ANNUAL SUMMARY Eastern North Pacific Hurricane Season of 2004

Total Page:16

File Type:pdf, Size:1020Kb

ANNUAL SUMMARY Eastern North Pacific Hurricane Season of 2004 1026 MONTHLY WEATHER REVIEW VOLUME 134 ANNUAL SUMMARY Eastern North Pacific Hurricane Season of 2004 LIXION A. AVILA,RICHARD J. PASCH,JOHN L. BEVEN II, JAMES L. FRANKLIN,MILES B. LAWRENCE, AND STACY R. STEWART Tropical Prediction Center, National Hurricane Center, NOAA/NWS, Miami, Florida (Manuscript received 5 April 2005, in final form 2 August 2005) ABSTRACT The 2004 eastern North Pacific hurricane season is reviewed. It was a below-average season in terms of number of systems and landfalls. There were 12 named tropical cyclones, of which 8 became hurricanes. None of the tropical storms or hurricanes made landfall, and there were no reports of deaths or damage. A description of each cyclone is provided, and track and intensity forecasts for the season are evaluated. 1. Overview waves in the eastern North Pacific has been docu- mented in numerous occasions, for example, Avila et Two notable aspects of the 2004 season in the eastern al. (2003). Most of the tropical cyclones in 2004 origi- North Pacific hurricane basin (from 140°W eastward nated from tropical waves that moved westward from and from the equator northward) were that none of the Africa across the Atlantic basin before entering the tropical storms or hurricanes made landfall and that eastern North Pacific. These waves became convec- there were no reports of deaths or damage attributed to tively active and spawned tropical cyclones in the wa- tropical cyclones. In general, three or four named tropi- ters to the south and southwest of Mexico. cal cyclones strike the coast of Mexico each year. Tropi- Most of the tropical cyclones this season were steered cal cyclone activity was below average in the basin com- westward and west-northwestward away from the coast pared with the mean totals for the 1966–2003 period of of Mexico, around a 500-mb ridge extending from the 15 named storms and 8 hurricanes. Of the 12 tropical Atlantic westward across northern Mexico. This feature storms that formed during the 2004 season, 6 became (Fig. 2) persisted through most of the active portion of hurricanes (Table 1; Fig. 1). Three of the hurricanes in the season and was stronger than normal, as indicated 2004 became “major,” that is, maximum 1-min average by positive 500-mb height anomalies over Mexico winds of at least 96 kt [category 3 or higher on the through the period (not shown). Saffir–Simpson hurricane scale (SSHS); Saffir (1973); One possible explanation for the below-average Simpson (1974)]. The season started early with Agatha number of tropical storms and hurricanes in 2004 is that on 22 May and ended with Lester in mid-October. His- although the ocean was a little warmer than normal in torically, the median day for formation of the first east- the genesis region south and southwest of Mexico, ern North Pacific tropical storm is 2 June. Javier was many of the developing tropical depressions and distur- the strongest hurricane of the season with peak winds bances were steered west-northwestward toward a re- of 130 kt. In addition to the 12 named cyclones in 2004, gion of cooler than normal waters. The anomalous cool there were four tropical depressions that did not reach water persisted during the season just north of 16°N tropical storm status. One of them, Sixteen-E, made and west of 112°W as indicated in Fig. 3. The cool water landfall in Baja California, Mexico. most likely inhibited additional development of the in- The formation of tropical cyclones from tropical cipient cyclones. In fact, the average lifetime of the tropical cyclones during this season was only about 4 days, about 2 days shorter than normal. In addition, the Corresponding author address: Lixion A. Avila, Tropical Pre- diction Center, National Hurricane Center, NOAA/NWS, 11691 atmosphere in the genesis region was more stable than SW 17th Street, Miami, FL 33165-2149. normal during the entire season, as shown in Fig. 4. E-mail: [email protected] Stable conditions are considered a negative factor for Unauthenticated | Downloaded 10/01/21 01:36 PM UTC MARCH 2006 ANNUAL SUMMARY 1027 TABLE 1. Eastern North Pacific basin hurricane season statistics vertical wind shear was near average during the season a for 2004. (figure not shown). Therefore, vertical shear was not Max Min likely a cause for the low number of tropical cyclones in 1-min wind pressure 2004. Name Classb Datesc (kt) (mb) Agatha H 22–24 May 50 997 2. Storm and hurricane summaries Blas T 12–15 Jul 55 991 Celia H 19–25 Jul 75 981 The National Hurricane Center (NHC) produces a Darby H 26 Jul–1 Aug 105 957 tropical cyclone “best track” database that consists of Estelle T 19–24 Aug 60 989 center positions (latitude