Holistic Approach to Offshore Transmission Planning in Great Britain

Total Page:16

File Type:pdf, Size:1020Kb

Holistic Approach to Offshore Transmission Planning in Great Britain OFFSHORE COORDINATION Holistic Approach to Offshore Transmission Planning in Great Britain National Grid ESO Report No.: 20-1256, Rev. 2 Date: 14-09-2020 Project name: Offshore Coordination DNV GL - Energy Report title: Holistic Approach to Offshore Transmission P.O. Box 9035, Planning in Great Britain 6800 ET Arnhem, Customer: National Grid ESO The Netherlands Tel: +31 26 356 2370 Customer contact: Luke Wainwright National HVDC Centre 11 Auchindoun Way Wardpark, Cumbernauld, G68 Date of issue: 14-09-2020 0FQ Project No.: 10245682 EPNC Report No.: 20-1256 2 7 Torriano Mews, Kentish Town, London NW5 2RZ Objective: Analysis of technical aspects of the coordinated approach to offshore transmission grid development in Great Britain. Overview of technology readiness, technical barriers to integration, proposals to overcome barriers, development of conceptual network designs, power system analysis and unit costs collection. Prepared by: Prepared by: Verified by: Jiayang Wu Ian Cowan Yongtao Yang Riaan Marshall Bridget Morgan Maksym Semenyuk Edgar Goddard Benjamin Marshall Leigh Williams Oluwole Daniel Adeuyi Víctor García Marie Jonette Rustad Yalin Huang DNV GL – Report No. 20-1256, Rev. 2 – www.dnvgl.com Page i Copyright © DNV GL 2020. All rights reserved. Unless otherwise agreed in writing: (i) This publication or parts thereof may not be copied, reproduced or transmitted in any form, or by any means, whether digitally or otherwise; (ii) The content of this publication shall be kept confidential by the customer; (iii) No third party may rely on its contents; and (iv) DNV GL undertakes no duty of care toward any third party. Reference to part of this publication which may lead to misinterpretation is prohibited. DNV GL and the Horizon Graphic are trademarks of DNV GL AS. Distribution: Keywords: ☒ OPEN. Unrestricted distribution, internal and external. ☐ INTERNAL use only. Internal document. ☐ CONFIDENTIAL. ☐ SECRET. Authorized access only. Rev. No. Date Reason for Issue Prepared by Verified by DNV GL – Report No. 20-1256, Rev. 2 – www.dnvgl.com Page ii Table of contents EXECUTIVE SUMMARY .................................................................................................................. 6 1. INTRODUCTION .............................................................................................................. 9 2. APPROACH, ASSUMPTIONS AND DATA USED FOR THIS ASSESSMENT ................................. 11 2.1. Key Aspects of Integrated Offshore Network Designs 11 2.2. Comparison of Integrated Offshore Network and Radial Connection Design Approaches 13 2.3. Our approach 14 2.4. Data inputs and assumptions 15 2.5. Stakeholder engagement and findings 18 2.6. Example of our approach - consideration for the East Scotland region 19 3. TECHNOLOGY AVAILABILITY FOR OFFSHORE TRANSMISSION DESIGN ................................ 22 3.1. Overview of Offshore Technology 22 3.1.1. HVAC Offshore Connections 22 3.1.2. HVDC Offshore Connections 26 3.1.3. Low frequency HVAC offshore connection 38 3.2. TRL Assessment 38 3.2.1. TRLs 38 3.2.2. Methodology 41 3.2.3. TRL of HVDC technologies 41 3.2.4. TRL of HVAC technologies 47 3.2.5. TRL of LFAC technology 47 3.2.6. Considerations (Barriers) 48 3.3. Conclusions 49 4. CONCEPTUAL DESIGNS RELEVANT FOR OFFSHORE DESIGN WITHIN GB AND ITS OFFSHORE WATERS ...................................................................................................... 