Tennet Integrated Annual Report 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Public Participation and Transparency in Power Grid Planning
Public Participation and Transparency in Power Grid Planning Recommendations from the BESTGRID Project Handbook – Part 1 BESTGRID PARTNERS Transmission System Operator (TSO) Partners Natagora asbl www.natagora.be 50Hertz Transmission GmbH Julien Taymans (Waterloo-Braine l'Alleud project) www.50hertz.com [email protected] Dr Dirk Manthey, [email protected] Phone: +32 (0) 81 390 720 Phone: +49 (0) 30 5150 3419 98 rue Nanon, B-5000 Namur Eichenstr. 3A, D-12435 Berlin German Environment Aid (DUH) Elia System Operator NV www.duh.de www.stevin.be Liv Becker (Suedlink / Bertikow-Pasewalk) Jeroen Mentens (Stevin project) [email protected] [email protected] Phone: +49 (0) 30 2400 867 98 Phone: +32 (0) 2 546 7957 Hackescher Markt 4, D-10178 Berlin Christophe Coq (Waterloo-Braine l'Alleud project) Germanwatch e.V. [email protected] www.germanwatch.org Phone: +32 (0) 2 382 2334 Leon Monnoyerkaai 3, B-1000 Brussels Rotraud Hänlein, [email protected] Phone: +49 (0) 30 2888 356 83 National Grid Stresemannstr. 72, D-10963 Berlin www.nemo-link.com International Institute for Applied Systems Analysis (IIASA) Phil Pryor, [email protected] www.iiasa.ac.at Phone: +44 (0)7795 641 431 Warwick Technology Park, Gallows Hill, Warwick, Joanne Linnerooth-Bayer, [email protected] UK-CV346DA Dr Nadejda Komendantova, [email protected] Phone: +43 (0) 676 83 807 285 TenneT TSO GmbH Schlossplatz 1, A-2361 Laxenburg www.suedlink.tennet.eu Marius Strecker, [email protected] Naturschutzbund Deutschland (NABU) Phone: +49 (0) 921 50740 4094 www.nabu.de Bernecker Str. -
Facts and Figures 2019
Contact and imprint Facts Publisher Design 50Hertz Transmission GmbH Heimrich & Hannot GmbH and Figures Heidestrasse 2 10557 Berlin Images T +49 30 5150 0 50Hertz 2019 F +49 30 5150 2199 Jan Pauls info@ 50 hertz.com Frank Wölffing Board of Management Printing Stefan Kapferer (CEO) PocketPlaner Dr. Frank Golletz (CTO) FP Werbung GmbH Dr. Dirk Biermann (CMO) Marco Nix (CFO) Sylvia Borcherding (CHRO) 50hertz.com For a successful energy transition in a sustainable world You can find our sustainability report online at csr.50hertz.com enmark About us Our tasks nerginet Key figures In the north and east of Germany, cleswig-olstein we operate the high voltage grid Lubmin Value TenneT reliably ensuring electricity supply Market facilitation – Gstrow GRID-RELATED KEY FIGURES WESTE for around 18 million people. EI CETE NORTHE 2 We are part of the amburg EI CETE Grid area 109,702 km TenneT European integrated Our grid with voltage levels of 150 kilo- Our locations Total lenghts of lines market. (equivalent to power 10,490 km volt (kV), 220 kV and 380 kV extends P circuit length) thereof overhead lines 380 kV 7,250 km over a circuit length of 10,490 km. 50Hertz Netzquartier Eastern Regional Centre Lower axony Poland CET We deliver the (Headquarters) Sigmund-Bergmann-Str. 1 EI CETE thereof overhead lines 220 kV 2,607 km 50ert-Netquartier Heidestrasse 2 03222 Lübbenau/ BerlinCarlottenburg Neuenagen At our eleven locations, over 1,100 infrastructure of bei Berlin thereof sea cables 220 kV 290 km 10557 Berlin Spreewald employees ensure that electricity the future TenneT Wolmirstedt thereof sea cables 150 kV 270 km flows around the clock in Berlin, Service location Röhrsdorf Trusteeship – Northern Regional Centre thereof underground cables 73 km Brandenburg, Hamburg, Mecklen- WESTE Lbbenaupreewald Substations and switching We transparently integrate Rostocker Chaussee 18 Southern Regional Centre EI CETE 74 burg-Western Pomerania, Saxony, stations (number) renewable energies 18273 Güstrow Zentrales Umspannwerk 8 Saxony-Anhalt and Thuringia. -
Electricity Systems and Markets) EDF R&D