and longitude), intensity Frank H 23–26 Aug 75 979 (maximum 1-min average sustained wind at 10 m), and Georgette T 26–30 Aug 55 995 Howard H 30 Aug–5 Sep 120 943 surface pressure every 6 h. In the eastern North Pacific Isis H 8–16 Sep 65 987 basin, the best-track data are derived mostly from esti- Javier H 10–19 Sep 130 930 mates using satellite data and applying the Dvorak Kay T 4–6 Oct 40 1005 (1984) technique. Aerial reconnaissance is rare in this Lester T 11–13 Oct 45 1000 basin. In fact, the only reconnaissance flight in 2004 was a There were no direct deaths associated with Eastern North Pa- conducted by the 53rd Weather Reconnaissance Squad- cific tropical cyclones in 2004. ron, the “Hurricane Hunters” of the U.S. Air Force b (T) Tropical Storm: wind speed of 34–63 kt. (H) Hurricane: wind Reserve Command (AFRC) during Tropical Storm speed of 64 kt or higher. Lester when the cyclone was near land. A description c Dates begin at 0000 UTC and include tropical depression stage. of the various observational data sources utilized to track tropical cyclones in this basin is given by Avila et tropical cyclone genesis since deep convection becomes al. (2003). More information about each named tropical limited. Stability is one of the input variables to the cyclone as well as the complete best track is located on National Environmental Satellite, Data, and Informa- the NHC Internet home page (http://www.nhc.noaa. tion Service (NESDIS) tropical cyclone formation pa- gov/pastall.shtml). rameter as described by De Maria et al. (2004). An- other factor that should be considered in explaining the a. Tropical Storm Agatha: 22–24 May level of tropical cyclone activity is the vertical wind A nearly stationary trough of low pressure became shear. It was found, however, that the magnitude of the established from the eastern Pacific east-northeastward FIG. 1. Eastern North Pacific tropical storm and hurricane tracks for 2004. Unauthenticated | Downloaded 10/01/21 01:36 PM UTC 1028 MONTHLY WEATHER REVIEW VOLUME 134 FIG. 2. Mean 500-mb heights for June–September 2004. Arrows mark the track of the 2004 named tropical cyclones. across Central America and portions of the Caribbean on that day. It is estimated that the cyclone reached its Sea during mid-May. This pattern resulted in a large peak intensity of 50 kt at 0000 UTC 23 May. Thereafter, area of moist southwesterly monsoon-like flow over the lower sea surface temperatures and stable air caused region. A poorly defined westward-moving tropical the cyclone to weaken gradually, and it degenerated to wave became convectively active over the eastern Ca- a remnant low by 1200 UTC 24 May. The low moved ribbean Sea on 13 May and crossed Central America little and dissipated by 0000 UTC 26 May. two days later accompanied by limited cloudiness and Special Sensor Microwave Imager (SSM/I) and thunderstorms. Once the wave reached the eastern Pa- Tropical Rainfall Measuring Mission (TRMM) images cific and combined with the trough, the convection as- of Agatha from around 1400 UTC 22 May through 0230 sociated with the wave gradually became organized, UTC 23 May revealed a ring of precipitation resem- and on 20 May, the system showed signs of cyclonic bling an eyewall. One of these images is shown in Fig. rotation. As the wave continued westward, the thun- 5. The presence of the convective ring suggests that derstorm activity became concentrated to the south- Agatha’s peak intensity was probably higher than indi- west of a developing low-level circulation center and it cated by the 35–45-kt winds suggested by the Dvorak is estimated that a tropical depression formed at 0000 estimates, although no technique is available at this UTC 22 May about 500 n mi south-southeast of Cabo San Lucas, Mexico. The depression moved slowly to- ward the northwest, and under light shear, the cyclone intensified and became a tropical storm by 1200 UTC FIG. 4. Vertical instability parameter for the eastern North Pa- cific east of 110°W, for the May–November 2004 period. This is FIG. 3. SST departures from the 1968–96 long-term mean for the one of the inputs to the tropical cyclone formation parameter as June–September 2004 period. Shaded areas denote cold anoma- described by DeMaria et al. (2004). Note that the atmosphere was lies and arrows mark the track of the 2004 named tropical cy- more stable than normal throughout the season in the genesis clones. region. Unauthenticated | Downloaded 10/01/21 01:36 PM UTC MARCH 2006 ANNUAL SUMMARY 1029 creased and Blas gradually weakened due to lower sea surface temperatures. The weakening storm turned to- ward the west-northwest on 14 July. Although the cir- culation remained large and well defined, cool waters continued to take their toll on Blas and the cyclone weakened to a tropical depression by 1800 UTC 14 July.