50 4.1. Conceptual Network Design Topologies Identified 50 4.1.1. Design 1 (T1): Radial High Voltage Alternating Current (HVAC) 50 4.1.2. Design 1A (T1A): More Integrated HVAC (50Hz) 50 4.1.3. Design 2 (T2): Lower frequency High Voltage Alternating Current 51 4.1.4. Design 3 (T3): Extended HVAC with parallel High Voltage Direct Current (HVDC) 51 4.1.5. Design 4 (T4): High Voltage Direct Current connections offshore 52 4.1.6. Design 5 (T5): Bipole High Voltage Direct Current technology 52 4.1.7. Design 6 (T6): Multi-ended High Voltage Direct Current arrangement offshore 53 4.1.8. Design 7 (T7): 'Meshed' High Voltage Direct Current grid 54 4.1.9. Overview of offshore transmission topologies 54 4.1.10. KPIs Identified 59 4.1.11. Comparative Assessment of Offshore Topologies 59 4.1.12. VSC-HVDC Technology Status 61 4.2. HVDC Applications in GB 62 4.2.1. Electricity Interconnections 62 4.2.2. Grid Reinforcements 62 4.2.3. Offshore Wind Connections 63 4.2.4. Multi-purpose HVDC Options 64 4.3. GB IMPLEMENTATION OF OFFSHORE NETWORK DESIGNS 65 DNV GL – Report No. 20-1256, Rev. 2 – www.dnvgl.com Page iii 4.3.1. Key Elements of Developing Offshore Networks 65 4.3.2. North Scotland Case Study 66 4.3.3. North Wales and Irish Sea Case Study 68 4.3.4. GB Implementation of Integrated Designs by 2030 and 2050 69 5. OVERCOMING BARRIERS ............................................................................................... 72 5.1. Integrated Offshore Transmission Network Challenges 72 5.2. Technology Maturity and Pipeline 75 5.3. HVAC Specific Considerations 76 5.3.1. Technology Barriers 76 5.3.2. System Integration Barriers 77 5.3.3. Power Flow Regulation 79 5.4. HVDC Specific Considerations 79 5.4.1. Technology Barriers 79 5.4.2. System Integration Barriers 79 5.4.3. Power Flow Regulation Barriers 81 5.4.4. Other Barriers and Considerations 82 5.5. Other Technology Barriers 83 5.6. Technology Neutral Barriers 84 5.6.1. Gas Insulated Switchgear 84 5.6.2. Offshore Platforms 84 5.6.3. Storage 84 5.7. Regulatory framework for Transmission 84 5.7.1. Technical Rules 84 5.7.2. Legal Basis 87 5.8. Potential Solutions 89 5.8.1. Scale Trials 89 5.8.2. Optimisation of designs, their operation, control and protection 89 5.8.3. Opportunities supporting operability 90 5.9. Risks and Route Map 91 6. UNIT COSTS ................................................................................................................ 96 6.1. Assumption 96 6.2. Unit cost data 97 6.3. Cost reduction potential 97 6.3.1. Methodology 97 6.3.2. Assumptions on trends impacting cost drivers 98 6.3.3. Result 100 6.4. Cost for emerging technologies 101 7. POWER SYSTEM ANALYSIS .......................................................................................... 102 7.1. Approach 102 7.1.1. Inputs 102 7.1.2. Modelling Assumptions 102 7.1.3. Scope of Simulations 103 7.1.4. Limitations 103 7.2. Analysis per Regional Zone 104 7.2.1. North Scotland 105 7.2.2. East Scotland 107 DNV GL – Report No. 20-1256, Rev. 2 – www.dnvgl.com Page iv 7.2.3. Dogger Bank 110 7.2.4. Eastern Regions 112 7.2.5. South East 113 7.2.6. North Wales and Irish Sea 115 7.3. Analysis on System Level 117 7.3.1. Annual Wind Energy Production 117 7.3.2. Onshore Network Losses 117 7.3.3. Network Contingencies 118 7.3.4. Dynamic Performance 118 7.3.5. Voltage Profiles 119 7.4. Conclusions 119 8. APPENDICES .............................................................................................................. 