European system with an efficient coordinated use of flexibilities for the integration of a large share of RES Vera Silva Research program director « Electricity systems and markets) EDF R&D EU-SysFlex overall objective EU SysFlex objective is to contribute to developing a market design and regulation framework able to foster the development of innovative flexibility approaches to address the technical shortfalls of a European system with high RES. These innovative approaches cover both the technical capability for providing the right flexibilities and system services and the ability of TSOs to integrate these into system and network operation. EU-SysFlex will make a major contribution to a cost effective system transformation to meet EU world leading RES objectives Three pillars of EUSysFlex approach System needs TSO driven Whole system driven Technical shortfalls Economic shortfalls Market driving innovation to respond to system needs Demonstrations/ Scalability Market design and Replicability/ TSO Services/ Products/ enhancement & operations simulation Procurement/Remuneration regulation evolution Flexibility Roadmap – Implementation and exploitation Scalability and System Implementation Exploitation of results replicatbility benefits Roadmap business creation EU SysFlex will provide a significant improvement of EU innovation capacity by combining “top-down” and “bottom- up” approaches to flexibility enabled by a strong consortium - Cost effective enhancement of flexibility and system services capability - new approaches and tools -
Dansk Energi Brev
To: Energinet Astrid Buhr Broge [email protected] [email protected] Dok. ansvarlig: CAC Sekretær: Sagsnr: s2013-388 Doknr: d2021-22033-1.0 30. august 2021 Energinet consultation on the methodology for procurement of counter- trade energy Dansk Energi welcomes Energinet’s consultation on the methodology for procurement of so-called countertrade energy. Energinet has highlighted several issues driving the proposed methodology over the past year. However, the central task of a TSO is not to arrange a border specific market setup according to cli- mate effects or according to the costs of specific market dispatches. The central task of a TSO is to facilitate markets that provides correct price and investments signals in compliance with EU-regulation. Energinet’s proposed methodology seeks to address an internal German issue – lack of capacity in TenneT’s transmission grid – which has previously resulted in heavy reduction of capacity on the Dan- ish-German border. While this was solved with the Joint Declaration and Tennet Commitments in 2017-2018, Energinet’s proposed methodology rolls back these advances. The proposed methodology will sustain a distorted day-ahead market price formation in Denmark, an intraday market in DK1 with no export capacity towards Germany and an intraday market in Denmark where Energinet directly or through a third party is by far the largest market participant. These are not efficient elements in a well-functioning wholesale market and Dansk Energi does not consider it compliant with EU-regulation, nor do we consider it a proportional solution to address the internal German grid congestion. At this stage, Dansk Energi would like to highlight the following concerns and objections: 1. -
System Plan 2018 – Electricity and Gas in Denmark 2 System Plan 2018
SYSTEM PLAN 2018 – ELECTRICITY AND GAS IN DENMARK 2 SYSTEM PLAN 2018 CONTENTS 1. A holistic approach to electricity and gas planning ......................................3 1.1 Energinet’s objectives and the political framework .............................................. 3 1.2 New organisation ............................................................................................................. 4 1.3 Analysis and planning .................................................................................................... 5 1.4 Research and development .......................................................................................... 8 1.5 Environmental reporting ..............................................................................................10 1.6 Energy efficiency ............................................................................................................11 2. Electricity .........................................................................................................16 2.1 Security of electricity supply ......................................................................................17 2.2 Resources to safeguard balance and technical quality ......................................22 2.3 Cooperation with other countries ..............................................................................24 2.4 Cooperation with other grid operators ....................................................................29 2.5 Planning for conversion and expansion of electrical installations -
