machines Article A Design Method for a Variable Combined Brake System for Motorcycles Applying the Adaptive Control Method Yuan-Ting Lin 1,* , Chyuan-Yow Tseng 2 , Jao-Hwa Kuang 1 and Yeong-Maw Hwang 1 1 Department of Mechanical and Electromechanical Engineering, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
[email protected] (J.-H.K.);
[email protected] (Y.-M.H.) 2 Department of Vehicle Engineering, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
[email protected] * Correspondence:
[email protected] Abstract: The variable combined brake system (VCBS) is a mechanism for motorcycles to simultane- ously activate the front and rear brake systems by using one brake lever or pedal. The purpose is to reduce the risk of rollover accidents due to misuse of the front brake when panic braking. Due to its ability in a wide variation range of braking force distribution (BFD) ratios between the front and rear wheels, the VCBS can simultaneously achieve high braking effort and driving comfort performances, provided that the BFD ratio is designed appropriately. This paper aimed to develop the design method for the VCBS. A mathematical model of the VCBS mechanism is derived, and a parameter matching design method that applies adaptive control theory is proposed. A prototype of VCBS is designed and built based on the proposed method. The straight-line braking test results show that the motorcycle equipped with the VCBS prototype effectively obtained a high braking performance in deceleration. The obtained maximum deceleration is an average of 6.37 m/s2 (0.65 g) under an Citation: Lin, Y.-T.; Tseng, C.-Y.; average handbrake lever force of 154.29 N.