120 Appendix A Existing HVAC offshore wind connections in UK 120 Appendix B Operational HVDC VSC Projects 124 Appendix C List of Future HVDC VSC project 128 Appendix D Control and Protection System of HVDC Converter Station Details 134 Appendix E Legal framework changes – process steps 138 Appendix F Conceptual Designs Assumptions 139 Appendix G Offshore Wind Capacity (2025–2050) 141 Appendix H Annual Wind Energy Production (2025–2050) 142 Appendix I Offshore Wind Power Injections 143 Appendix J Glossary 145 Appendix K Abbreviations 150 DNV GL – Report No. 20-1256, Rev. 2 – www.dnvgl.com Page v EXECUTIVE SUMMARY To date, each transmission connected offshore wind project within Great Britain’s (‘GB’) offshore waters has a separate connection and there is limited opportunity (if any) for shared use of offshore transmission assets. Under current arrangements, each offshore wind farm development will contribute to overall carbon emission reduction targets in accordance with timescales that are defined on a project specific basis. The United Kingdom (‘UK’) Government has an ambition to achieve 40 GW by 2030 of installed offshore wind capacity, potentially rising to at least 75 GW by 2050. Achievement of these 2030 and 2050 targets is expected to require a step change in development approach in terms of both volume and pace. The electricity industry is set to invest several £10s billions in offshore wind and associated connection infrastructure over the coming ~30 years (a cost which will ultimately be borne by GB consumers)1. Without a change of approach, the required increase in volume and pace of network development is expected to lead to issues including: • lack of suitable cable landing points onshore; • adverse impacts on transmission system stability; • project delays due to the unavailability of equipment and resources due to stresses on the supply chain, and • failure to deliver economies that would be expected with a large-scale increase in development volumes. Each of these issues in the current approach could lead to increases to the overall cost of transmission system extensions and to the risk that connections for offshore wind projects will not be delivered on a timely basis. Eight conceptual network design building block options for offshore connections were identified of which: • Four use High Voltage Alternating Current (‘HVAC’) technologies, and • Four use High Voltage Direct Current (‘HVDC’) technologies (explanations to these and other technical terms across the report can be found in Appendix J) that have been used in Europe and Asia. This report illustrates a method for identifying
Recommended publications
  • High Voltage Direct Current Transmission – Proven Technology for Power Exchange
    www.siemens.com/energy/hvdc High Voltage Direct Current Transmission – Proven Technology for Power Exchange Answers for energy. 2 Contents Chapter Theme Page 1 Why High Voltage Direct Current? 4 2 Main Types of HVDC Schemes 6 3 Converter Theory 8 4 Principle Arrangement of an HVDC Transmission Project 11 5 Main Components 14 5.1 Thyristor Valves 14 5.2 Converter Transformer 18 5.3 Smoothing Reactor 20 5.4 Harmonic Filters 22 5.4.1 AC Harmonic Filter 22 5.4.2 DC Harmonic Filter 25 5.4.3 Active Harmonic Filter 26 5.5 Surge Arrester 28 5.6 DC Transmission Circuit 31 5.6.1 DC Transmission Line 31 5.6.2 DC Cable 32 5.6.3 High Speed DC Switches 34 5.6.4 Earth Electrode 36 5.7 Control & Protection 38 6 System Studies, Digital Models, Design Specifications 45 7 Project Management 46 3 1 Why High Voltage Direct Current? 1.1 Highlights from the High Voltage Direct In 1941, the first contract for a commercial HVDC Current (HVDC) History system was signed in Germany: 60 MW were to be supplied to the city of Berlin via an underground The transmission and distribution of electrical energy cable of 115 km length. The system with ±200 kV started with direct current. In 1882, a 50-km-long and 150 A was ready for energizing in 1945. It was 2-kV DC transmission line was built between Miesbach never put into operation. and Munich in Germany. At that time, conversion between reasonable consumer voltages and higher Since then, several large HVDC systems have been DC transmission voltages could only be realized by realized with mercury arc valves.