System Operation Stakeholders Committee
System Operation Stakeholders Committee Materials for meeting 16th September 2020 1.1 Review of the Agenda Time Agenda Topics Documents Lead 1. Opening Uros Gabrijel 13:30-13:35 1.1 Review of the agenda Agenda 13:35-13:45 1.2 Review and approval of minutes from previous meeting Minutes 13:45-13:55 1.3 Review of actions Slides Ana Cigaran 13:55-14:15 2. Update on the implementation actions at pan-EU level Slides Ana Cigaran 3. System Operation Guideline Slides 14:15-14:30 3.1 Cost Benefit Analysis for FCR providers by Limited Energy Reservoirs: Luca Ortolano Status update 3.2 Information on Exchange\Sharing of reserves 14:30-15:00 Mohamed El Jafoufi 15:00-15:15 4. CGM Program Implementation Update Derek Lawler 15:15-15:45 5. NC ER Implementation update Slides Rafal Kuczynski 5.1 Update on TCM Status according to Art. 4. 6. Information on Low frequency Pump disconnection & energy storage units Rafal Kuczynski\Walter Sattinger 15:45-16:00 6.1 Why low frequency pump disconnection is triggered at different frequencies across Europe? 6.2 Outlook on the plans for the energy storage units 16:00-16:15 16:15-16:30 7. AOB – Next meeting 9th December Uros Gabrijel 2 1.3 Review of actions Ana Cigaran 3 1.3 Review of actions (I) ACTION ANSWER STATUS 1. Note for future SO GL active library to include pre- Preparation for SO GL Active Library Open qualification process aFRR, mFRR, RR. is in good progress both for the Digital and content part. -
Tennet's Annual Market Update 2020
Annual Market Update 2020 Electricity market insights 7 April 2021 Introduction Introduction Annual Market Update 2020, an electricity market review focused on the Netherlands and Germany, including wider European trends Main findings This Annual Market Update (AMU) is focussed on relevant developments on the Central Western European electricity markets, and the Dutch and German electricity markets in particular. This is the third edition of the Wholesale market prices TenneT Annual Market Update. Previous editions of the AMU and its predecessor the TenneT Market Review can be found here. Fuel prices & The developments in the Annual Market Update are structured alongside several main topics: generators • The chapter Wholesale market prices discusses wholesale day-ahead and identifies price trends. • As our electricity system is still highly dependent on fossil-fuelled power, the chapter Fuel prices describes Capacity & developments in hard coal, natural gas and emission allowance prices, as well as the margins for generators. generation • The chapter Capacity & generation focuses on the supply side of the electricity system and discusses developments in installed capacity and generation. RES support • Support for renewables in the Dutch and German system are discussed in the chapter RES support schemes, schemes by looking at budget distribution, awarded capacity and generation in the subsidy schemes. • In the chapter Wholesale market integration the storyline zooms out and includes the interactions of the Dutch Wholesale market and German electricity system with neighbouring systems. Additionally, the ongoing efforts of coupling EU integration electricity markets are discussed in this chapter. • The last two chapters focus on mechanisms in place to ensure the stability and functioning of the electricity system for both the Netherlands and Germany: Balancing measures, to ensure supply and demand is equal at Balancing all times; and redispatch measures, to resolve congestion in the grid. -
Constructing Viking Link: How the Infopower of Cost-Benefit Analysis As a Calculative Device Reinforces the Energopower of Transmission Infrastructure
