanics Richard Fitzpatrick Professor of Physics The University of Texas at Austin Contents 1 Introduction 5 1.1 Intendedaudience................................ 5 1.2 MajorSources .................................. 5 1.3 AimofCourse .................................. 6 1.4 OutlineofCourse ................................ 6 2 Probability Theory 7 2.1 Introduction ................................... 7 2.2 WhatisProbability?.............................. 7 2.3 CombiningProbabilities. ... 7 2.4 Mean,Variance,andStandardDeviation . ..... 9 2.5 ContinuousProbabilityDistributions. ........ 11 3 Wave-Particle Duality 13 3.1 Introduction ................................... 13 3.2 Wavefunctions.................................. 13 3.3 PlaneWaves ................................... 14 3.4 RepresentationofWavesviaComplexFunctions . ....... 15 3.5 ClassicalLightWaves ............................. 18 3.6 PhotoelectricEffect ............................. 19 3.7 QuantumTheoryofLight. .. .. .. .. .. .. .. .. .. .. .. .. .. 21 3.8 ClassicalInterferenceofLightWaves . ...... 21 3.9 QuantumInterferenceofLight . 22 3.10 ClassicalParticles . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 25 3.11 QuantumParticles............................... 25 3.12 WavePackets .................................. 26 2 QUANTUM MECHANICS 3.13 EvolutionofWavePackets . 29 3.14 Heisenberg’sUncertaintyPrinciple . ........ 32 3.15 Schr¨odinger’sEquation . 35 3.16 CollapseoftheWaveFunction . 36 4 Fundamentals of Quantum Mechanics 39 4.1 Introduction ..................................
    [Show full text]
  • Quantum Physics (UCSD Physics 130)
    Quantum Physics (UCSD Physics 130) April 2, 2003 2 Contents 1 Course Summary 17 1.1 Problems with Classical Physics . .... 17 1.2 ThoughtExperimentsonDiffraction . ..... 17 1.3 Probability Amplitudes . 17 1.4 WavePacketsandUncertainty . ..... 18 1.5 Operators........................................ .. 19 1.6 ExpectationValues .................................. .. 19 1.7 Commutators ...................................... 20 1.8 TheSchr¨odingerEquation .. .. .. .. .. .. .. .. .. .. .. .. .... 20 1.9 Eigenfunctions, Eigenvalues and Vector Spaces . ......... 20 1.10 AParticleinaBox .................................... 22 1.11 Piecewise Constant Potentials in One Dimension . ...... 22 1.12 The Harmonic Oscillator in One Dimension . ... 24 1.13 Delta Function Potentials in One Dimension . .... 24 1.14 Harmonic Oscillator Solution with Operators . ...... 25 1.15 MoreFunwithOperators. .. .. .. .. .. .. .. .. .. .. .. .. .... 26 1.16 Two Particles in 3 Dimensions . .. 27 1.17 IdenticalParticles ................................. .... 28 1.18 Some 3D Problems Separable in Cartesian Coordinates . ........ 28 1.19 AngularMomentum.................................. .. 29 1.20 Solutions to the Radial Equation for Constant Potentials . .......... 30 1.21 Hydrogen........................................ .. 30 1.22 Solution of the 3D HO Problem in Spherical Coordinates . ....... 31 1.23 Matrix Representation of Operators and States . ........... 31 1.24 A Study of ℓ =1OperatorsandEigenfunctions . 32 1.25 Spin1/2andother2StateSystems . ...... 33 1.26 Quantum
    [Show full text]
  • The Frequency of Electron Rotation and the Frequency of Light Emitted
    European J of Physics Education Volume 10 Issue 3 1309-7202 Chen THE FREQUENCY OF ELECTRON ROTATION AND THE FREQUENCY OF LIGHT EMITTED Jing Chen University of Northern British Columbia Prince George, BC Canada V2N 4Z9 [email protected] 1-250-960-6480 http://web.unbc.ca/~chenj/ (Received 15.07.2019, Accepted 07.08.2019) Abstract We calculate the frequency of matter-wave of electrons orbiting the hydrogen nucleus at the ground state. It is the same as the value of light frequency corresponding to the ground state from the Rydberg’s formula. The result will stimulate students’ interest to further understand the mechanisms of quantum theory. Keywords: Electron rotation, the Bohr radius, the frequency of light. 20 European J of Physics Education Volume 10 Issue 3 1309-7202 Chen INTRODUCTION The frequency of light emitted from an atom is the difference of energy of an electron at different orbits. However, there is no detailed investigation on the relation between the frequency of electrons orbiting the nucleus and the frequency of light emitted from the atom. We will study this relationship. METHODOLOGY We will consider a hydrogen atom from the classical picture. An electron is rotating around the nucleus. The speed of the electron is v. The mass of the electron is m. Coulomb’s constant is k. The electric charge of the proton and the electron is e. The distance from the electron to the nucleus is r, which has the value of the Bohr radius. Then E, the total energy of the electron rotating around the nucleus is � = 1/2 ��^2 − � �^2/� (1) The electric force on the electron is � = � �^2/�^2 = �� = � �^2/� (2) From (2), � �^2/�^2 = � �^2/� which can be simplified into, �^2 = � �^2/�� Or � = �√(�/��) (3) 21 European J of Physics Education Volume 10 Issue 3 1309-7202 Chen We will calculate f, the frequency of the electron orbiting the nucleus, � = �/2�� = �/2�� √(�/��) (4) Applying the value of each parameter into (4), we get � = 6.5796 × 10^15 (5) This is the frequency of electron orbiting around the hydrogen nucleus at the ground state.