    [Show full text]
  • Tennet Integrated Annual Report 2019
    TenneT Holding B.V. Integrated Annual Report 2019 Key figures 2019 Safe workplace Diverse workforce Safety (TRIR) Gender ratio 4.8 23% 77% Satisfied capital providers* Environmental impact ROIC % Greened of our carbon footprint 5.1 27.4% Grid availability Safeguard capital structure* Grid availability FFO/Net debt 99.9998% 14.8% Future proof grid* Our workforce Annual Investments (EUR million) Number of employees (internal and external) 3,064 4,913 Engaged stakeholders Healthy financial operations* Reputation survey EBIT (EUR million) fairly strong to very strong 768 * Based on underlying figures Table of contents Integrated 2019 at a glance 2 Annual Letter from the Board 4 Report 2019 * About TenneT 6 Profile 6 Our strategy and value creation 9 Materiality analysis 14 * Our performance in 2019 16 Deliver a high security of supply 16 Ensure critical infrastructure for society 23 Create a sustainable workplace 30 Contents Create value to transition to a low carbon economy 36 Secure a solid financial performance and investor rating 44 Solve societal challenges with stakeholders and through partnerships 50 Statements of the Executive Board 57 Our Executive Board 58 Supervisory Board Report 60 Supervisory Board Report 60 Remuneration policy 66 Board remuneration 68 Our Supervisory Board 72 * Governance and risk management 74 Corporate governance 74 Risk management and internal control 76 Risk management and internal control framework 79 Compliance and integrity 80 Risk appetite 82 Key risks 83 Financial statements 87 Consolidated financial statements 88 Notes to the consolidated financial statements 95 Company financial statements 147 Notes to the company financial statements 149 Other information 152 Profit appropriation 152 Independent auditor’s report 153 Assurance report of the independent auditor 160 About this report 163 Reconciliation of non-IFRS financial measures 168 SWOT Analysis 169 Key figures: five-year summary 170 Glossary 171 * These sections reflect the director’s report as mentioned by Part 9 of Book 2 of the Dutch Civil Code.
    [Show full text]
  • Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications
    ORNL/TM-2005/230 POWER ELECTRONICS FOR DISTRIBUTED ENERGY SYSTEMS AND TRANSMISSION AND DISTRIBUTION APPLICATIONS L. M. Tolbert T. J. King B. Ozpineci J. B. Campbell G. Muralidharan D. T. Rizy A. S. Sabau H. Zhang* W. Zhang* Y. Xu* H. F. Huq* H. Liu* December 2005 *The University of Tennessee-Knoxville ORNL/TM-2005/230 Engineering Science and Technology Division POWER ELECTRONICS FOR DISTRIBUTED ENERGY SYSTEMS AND TRANSMISSION AND DISTRIBUTION APPLICATIONS L. M. Tolbert T. J. King B. Ozpineci J. B. Campbell G. Muralidharan D. T. Rizy A. S. Sabau H. Zhang W. Zhang Y. Xu H. F. Huq H. Liu Publication Date: December 2005 Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DE-AC05-00OR22725 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Not available externally. Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source. Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Web site http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • System Plan 2018 – Electricity and Gas in Denmark 2 System Plan 2018
    SYSTEM PLAN 2018 – ELECTRICITY AND GAS IN DENMARK 2 SYSTEM PLAN 2018 CONTENTS 1. A holistic approach to electricity and gas planning ......................................3 1.1 Energinet’s objectives and the political framework .............................................. 3 1.2 New organisation ............................................................................................................. 4 1.3 Analysis and planning .................................................................................................... 5 1.4 Research and development .......................................................................................... 8 1.5 Environmental reporting ..............................................................................................10 1.6 Energy efficiency ............................................................................................................11 2. Electricity .........................................................................................................16 2.1 Security of electricity supply ......................................................................................17 2.2 Resources to safeguard balance and technical quality ......................................22 2.3 Cooperation with other countries ..............................................................................24 2.4 Cooperation with other grid operators ....................................................................29 2.5 Planning for conversion and expansion of electrical installations
