Groundwater and Contaminant Mass Fluxes Monitoring in Heterogeneous Aquifers
Total Page:16
File Type:pdf, Size:1020Kb
Groundwater and contaminant mass fluxes monitoring in heterogeneous aquifers by Pierre JAMIN Submitted on March 2019 in partial fulfillment of the requirements for the degree of Doctor in Philosophy In Applied Sciences at the University of Liège, Belgium Jury Toye Dominique (President) Pr. Dr. Ir., University of Liège Brouyère Serge (Promotor) Dr. Ir., University of Liège Dassarges Alain (Co-promotor) Pr. Dr. Ir., University of Liège Nguyen Frédéric Pr. Dr. Ir., University of Liège Goderniaux Pascal Pr. Dr. Ir., University of Mons Annable Michael Pr. Dr. Ir., University of Florida Atteia Olivier Pr. Dr. Ir., University of Bordeaux To Suzanne, Léon and Anne-Marie Abstract Groundwater is one of the most important natural resources of our planet and it requires appropriate management and protection in order to guarantee its availability for future generations. From a water quality point of view, old industrial activities and modern accidental releases have locally impacted groundwater resource. Management of these contaminated aquifers has historically relied on comparison between measured contaminant concentrations in groundwater and threshold values. This approach is a necessary early characterization step but is totally insufficient to fully investigate the contaminants behavior in groundwater and to quantify the associated risks. Since the beginning of the years 2000, a consensus has been growing among the scientific, technical and decision makers’ community on the fact that management of contaminated aquifers should be performed in terms of contaminant flux metrics. Accordingly, it has become necessary to dispose of techniques able to accurately measure mass fluxes and mass discharges of contaminants in aquifers. Contaminant mass flux usually relies on measurements of both groundwater flux and contaminant concentration in monitoring wells drilled in the aquifer of concern. Research efforts must lead to the proposition of new solutions, methodologies and techniques, in particular for measuring groundwater fluxes. In this work, the Finite Volume Point Dilution Method (FVPDM), is proposed as an innovative single-well method for monitoring groundwater fluxes in aquifers. Mathematical basis and a first analytical solutions allowing to interpret FVPDM experiments performed in steady state groundwater flow conditions were already developed and validated on a few field applications. In this research, a generalized FVPDM interpretation framework for monitoring groundwater fluxes over time is proposed, based on a new finite difference expression proposed to calculate groundwater fluxes from FVPDM experiments performed in transient groundwater flow fields. In a first step, the FVPDM technique was successively applied in various laboratory and field experiments allowing to define its accuracy, precision and resolution under transient groundwater flow conditions. A first lab- scale flow tank experiment demonstrated the accuracy of the FVPDM for groundwater fluxes measurements in both steady and transient state flow conditions. Difference between the prescribed water flux in the flow tank and the measured water flux using FVPDM was as low as 0.15 %. In a second experiment the FVPDM was applied to measure groundwater fluxes on several fractured zones of an open well installed in a crystalline rock aquifer. This constitutes the first successful application of the FVPDM technique in a fractured aquifer, using straddle packers. The classical point dilution method (PDM) was also applied during this experiment, under the same groundwater flow conditions to compare the sensitivity and uncertainty of both methods. It demonstrated that FVPDM generally provides a better precision than PDM but it may require longer experimental durations. A third FVPDM experiment undertaken in an alluvial aquifer allowed to validate in the field the method for monitoring rapidly changing groundwater fluxes. This first series of experiment allowed to validate the FVPDM as a fully operational method for measurements of groundwater fluxes for a wide spectrum of experimental and flow conditions. 