    [Show full text]
  • Relativistic Correction of the Rydberg Formula
    Journal of Modern Physics, 2020, 11, 294-303 https://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 Relativistic Correction of the Rydberg Formula Koshun Suto Chudai-Ji Temple, Isesaki, Japan How to cite this paper: Suto, K. (2020) Abstract Relativistic Correction of the Rydberg Formula. Journal of Modern Physics, 11, The relationship E = −K holds between the energy E and kinetic energy K of 294-303. the electron constituting a hydrogen atom. If the kinetic energy of the elec- https://doi.org/10.4236/jmp.2020.112018 tron is determined based on that relationship, then the energy levels of the Received: January 10, 2020 hydrogen atom are also determined. In classical quantum theory, there is a Accepted: February 18, 2020 formula called the Rydberg formula for calculating the wavelength of a pho- Published: February 21, 2020 ton emitted by an electron. In this paper, in contrast, the formula for the wa- velength of a photon is derived from the relativistic energy levels of a hydro- Copyright © 2020 by author(s) and Scientific Research Publishing Inc. gen atom derived by the author. The results show that, although the Rydberg This work is licensed under the Creative constant is classically a physical constant, it cannot be regarded as a funda- Commons Attribution International mental physical constant if the theory of relativity is taken into account. License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Keywords Open Access Rydberg Formula, Rydberg Constant, Classical Quantum Theory, Energy-Momentum Relationship in a Hydrogen Atom, Relativistic Kinetic Energy 1.
    [Show full text]
  • Квантна Музика Quantum Music
    Квантна музика Quantum I/2018 Music Реч уреднице Editor's Note ема броја 24 „Квантна музика“ инспирисана је истоименим Тмеђународним пројектом кофинансираним од стране Европске Уније у оквиру програма Креативна Европа (2015–2018). По први пут је институција из Србије – Музиколошки институт САНУ – била носилац пројекта из програма Креативна Европа, а конзорцијум партнера и придружених партнера окупио је Music Квантна институције из Србије, Словеније, Данске, Холандије и Уједињеног Краљевства. У темату посвећеном квантној музици објављујемо радове аутора који су непосредно учествовали у реализацији овог пројекта, али и научника који су се прикључили пројекту током музика његовог одвијања, као и текстове аутора који нису ни на који начин Quantum Quantum везани за овај пројекат, већ се, независно од нашег конзорцијума, баве сродним истраживањима. Укупно девет текстова, чији су аутори по примарној вокацији физичари, математичари, инжењери, композитори, музиколози и пијанисти, осветљава различите музика аспекте прожимања квантне физике и музике. Quantum he main theme of No 24 “Quantum Music” was inspired by the Teponymous international project co-funded by the Creative Europe programme of the European Union (2015–2018). For the first time, an institution from Serbia – the Institute of Musicology SASA – was the Квантна Music project leader within the Creative Europe programme, and a consortium of partners and affiliated partners comprised institutions from Serbia, Slovenia, Denmark, the Netherlands and the United Kingdom. This issue contains articles written by the authors who directly participated in this project, but also the scientists who joined the project during its realisation, as well as articles by authors who are not in any way related to this project – however, they are involved in a similar or related research within their own institutions.