Recommended publications
  • Temporary Protected Status for Guatemalans
    Guatemala Human Rights Commission / USA Fact Sheet Temporary Protected Status for Guatemalans Guatemalans are in urgent need of TPS due to the recent natural disasters in their home country. The economic and environmental damage has been devastating and Guatemalans living and working in the U.S. should not be forced to return to a disaster-stricken area. Additionally, families depend on financial support from their relatives in the U.S.; TPS would support the continued reconstruction of the devastation caused by tropical storms, intense rains, and volcanic activity. What is TPS? Temporary Protected Status (TPS) is a benefit granted by the Department of Homeland Security (DHS) that permits individuals from selected countries to remain in the United States for a certain amount of time, regardless of previous immigration status. Grants of TPS are initially made for periods of 6 to 18 months and may be extended depending on the situation. Removal proceedings are suspended for those granted TPS. DHS may grant TPS to countries due to: If granted TPS, individuals: Ongoing armed conflicts (such as civil wars) Cannot be removed from the U.S. Environmental disasters (such as hurricanes or Cannot be detained by DHS earthquakes) Can obtain an employment authorization document Other extraordinary or temporary conditions Are eligible for travel authorization TPS does not lead to permanent resident status. After the designated time period has expired, previous immigration status is restored. Pacaya Eruption and Tropical Storms On May 27, 2010, the Pacaya Volcano erupted just south of Guatemala City, forcing 2,000 people to evacuate. This was only the beginning.
    [Show full text]
  • Conference Poster Production
    65th Interdepartmental Hurricane Conference Miami, Florida February 28 - March 3, 2011 Hurricane Earl:September 2, 2010 Ocean and Atmospheric Influences on Tropical Cyclone Predictions: Challenges and Recent Progress S E S S Session 2 I The 2010 Tropical Cyclone Season in Review O N 2 The 2010 Atlantic Hurricane Season: Extremely Active but no U.S. Hurricane Landfalls Eric Blake and John L. Beven II ([email protected]) NOAA/NWS/National Hurricane Center The 2010 Atlantic hurricane season was quite active, with 19 named storms, 12 of which became hurricanes and 5 of which reached major hurricane intensity. These totals are well above the long-term normals of about 11 named storms, 6 hurricanes, and 2 major hurricanes. Although the 2010 season was considerably busier than normal, no hurricanes struck the United States. This was the most active season on record in the Atlantic that did not have a U.S. landfalling hurricane, and was also the second year in a row without a hurricane striking the U.S. coastline. A persistent trough along the east coast of the United States steered many of the hurricanes out to sea, while ridging over the central United States kept any hurricanes over the western part of the Caribbean Sea and Gulf of Mexico farther south over Central America and Mexico. The most significant U.S. impacts occurred with Tropical Storm Hermine, which brought hurricane-force wind gusts to south Texas along with extremely heavy rain, six fatalities, and about $240 million dollars of damage. Hurricane Earl was responsible for four deaths along the east coast of the United States due to very large swells, although the center of the hurricane stayed offshore.
    [Show full text]
  • Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs.
    [Show full text]
  • TROPICAL STORM AMANDA (EP022020) 30–31 May 2020
    NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT TROPICAL STORM AMANDA (EP022020) 30–31 May 2020 Robbie Berg National Hurricane Center 10 September 2020 GOES-EAST GEOCOLOR IMAGE OF TROPICAL STORM AMANDA AT 1200 UTC 31 MAY 2020, A COUPLE OF HOURS AFTER THE STORM MADE LANDFALL IN SOUTHEASTERN GUATEMALA (IMAGE COURTESY OF NOAA/NESDIS/STAR) Amanda is the second-known tropical storm to make landfall along the Pacific coast of Guatemala, after Tropical Storm Agatha of 2010. In conjunction with a larger weather system over Central America and Tropical Storm Cristobal over the Bay of Campeche, Amanda produced significant rainfall and flooding over portions of Central America and southeastern Mexico, resulting in 40 deaths in El Salvador, Guatemala, and Honduras. Tropical Storm Amanda 2 Tropical Storm Amanda 30–31 MAY 2020 SYNOPTIC HISTORY Multiple factors appear to have led to Amanda’s formation. The convectively active phase of an eastward-moving Kelvin wave spread over the far eastern part of the North Pacific Ocean between 26 and 31 May, while at the same time a mid- to upper-level low closed off over northeastern Mexico. The upper-level diffluence associated with these features caused an overall increase in convection over the far eastern Pacific during that period, as well as the development of a broad area of low pressure south of Guatemala and El Salvador by 27 May. A low-latitude tropical wave, which had moved off the coast of Africa around 18 to 19 May, moved into the Pacific basin on 29 May and caused the broad low and associated convection to become more organized.