5 In a second step, three field-scale applications of the method were performed. The first relates to direct groundwater fluxes measurements in a sub-permafrost aquifer located in the remote territories of northern Quebec. These measurements came in support to a thermo-hydrodynamic model of a watershed where permafrost thaw occurs. This specific application demonstrated the robustness and versatility of the FVPDM. In a second field application, the FVPDM was used to monitor, under controlled conditions a solute mass discharge experiment undertaken in a heterogeneous alluvial aquifer at a series of control planes in order to compare different methods for calculating the total mass discharge based on discrete groundwater fluxes and concentration measurements. In a third application, the FVPDM was successfully used in a groundwater pollution investigation to characterize highly transient groundwater flows and pollutant mass fluxes within a coastal aquifer influenced by marked tides. The results of this experiment allowed to improve and refine the conceptual site model and provided crucial information for optimizing further investigations and risk mitigation measures at this polluted site. The FVPDM was applied in a wide range of environmental contexts, of application scales, of experimental setups, of aquifer types, of time scales, of groundwater flow conditions, and for both research and consultant-type purposes. The FVPDM was proven to be a robust and versatile method that provides high-quality reliable groundwater flux data for general hydrogeological characterizations and for contaminant mass fluxes monitoring, even under highly transient flow conditions. From a more general perspective, this research demonstrated the great importance and the huge benefits of having direct and reliable in situ measurements of groundwater fluxes for any kind of hydrogeological studies. This research proves once more the value of undertaking mass flux measurements for characterization of contaminated sites, risk assessment and design of risk mitigation measures. 6 Résumé Les eaux souterraines comptent parmi les ressources naturelles les plus importantes de notre planète et nécessitent une gestion et une protection appropriées afin de garantir leur disponibilité pour les générations futures. D’un point de vue qualitatif, anciennes activités industrielles et rejets accidentels récents peuvent impacter localement les eaux souterraines. La gestion de ces aquifères contaminés est traditionnellement basée sur la comparaison des concentrations en contaminants dans l'eau souterraine par rapport à des normes. Cette approche constitue une étape de caractérisation préliminaire nécessaire mais reste insuffisante pour étudier de manière approfondie le comportement des contaminants dans les eaux souterraines et pour quantifier les risques associés. Au début des années 2000, un consensus a vu le jour parmi les différents acteurs du domaine des aquifères contaminés sur le fait que la gestion de ces aquifères devait reposer sur des approches basées sur des flux de contaminants plutôt que sur des concentrations. En conséquence, il est nécessaire de disposer de techniques permettant de mesurer avec précision les flux massiques de contaminants dans les aquifères. Le calcul du flux massique de contaminants repose généralement sur des mesures de flux d’eau souterraine et de la concentration en contaminants effectuées au niveau de différents puits. La recherche doit donc proposer de nouvelles solutions, méthodes et techniques, notamment en ce qui concerne la mesure des flux d’eau souterraine. Dans ce travail de recherche, la méthode “Finite Volume Point Dilution Method” (FVPDM) est proposée comme méthode innovante de monitoring des flux d’eau souterraine. La base mathématique ainsi qu'une première solution analytique permettant d’interpréter les expériences FVPDM réalisées dans des conditions d’écoulement en régime permanent avaient déjà été développées et validées sur quelques applications de terrain. Dans cette recherche, un nouveau cadre d'interprétation généralisé pour le monitoring au cours du temps des flux d'eau souterraine par la méthode FVPDM est proposé. Il est basé sur une discrétisation par différences finies de l'équation différentielle FVPDM et permet de calculer les flux d'eau souterraine à partir d'expériences réalisées dans des conditions d'écoulements transitoires. Dans un premier temps, la méthode FVPDM a été appliquée lors de différentes expériences en laboratoire et sur le terrain afin d’en évaluer toutes les spécifications à savoir sa précision, son exactitude et sa résolution dans des conditions d'écoulements transitoires. Une première expérience en laboratoire sur un modèle réduit d’aquifère a démontré l’exactitude de la FVPDM pour la mesure des flux d'eaux souterraines dans des conditions d'écoulement permanent et transitoire. La différence entre le flux d’eau imposé dans le modèle réduit et le flux d’eau mesuré par FVPDM était de 0,15%. Lors d’une seconde expérience, la FVPDM a été appliquée pour mesurer des flux d’eau souterraine à différentes profondeurs dans un puits foré dans un aquifère fracturé. Cette manipulation a été la première application de la FVPDM dans un aquifère fracturé en utilisant un système de double packers. Une méthode classique de dilution ponctuelle (PDM) a également été utilisée, ce qui a permis de comparer la sensibilité et les incertitudes des deux méthodes.