    [Show full text]
  • Quantum Mechanics and Atomic Physics Lecture 2: Rutherfordrutherford--Bohrbohr Atom and Dbdebrog Lie Matteratter--Waves Prof
    Quantum Mechanics and Atomic Physics Lecture 2: RutherfordRutherford--BohrBohr Atom and dBdeBrog lie Matteratter--Waves http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh HW schedule changed!! First homework due on Wednesday Sept 14 and the second HW will be due on Monday Sept 19! HW1 Will be posted today Review from last time Planck’s blackbody radiation formula Explained phenomena such as blackbody radiation and the photoelectric effect. Light regarded as stream of particles, photons because m=0 Also, E=hfE=hf(f: frequency), so pc=hfpc=hf Î p=hf/c= h/λ, because λ=c/f (λ: wave length, c: speed of light) Composition of Atoms If matter is primarily composed of atoms, what are atoms composed of? J.J. Thomson (1897): Identification of cathode rays as electrons and measurement of ratio (e/m) of these particles Electron is a constituent of all matter! Humankind’s first glimpse into subatomic world! Robert Millikan (1909): Precise measurement of electric charge Showed that particles ~1000 times less massive than the hydrogen atom exist Ru the rfo rd, w ith Ge ige r & Ma rs de n (1910): Es ta blis he d the nuclear model of the atom Atom = compact positively charged nucleus surrounded by an orbiting electron clo ud Thomson Model of Atoms (1898) Uniform, massive positive charge Much less massive point electrons embedded inside. Radius R. Rutherford’s α --scatteringscattering apparatus Ernest Rutherford, with Hans Geiger and Ernest Marsden scattered alpha particles from a radioactive source off of a thin gold foil. (1911) http://hyperphysics.phy-astr.gsu.edu/Hbase/hframe.html Alpha deflection off of an electron --44 o Experiment was set up to see if any θ~me/mα ~ 10 rad < 0.01 alpha particles can be scattered But what about deflection off a through a l a rge an g le.
    [Show full text]
  • Hydrogen Atom – Lyman Series Rydberg’S Formula Hydrogen 91.19Nm Energy Λ = Levels 1 1 0Ev − M2 N2
    Hydrogen atom – Lyman Series Rydberg’s formula Hydrogen 91.19nm energy λ = levels 1 1 0eV − m2 n2 Predicts λ of nàm transition: Can Rydberg’s formula tell us what ground n (n>m) state energy is? m (m=1,2,3..) -?? eV m=1 Balmer-Rydberg formula Hydrogen energy levels 91.19nm 0eV λ = 1 1 − m2 n2 Look at energy for a transition between n=infinity and m=1 1 0 ≡ 0eV hc hc ⎛ 1 1 ⎞ Einitial − E final = = ⎜ 2 − 2 ⎟ λ 91.19nm ⎝ m n ⎠ -?? eV hc − E final = E 13.6eV 91.19nm 1 = − Hydrogen energy levels A more general case: What is 0eV the energy of each level (‘m’) in hydrogen? … 0 ≡ 0eV hc hc ⎛ 1 1 ⎞ Einitial − E final = = ⎜ 2 − 2 ⎟ λ 91.19nm ⎝ m n ⎠ -?? eV hc 1 1 − E = E = −13.6eV final 91.19nm m2 m m2 Balmer/Rydberg had a mathematical formula to describe hydrogen spectrum, but no mechanism for why it worked! Why does it work? Hydrogen energy levels 410.3 486.1Balmer’s formula656.3 nm 434.0 91.19nm λ = 1 1 − m2 n2 where m=1,2,3 and where n = m+1, m+2 The Balmer/Rydberg formula correctly describes the hydrogen spectrum! Is it a good model? The Balmer/Rydberg formula is a mathematical representation of an empirical observation. It doesn’t really explain anything. How can we explain (not only calculate) the energy levels in the hydrogen atom? Next step: A semi-classical explanation of the atomic spectra (Bohr model) Rutherford shot alpha particles at atoms and he figured out that a tiny, positive, hard core is surrounded by negative charge very far away from the core.
    [Show full text]
  • Bohr's Model of Atom Manual 2017
    Exercise 9 Energy levels of hydrogen atom. Rydberg constant. Aim Spectra analyses of light emitted by hydrogen atoms, determining of ionization energy of hydrogen atom and Rydberg constant on the basis of electron transitions observation between energy levels. Required theoretical knowledge Emission spectrum of hydrogen atom in visible light, Balmer series, Rydberg formula. Bohr model of the atom, energy states, Rydberg constant, spectral series Lyman (ultraviolet), Paschen, Brackett, Pfund (infrared). Ionization energy of hydrogen atom. Diffraction grating, diffraction grating equation. Emission and absorption spectra, continuous spectrum, linear spectrum. Dependence of the energy of light on the wavelength. Equipment Spectroscopic lamps: helium and hydrogen, handle for lamps, power supply adapter 0 – 10 kV, stand, diffraction grating, micro spectrometer with optical waveguide, computer. Measurement plan: A. Diffraction grating: 1. Carefully set a helium lamp in a stand and connect to the power supply. 2. Carry out observations of a spectrum emitted by the lamp; observe the discharge lamp through a diffracting grating. Problems for discussion: Starting from the equation of the diffraction grating, indicate in the observed spectrum zero, first and second line position. What is the order of the spectrum? Using the equation of the diffraction grating indicate, which the lines correspond to a longer wavelength and which to the shorter ones. B. Transmission between energy levels 1. Turn on the power supply of the spectrometer – red diode should be lighting. 2. Insert an optical waveguide terminal into a hole in a lamp shield. 3. Launch the computer program „SPM” for the spectrometer. In „settings” („Ustawienia”) assume: averaging 30 and the time at least 500 millisecond.
    [Show full text]