    [Show full text]
  • Extension of the Systematic Approach to Tropical Cyclone Track Forecasting in the Eastern and Central North Pacific
    NPS ARCHIVE 1997.12 BOOTHE, M. NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS EXTENSION OF THE SYTEMATIC APPROACH TO TROPICAL CYCLONE TRACK FORECASTING IN THE EASTERN AND CENTRAL NORTH PACIFIC by Mark A. Boothe December, 1997 Thesis Co-Advisors: Russell L.Elsberry Lester E. Carr III Thesis B71245 Approved for public release; distribution is unlimited. DUDLEY KNOX LIBRARY NAVAl OSTGRADUATE SCHOOL MONTEREY CA 93943-5101 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching casting data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, I'aperwork Reduction Project (0704-0188) Washington DC 20503. 1 . AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED December 1997. Master's Thesis TITLE AND SUBTITLE EXTENSION OF THE SYSTEMATIC 5. FUNDING NUMBERS APPROACH TO TROPICAL CYCLONE TRACK FORECASTING IN THE EASTERN AND CENTRAL NORTH PACIFIC 6. AUTHOR(S) Mark A. Boothe 7. PERFORMING ORGANIZATION NAME(S) AND ADDR£SS(ES) PERFORMING Naval Postgraduate School ORGANIZATION Monterey CA 93943-5000 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSEES) 10. SPONSORING/MONTTORIN G AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
    [Show full text]
  • Relation Between Tropical Easterly Waves, Convection, and Tropical Cyclogenesis: a Lagrangian Perspective
    AUGUST 2013 L E P P E R T E T A L . 2649 Relation between Tropical Easterly Waves, Convection, and Tropical Cyclogenesis: A Lagrangian Perspective KENNETH D. LEPPERT II AND DANIEL J. CECIL* University of Alabama in Huntsville, Huntsville, Alabama, WALTER A. PETERSEN NASA Goddard Space Flight Center/Wallops Flight Facility, Wallops Island, Virginia (Manuscript received 2 August 2012, in final form 3 January 2013) ABSTRACT In this study, a wave-following Lagrangian framework was used to examine the evolution of tropical easterly wave structure, circulation, and convection in the days leading up to and including tropical cyclo- genesis in the Atlantic and east Pacific basins. After easterly waves were separated into northerly, southerly, trough, and ridge phases using the National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis 700-hPa meridional wind, waves that developed a tropical cyclone [de- veloping waves (DWs)] and waves that never developed a cyclone [nondeveloping waves (NDWs)] were identified. Day zero (D0) was defined as the day on which a tropical depression was identified for DWs or the day the waves achieved maximum 850-hPa vorticity for NDWs. Both waves types were then traced from five days prior to D0 (D 2 5) through one day after D0. Results suggest that as genesis is approached for DWs, the coverage by convection and cold cloudiness (e.g., fractional coverage by infrared brightness temperatures #240 K) increases, while convective intensity (e.g., lightning flash rate) decreases. Therefore, the coverage by convection appears to be more important than the intensity of convection for tropical cyclogenesis.
    [Show full text]
  • Minnesota Weathertalk Newsletter for Friday, January 1, 2010
    Minnesota WeatherTalk Newsletter for Friday, January 1, 2010 To: MPR Morning Edition Crew From: Mark Seeley, University of Minnesota Extension Dept of Soil, Water, and Climate Subject: Minnesota WeatherTalk Newsletter for Friday, January 1, 2010 Headlines: -Preliminary climate summary for December 2009 -Weekly Weather Potpourri -MPR listener question -Almanac for January 1st -Past weather features -Auld Lang Syne -Outlook Topic: Preliminary Climate Summary for December 2009 Mean December temperatures were generally 1 to 2 degrees F cooler than normal for most observers in the state. Extremes for the month ranged from 52 degrees F at Marshall on December 1st to -23 degrees F at Orr on the 12th. Minnesota reported the coldest temperature in the 48 contiguous states on five days during the month. Nearly all observers in the state reported above normal December precipitation, mostly thanks to the winter storms and blizzards on the 8th and 9th and again on the 24th and 25th. Many communities reported three to four times normal December precipitation. Winnebago with 3.05 inches recorded the 2nd wettest December in history, while Lamberton with 3.76 inches also reported their 2nd wettest December in history. Browns Valley in Traverse County reported their wettest December in history with 1.98 inches. Snowfall amounts were well above normal as well. Many climate observers reported over 20 inches. Worthington reported a record amount of snow for December with 34.6 inches, while Fairmont and Lamberton also reported a new record monthly total with 36.3 inches. The blizzard on December 8-9 closed highways and schools in many southeastern communities with winds gusting to 45-50 mph.