Aalborg Universitet Constructing Viking Link How the Infopower of Cost-benefit Analysis as a Calculative Device Reinforces the Energopower of Transmission Infrastructure Hasberg, Kirsten Published in: Œconomia ••– History / Methodology / Philosophy DOI (link to publication from Publisher): 10.4000/oeconomia.9722 Creative Commons License CC BY-NC-ND 4.0 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link to publication from Aalborg University Citation for published version (APA): Hasberg, K. (2020). Constructing Viking Link: How the Infopower of Cost-benefit Analysis as a Calculative Device Reinforces the Energopower of Transmission Infrastructure. Œconomia ••– History / Methodology / Philosophy, 10(3), 555-578. https://doi.org/10.4000/oeconomia.9722 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access -
Holistic Approach to Offshore Transmission Planning in Great Britain
OFFSHORE COORDINATION Holistic Approach to Offshore Transmission Planning in Great Britain National Grid ESO Report No.: 20-1256, Rev. 2 Date: 14-09-2020 Project name: Offshore Coordination DNV GL - Energy Report title: Holistic Approach to Offshore Transmission P.O. Box 9035, Planning in Great Britain 6800 ET Arnhem, Customer: National Grid ESO The Netherlands Tel: +31 26 356 2370 Customer contact: Luke Wainwright National HVDC Centre 11 Auchindoun Way Wardpark, Cumbernauld, G68 Date of issue: 14-09-2020 0FQ Project No.: 10245682 EPNC Report No.: 20-1256 2 7 Torriano Mews, Kentish Town, London NW5 2RZ Objective: Analysis of technical aspects of the coordinated approach to offshore transmission grid development in Great Britain. Overview of technology readiness, technical barriers to integration, proposals to overcome barriers, development of conceptual network designs, power system analysis and unit costs collection. Prepared by: Prepared by: Verified by: Jiayang Wu Ian Cowan Yongtao Yang Riaan Marshall Bridget Morgan Maksym Semenyuk Edgar Goddard Benjamin Marshall Leigh Williams Oluwole Daniel Adeuyi Víctor García Marie Jonette Rustad Yalin Huang DNV GL – Report No. 20-1256, Rev. 2 – www.dnvgl.com Page i Copyright © DNV GL 2020. All rights reserved. Unless otherwise agreed in writing: (i) This publication or parts thereof may not be copied, reproduced or transmitted in any form, or by any means, whether digitally or otherwise; (ii) The content of this publication shall be kept confidential by the customer; (iii) No third party may rely on its contents; and (iv) DNV GL undertakes no duty of care toward any third party. Reference to part of this publication which may lead to misinterpretation is prohibited. -
The Role of Innovative Grid-Impacting Technologies Towards the Development of the Future Pan-European System: the Gridtech Project
21, rue d’Artois, F-75008 PARIS C1-213 CIGRE 2014 http : //www.cigre.org The role of innovative grid-impacting technologies towards the development of the future pan-European system: the GridTech project A. L’Abbate 1, R. Calisti, A. Zani (RSE SpA, Italy) H. Auer 2, G. Koerbler, G. Lettner (EEG TU Wien, Austria) P. Frias, L. Olmos, C. Fernandes (IIT UP Comillas, Spain) T. Maidonis (WIP GmbH, Germany) S. Vitiello, G. Fulli (EC - JRC, The Netherlands) G. Schauer (Verbund, Austria) S. Sulakov 3, A. Andreev, M. Ivanov (ESO EAD, Bulgaria) A. Mansoldo (EirGrid plc, Ireland) C. Vergine, P. Tisti, O. D’Addese, A. Sallati (Terna Rete Italia SpA, Italy) K. Jansen, R. van Houtert, J. Bos (TenneT TSO BV, The Netherlands) B. Heyder (EnBW AG, Germany) L. Radulov (BSERC, Bulgaria) J. Wolpert (TransnetBW GmbH, Germany) SUMMARY For the achievement of the European Union’s ambitious renewable energy targets for 2020 and beyond, extensive electricity system planning and investments are necessary. This covers electricity generation capacity, transmission networks, and supporting technologies and measures that will ensure clean, secure and efficient energy supply. Within this framework, the European project GridTech mainly aims at conducting a fully integrated assessment of new grid-impacting technologies and their implementation into the European electricity system. This will allow comparing different technological options towards the exploitation of the full potential of future electricity production from renewable energy sources (RES), with the lowest possible total electricity system cost. Within the 2020, 2030 and 2050 time horizons, the goal is to assess where, when, and to which extent innovative technologies could effectively contribute to the further development of the European transmission grid, fostering the integration of an ever-increasing penetration of RES generation and boosting the creation of a pan-European electricity market, while maintaining secure, competitive and sustainable electricity supply. -