    [Show full text]
  • Basics of HVDC: AC Compared DC
    Basics of HVDC: AC compared to DC Dr. Ram Adapa Technical Executive, EPRI [email protected] HVDC Lines and Cables Course June 12, 2017 © 2017 Electric Power Research Institute, Inc. All rights reserved. Increased Benefits of Long Distance Transmission .Carrying energy from cheap generation sources which are far away from the load centers. .Long distance transmission increases competition in new wholesale electricity markets . Long distance electricity trade could include across nations or multiple areas within a nation and allows arbitrage of price differences .Long distance transmission allows interconnection of networks and thus reducing the reserve margins across all networks. .More stable long distance transmission is needed to meet contractual obligations 2 © 2017 Electric Power Research Institute, Inc. All rights reserved. Transmitting Fuel versus Transmitting Energy .Load centers can be served by: – Long distance transmission with remote generation – Transmitting fuel to the local generation facilities .Bottom line is Economics to see which option is better .Depends on many factors – Type of fuel – coal can be transported, hydro can’t – Cost of transporting fuel to local generators – Availability of generation facilities close to load centers – Allowable pollution levels at the local gen. facilities 3 © 2017 Electric Power Research Institute, Inc. All rights reserved. Long Distance Transmission – AC versus DC .AC versus DC debate goes back to beginnings of Electricity – DC was first (Thomas Edison) – AC came later (Tesla / Westinghouse) .AC became popular due to transformers and other AC equipment .Long Distance Transmission – AC versus DC - based on economics and technical requirements 4 © 2017 Electric Power Research Institute, Inc. All rights reserved. 5 5 © 2017 Electric Power Research Institute, Inc.
    [Show full text]
  • Constructing Viking Link: How the Infopower of Cost-Benefit Analysis As a Calculative Device Reinforces the Energopower of Transmission Infrastructure
    Aalborg Universitet Constructing Viking Link How the Infopower of Cost-benefit Analysis as a Calculative Device Reinforces the Energopower of Transmission Infrastructure Hasberg, Kirsten Published in: Œconomia ••– History / Methodology / Philosophy DOI (link to publication from Publisher): 10.4000/oeconomia.9722 Creative Commons License CC BY-NC-ND 4.0 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link to publication from Aalborg University Citation for published version (APA): Hasberg, K. (2020). Constructing Viking Link: How the Infopower of Cost-benefit Analysis as a Calculative Device Reinforces the Energopower of Transmission Infrastructure. Œconomia ••– History / Methodology / Philosophy, 10(3), 555-578. https://doi.org/10.4000/oeconomia.9722 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access
    [Show full text]
  • (Public) Page 1 of 149 Muskrat Falls Project - CE-01 Rev
    Muskrat Falls Project - CE-01 Rev. 1 (Public) Page 1 of 149 Muskrat Falls Project - CE-01 Rev. 1 (Public) Page 2 of 149 Newfoundland and Labrador Hydro - Lower Churchill Project DC1010 - Voltage and Conductor Optimization Final Report - April 2008 Table of Contents List of Tables List of Figures Executive Summary 1. Introduction ......................................................................................................................................... 1-1 1.1 Background and Purpose ............................................................................................................ 1-1 1.2 Interrelation with other Work Tasks.............................................................................................1-1 2. Approach to the Work ......................................................................................................................... 2-1 2.1 Overview.................................................................................................................................... 2-1 2.2 Selection of Optimal HVDC Operating Voltage .......................................................................... 2-2 2.3 Selection of Optimal Overhead Line Conductor(s) ...................................................................... 2-2 3. Details of the Work/Analysis ................................................................................................................ 3-1 3.1 Selection of Optimal HVdc Transmission Voltage ......................................................................