    [Show full text]
  • Name Dates Minimum Pressure (Hpa
    NOAA Technical Memorandum NWSTM PR-52 2004 Tropical Cyclones Central North Pacific Andy Nash Tim Craig Roy Matsuda Jeffrey Powell Central Pacific Hurricane Center Honolulu, Hawaii February 2005 TABLE OF CONTENTS Overview Tropical Depression 01-C Tropical Depression Darby Tropical Storm Estelle Acronyms Overview of the 2004 Central North Pacific Tropical Cyclone Season Total activity for the tropical cyclone season was slightly below normal, with three systems occurring within the area of responsibility of the Central Pacific Hurricane Center (CPHC). One tropical cyclone (01- C) developed within the central Pacific and the other two, Darby and Estelle, moved into the area from the eastern Pacific. Estelle was the strongest of the three systems and the only one of tropical storm intensity. There were no deaths recorded or property damage reported in the central North Pacific due to these three tropical cyclones. Table 1. List of Tropical Cyclones ** denotes information for only that portion of the storm's lifetime in the central north Pacific (CPHC's area of responsibility). Minimum Maximum Sustained Name Dates Pressure (hPa) Winds (kt) Tropical July 5-6 1007 25 Depression 01-C Tropical August 1 ** 1007 ** 25 ** Depression Darby Tropical Storm August 21- 990 ** 60 ** Estelle 25 ** Table 2. Overall Track Verification Table entries are track forecast errors, measured in nautical miles. Values in parentheses indicate the number of forecasts. Values in bold represent guidance forecast errors equal to or less than the official CPHC forecast.
    [Show full text]
  • International Journal of Image Processing (Ijip)
    INTERNATIONAL JOURNAL OF IMAGE PROCESSING (IJIP) VOLUME 7, ISSUE 4, 2013 EDITED BY DR. NABEEL TAHIR ISSN (Online): 1985-2304 International Journal of Image Processing (IJIP) is published both in traditional paper form and in Internet. This journal is published at the website http://www.cscjournals.org , maintained by Computer Science Journals (CSC Journals), Malaysia. IJIP Journal is a part of CSC Publishers Computer Science Journals http://www.cscjournals.org INTERNATIONAL JOURNAL OF IMAGE PROCESSING (IJIP) Book: Volume 7, Issue 4, September 2013 Publishing Date: 15-09-2013 ISSN (Online): 1985-2304 This work is subjected to copyright. All rights are reserved whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illusions, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication of parts thereof is permitted only under the provision of the copyright law 1965, in its current version, and permission of use must always be obtained from CSC Publishers. IJIP Journal is a part of CSC Publishers http://www.cscjournals.org © IJIP Journal Published in Malaysia Typesetting: Camera-ready by author, data conversation by CSC Publishing Services – CSC Journals, Malaysia CSC Publishers, 2013 EDITORIAL PREFACE The International Journal of Image Processing (IJIP) is an effective medium for interchange of high quality theoretical and applied research in the Image Processing domain from theoretical research to application development. This is the Fourth Issue of Volume Seven of IJIP. The Journal is published bi-monthly, with papers being peer reviewed to high international standards.