Voorstel Tennet TSO Artikel 51 Lid 2
Openbaar xenne Taking power furt VERZONDEN 17 ^ ^ Postbus 718, 6800 AS Arnhem, Nederland DATUM 17 juni 2019 Autoriteit Consument en Markt UW REFERENTIE T a v. de heerdr F J.H. Don ONZE REFERENTIE REC-N 19-038 Postbus 16326 BEHANDELD DOOR 2500 BH DEN HAAG TELEFOON DIRECT E-MAIL @tennet.eu TE19015232 BETREFT Voorstel van asynchroon gekoppelde ISO's o.b.v. GL EB artikel 50(4) en 51(2) Geachte heer Don, Hierbij ontvangt u twee voorstellen die door de gezamenlijke asynchroon gekoppelde ISO's zijn opgesteld op basis van de artikelen 50(4) en 51(2) van de Verordening (EU) 2017/2195 van 28 november 2017 tot vaststelling van richtsnoeren betreffende elektriciteitsbalancering (op basis van de Engelse titel afgekort als: GL EB). Het betreft: • "All asynchronously connected TSOs’ proposal for Common settlement rules for intended exchanges of energy between synchronous areas as a result of the frequency containment process and of ramping re- strictions in accordance with the Article 50(4) of Commission Regulation (EU) 2017/2195 of 23 Novem- ber 2017 establishing a guideline on electricity balancing" d.d. 18 juni 2019; • "All asynchronously connected TSOs' proposal for Common settlement rules for all unintended ex- changes of energy between synchronous areas in accordance with the Article 51(2) of Commission Regulation (EU) 2017/2195 of 23 November 2017 establishing a guideline on electricity balancing" d.d. 18 juni 2019. Het bijbehorende explanatory document za\ zo spoedig mogelijk worden nagezonden. De voorstellen bevatten geen vertrouwelijke gegevens en kunnen integraal door u gepubliceerd worden. U wordt verzocht deze voorstellen goed te keuren krachtens artikel 5, eerste lid, van de GL EB. -
Decision Norned 101783 2
Public Version – this is a non-certified translation (leading is the original decision in Dutch, Netherlands Government Gazette of 23 December 2004, No. 248, page 17) Office of Energy Regulation DECISION Number: 101783_2-76 Subject: Decision on the application by TenneT for permission to finance the NorNed cable in accordance with section 31 (6) of the Electricity Act of 1998 This decision consists of the following parts: I. TenneT’s application 1 II. Public preparation 2 III. Consultation with TenneT and the Norwegian authorities 3 IV. Legal context 4 V. Utility of interconnector capacity 4 VI. Opinions received 6 VII. Assessment grounds 9 VIII. Socio-economic assessment of the application 9 IX. Market coupling 17 X. Incentives for TenneT 18 XI. Decision 21 Annex A: Conditions Annex B: Accounting Rules 1. On 31 August 2004, the Director of the Office of Energy Regulation (hereinafter "the Director of DTe") received a written application from TenneT B.V., the manager of the national high- voltage grid (hereinafter "TenneT"). In the application, TenneT requests permission to finance a high-voltage cable between the Netherlands and Norway (hereinafter "the cable") using the revenues, as referred to in section 31 (6) of the Electricity Act 1998 (hereinafter "the Electricity Act"). 2. TenneT and the Norwegian grid manager, Statnett SF (hereinafter "Statnett") intend to construct a high-voltage cable between the Netherlands and Norway (also referred to as the ‘NorNed cable’ or the ‘NorNed project’) and, by doing so, to create a direct connection between both high-voltage grids. According to the application, the cable has a length of 1 Public Version – this is a non-certified translation (leading is the original decision in Dutch, Netherlands Government Gazette of 23 December 2004, No.