    [Show full text]
  • HVDC Transmission PDF
    High Voltage Direct Current Transmission – Proven Technology for Power Exchange 2 Contents Chapter Theme Page Contents 3 1Why High Voltage Direct Current? 4 2 Main Types of HVDC Schemes 6 3 Converter Theory 8 4Principle Arrangement of an 11 HVDC Transmission Project 5 Main Components 14 5.1 Thyristor Valves 15 5.2 Converter Transformer 18 5.3 Smoothing Reactor 21 5.4 Harmonic Filters22 5.4.1 AC Harmonic Filter 23 5.4.2 DC Harmonic Filter 25 5.4.3 Active Harmonic Filter 26 5.5 Surge Arrester 28 5.6 DC Transmission Circuit 5.6.1 DC Transmission Line 31 5.6.2 DC Cable 33 5.6.3 High Speed DC Switches 34 5.6.4 Earth Electrode 36 5.7 Control & Protection 38 6System Studies, Digital Models, 45 Design Specifications 7Project Management 46 3 1 Why High Voltage Direct Current ? 1.1 Highlights from the High Line-Commutated Current Sourced Self-Commutated Voltage Sourced Voltage Direct Current (HVDC) History Converters Converters The transmission and distribution of The invention of mercury arc rectifiers in Voltage sourced converters require electrical energy started with direct the nineteen-thirties made the design of semiconductor devices with turn-off current. In 1882, a 50-km-long 2-kV DC line-commutated current sourced capability. The development of Insulated transmission line was built between converters possible. Gate Bipolar Transistors (IGBT) with high Miesbach and Munich in Germany. voltage ratings have accelerated the At that time, conversion between In 1941, the first contract for a commer- development of voltage sourced reasonable consumer voltages and cial HVDC system was signed in converters for HVDC applications in the higher DC transmission voltages could Germany: 60 MW were to be supplied lower power range.
    [Show full text]
  • Operational Strategies for HVDC Transmission in Smart Grids: the Security Versus Markets Dilemma
    Operational strategies for HVDC transmission in smart grids: the security versus markets dilemma Master Thesis Chanpreet Kaur Talwar Technische Universiteit Delft OPERATIONAL STRATEGIES FOR HVDC TRANSMISSION IN SMART GRIDS: THE SECURITY VERSUS MARKETS DILEMMA MASTER THESIS by Chanpreet Kaur Talwar in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science (Intelligent Electrical Power Grids) at the Delft University of Technology, to be defended publicly on Monday August 28, 2017 at 10:00 AM. Supervisors: Prof. dr. Peter Palensky, TU Delft Dr. ir. Georgios Papaefthymiou, Elia Grid International, Germany Ir. Martijn de Jong, TU Delft Thesis committee: Prof. dr. Peter Palensky, TU Delft Dr. ir. Jose Luis Rueda Torres, TU Delft Dr. Domenico Lahaye, TU Delft Ir. Martijn de Jong, TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Preface First of all, I wish to thank my responsible supervisor, prof. Peter Palensky for guiding me in pursuing my thesis under his kind patronage, and allowing me to be a part of the Intelligent Electrical Power Grid (IEPG) research group in the Netherlands. Second and foremost, I am highly thankful to my daily su- pervisor Martijn De Jong for his monetary and moral support during the course of thesis studies. Words cannot express my sincere appreciation, but all I can say is that I shall always remain highly obliged and grateful to you for supervising my work, and finding time for me from your busy schedule to clarify all my queries and doubts in the best possible way.