    [Show full text]
  • RA IV Hurricane Committee Thirty-Third Session
    dr WORLD METEOROLOGICAL ORGANIZATION RA IV HURRICANE COMMITTEE THIRTY­THIRD SESSION GRAND CAYMAN, CAYMAN ISLANDS (8 to 12 March 2011) FINAL REPORT 1. ORGANIZATION OF THE SESSION At the kind invitation of the Government of the Cayman Islands, the thirty­third session of the RA IV Hurricane Committee was held in George Town, Grand Cayman from 8 to 12 March 2011. The opening ceremony commenced at 0830 hours on Tuesday, 8 March 2011. 1.1 Opening of the session 1.1.1 Mr Fred Sambula, Director General of the Cayman Islands National Weather Service, welcomed the participants to the session. He urged that in the face of the annual recurrent threats from tropical cyclones that the Committee review the technical & operational plans with an aim at further refining the Early Warning System to enhance its service delivery to the nations. 1.1.2 Mr Arthur Rolle, President of Regional Association IV (RA IV) opened his remarks by informing the Committee members of the national hazards in RA IV in 2010. He mentioned that the nation of Haiti suffered severe damage from the earthquake in January. He thanked the Governments of France, Canada and the United States for their support to the Government of Haiti in providing meteorological equipment and human resource personnel. He also thanked the Caribbean Meteorological Organization (CMO), the World Meteorological Organization (WMO) and others for their support to Haiti. The President spoke on the changes that were made to the hurricane warning systems at the 32 nd session of the Hurricane Committee in Bermuda. He mentioned that the changes may have resulted in the reduced loss of lives in countries impacted by tropical cyclones.
    [Show full text]
  • ANNUAL SUMMARY Eastern North Pacific Hurricane Season of 2010
    VOLUME 140 MONTHLY WEATHER REVIEW SEPTEMBER 2012 ANNUAL SUMMARY Eastern North Pacific Hurricane Season of 2010 STACY R. STEWART AND JOHN P. CANGIALOSI National Hurricane Center, Miami, Florida (Manuscript received 29 June 2011, in final form 6 November 2011) ABSTRACT The 2010 eastern North Pacific hurricane season was one of the least active seasons on record. Only seven named storms developed, which is the lowest number observed at least since routine satellite coverage of that basin began in 1966. Furthermore, only three of those storms reached hurricane status, which is also the lowest number of hurricanes ever observed in the satellite-era season. However, two tropical storms made landfall: Agatha in Guatemala and Georgette in Mexico, with Agatha directly causing 190 deaths and moderate to severe property damage as a result of rain-induced floods and mud slides. On average, the National Hurricane Center track forecasts in the eastern North Pacific for 2010 were quite skillful. 1. Introduction the maximum sustained wind speed at 6-h intervals for all (sub)tropical storms and hurricanes. The ACE for The 2010 eastern North Pacific hurricane season con- the 2010 season was 50 3 104 kt2, or about 46% of the tinued the trend of generally quieter than average seasons long-term (1971–2009) median value of 109 3 104 kt2. since 1995 (Fig. 1; Table 1) (Wang and Lee 2009). A total Two hurricanes, Celia and Darby, accounted for 70% of of seven tropical storms developed, of which three became the total ACE for the season. The 2010 season had the hurricanes, including two major hurricanes [maximum third lowest ACE since 1971, ahead of only 1977 and 1-min winds of greater than 96 kt (1 kt 5 0.5144 m s21), 2007.
    [Show full text]
  • Midlevel Ventilation's Constraint on Tropical Cyclone Intensity Brian
    Midlevel Ventilation’s Constraint on Tropical Cyclone Intensity by Brian Hong-An Tang B.S. Atmospheric Science, University of California Los Angeles, 2004 B.S. Applied Mathematics, University of California Los Angeles, 2004 Submitted to the Department of Earth, Atmospheric and Planetary Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Atmospheric Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2010 c Massachusetts Institute of Technology 2010. All rights reserved. Author.............................................. ................ Department of Earth, Atmospheric and Planetary Sciences June 14, 2010 Certified by.......................................... ................ Kerry A. Emanuel Breene M. Kerr Professor of Atmospheric Science Director, Program in Atmospheres, Oceans and Climate Thesis Supervisor Accepted by.......................................... ............... Maria Zuber Earle Griswold Professor of Geophysics and Planetary Science Head, Department of Earth, Atmospheric and Planetary Sciences 2 Midlevel Ventilation’s Constraint on Tropical Cyclone Intensity by Brian Hong-An Tang Submitted to the Department of Earth, Atmospheric and Planetary Sciences on June 14, 2010, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Atmospheric Science Abstract Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a TC’s intensity. An idealized framework is developed to assess how ventilation affects TC intensity via two pathways: downdrafts outside the eyewall and eddy fluxes directly into the eyewall. Three key aspects are found: ventilation has a detrimental effect on TC intensity by decreasing the maximum steady state intensity, imposing a minimum intensity below which a TC will unconditionally decay, and providing an upper ventilation bound beyond which no steady TC can exist.
    [Show full text]