    [Show full text]
  • Examination of Power Systems Solutions Considering High Voltage Direct Current Transmission
    Examination of Power Systems Solutions Considering High Voltage Direct Current Transmission Daniel Keith Ridenour Thesis Submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Electrical Engineering Jaime De La Ree Lopez, Chair Virgilio A. Centeno Rolando P. Burgos R. Matthew Gardner September 16, 2015 Blacksburg, Virginia Keywords: HVDC transmission, voltage source converter, insulated gate bipolar transistor, line congestion alleviation, interconnection of nondispatchable generation, urban infeed Examination of Power Systems Solutions Considering High Voltage Direct Current Transmission Daniel Keith Ridenour Abstract Since the end of the Current Wars in the 19th Century, alternating current (AC) has dominated the production, transmission, and use of electrical energy. The chief reason for this dominance was (and continues to be) that AC offers a way minimize transmission losses yet transmit large power from generation to load. With the Digital Revolution and the entrance of most of the post-industrialized world into the Information Age, energy usage levels have increased due to the proliferation of electrical and electronic devices in nearly all sectors of life. A stable electrical grid has become synonymous with a stable nation-state and a healthy populace. Large-scale blackouts around the world in the 20th and the early 21st Centuries highlighted the heavy reliance on power systems and because of that, governments and utilities have strived to improve reliability. Simultaneously occurring with the rise in energy usage is the mandate to cut the pollution by generation facilities and to mitigate the impact grid expansion has on environment as a whole.
    [Show full text]
  • Technical and Economic Assessment of VSC-HVDC Transmission Model: a Case Study of South-Western Region in Pakistan
    electronics Article Technical and Economic Assessment of VSC-HVDC Transmission Model: A Case Study of South-Western Region in Pakistan Mehr Gul 1,2,* , Nengling Tai 1, Wentao Huang 1, Muhammad Haroon Nadeem 1 , Muhammad Ahmad 1 and Moduo Yu 1 1 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (N.T.); [email protected] (W.H.); [email protected] (M.H.N.); [email protected] (M.A.); [email protected] (M.Y.) 2 Department of Electrical Engineering, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta 87300, Pakistan * Correspondence: [email protected]; Tel.: +86-13262736005 Received: 10 October 2019; Accepted: 5 November 2019; Published: 7 November 2019 Abstract: The southwestern part of Pakistan is still not connected to the national grid, despite its abundance in renewable energy resources. However, this area becomes more important for energy projects due to the development of the deep-sea Gwadar port and the China Pakistan Economic Corridor (CPEC). In this paper, a voltage source converter (VSC) based high voltage DC (HVDC) transmission model is proposed to link this area to the national gird. A two-terminal VSC-HVDC model is used as a case study, in which a two-level converter with standard double-loop control is employed. The proposed model has a capacity of transferring bulk power of 3500 MW at 350 kV from Gwadar to Matiari. Furthermore, the discounted cash flow analysis of VSC-HVDC against the HVAC system shows that the proposed system is economically sustainable.
    [Show full text]
  • HVDC GRIDS: for Offshore and Supergrid of the Future
    HVDC GRIDS IEEE Press 445 Hoes Lane Piscataway, NJ 08854 IEEE Press Editorial Board Tariq Samad, Editor in Chief George W. Arnold Xiaoou Li Ray Perez Giancarlo Fortino Vladimir Lumelsky Linda Shafer Dmitry Goldgof Pui-In Mak Zidong Wang Ekram Hossain Jeffrey Nanzer MengChu Zhou Kenneth Moore, Director of IEEE Book and Information Services (BIS) Technical Reviewer Dragan Jovcic, University of Aberdeen HVDC GRIDS For Offshore and Supergrid of the Future Edited by DIRK VAN HERTEM ORIOL GOMIS-BELLMUNT JUN LIANG Copyright © 2016 by The Institute of Electrical and Electronics Engineers, Inc. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]