Pileated Woodpeckers (Dryocopus Pileatus) and Saproxylic Beetles In

Total Page:16

File Type:pdf, Size:1020Kb

Pileated Woodpeckers (Dryocopus Pileatus) and Saproxylic Beetles In Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2008 Pileated woodpeckers (Dryocopus pileatus) and saproxylic beetles in partial cut and uncut bottomland hardwood forests Patricia Jean Newell Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Environmental Sciences Commons Recommended Citation Newell, Patricia Jean, "Pileated woodpeckers (Dryocopus pileatus) and saproxylic beetles in partial cut and uncut bottomland hardwood forests" (2008). LSU Master's Theses. 3262. https://digitalcommons.lsu.edu/gradschool_theses/3262 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. PILEATED WOODPECKERS (DRYOCOPUS PILEATUS) AND SAPROXYLIC BEETLES IN PARTIAL CUT AND UNCUT BOTTOMLAND HARDWOOD FORESTS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in Partial Fulfillment of the Requirements for the Degree of Master of Science in The School of Renewable Natural Resources by Patricia J. Newell B.S. University of New Brunswick, 1999 May 2008 Acknowledgments This project came to fruition because of the confidence my advisor, Sammy King, had that this project could be a success and in his ability to secure the necessary funding for it to become a reality. His advice both professionally and personally was indispensible. Dr. Chris Carlton, Dr. Phil Stouffer, and Dr. Jing Wang were my committee members and provided critical advice in all stages of this project. Dr. Michael Kaller helped tirelessly with the many statistical aspects of my analyses. This project could not have been completed without the invaluable field assistance, expertise, and creativity of Nathan Banfield who helped design and implement methodology for hanging Sante traps and target mist nets in the canopy. As well, he was instrumental in the capture of most of the woodpeckers by doing whatever it took, including raising an extendable pole from a deer stand that was 20 feet up in a nearby tree. Other field assistants along the way included Ehren Banfield, Will DeGraveilles, Amy Magro, and Jennifer Yurich who helped with many aspects of the project. Rachel Villani and Mark McConnell helped sort and identify beetle specimens in the lab. The Louisiana State Arthropod Museum staff and lab group provided identification expertise with difficult specimens and included Victoria Bayless, Chris Carlton, Michael Ferro, Matt Gimmel, Stephanie Gil, Igor Sokolov, Alexey Tishechkin, and Jong-Seok Park. Funding was provided by Louisiana Department of Wildlife and Fisheries, Arkansas Natural Heritage Commission, U.S. Fish and Wildlife Service, and the Louisiana Fish and Wildlife Cooperative Research Unit. The Red River/Three Rivers WMA, Big Lake WMA, and Bayou Cocodrie NWR provided access to lands, housing, and forest management information. Red River/Three Rivers WMA staff, Johny Warren, Ryan LeMoine, and Duck Loccacio, were ii particularly helpful during my stay at their WMA. Michael Warriner aided with Sante trap study design. Eric Baka, Evelyn Bull, Catherine Raley, and Rochelle Renken were very generous with their methodology for transmitter application, nest searching, and capture strategies. Scientists at the Wetland Center in Lafayette, particularly Bob Keeland, Paul Chadwick, and Larry Allain provided assistance with the woodpecker component of the project. Cheryl Duplechain was instrumental in all logistical concerns involving budget and travel and my lab-mates Hugo Gee, Jackie Kang, Jonathon Valente, Brad Pickens, and Rachel Villani provided support and advice throughout. I also greatly thank Sean Hribal for all his encouragement and patience and my parents David and Jean Newell for supporting me in everything I do. I appreciate all the help I have had in the past two years. iii Table of Contents Acknowledgments ................................................................................................................. ii Abstract ................................................................................................................................. vi Chapter 1: Introduction ........................................................................................................... 1 Literature Cited .................................................................................................................... 2 Chapter 2: Relative Abundance and Species Richness of Saproxylic Beetles in Partial Cut and Uncut Bottomland Hardwood Forests .............................................................................. 4 Introduction ......................................................................................................................... 4 Study Area ........................................................................................................................... 6 Methods ............................................................................................................................... 8 Study Design ................................................................................................................... 8 Vegetation Sampling ..................................................................................................... 12 Statistical Analyses ....................................................................................................... 12 Harvest Wounds ............................................................................................................ 16 Results ............................................................................................................................... 16 Study Areas ................................................................................................................... 16 Covariables ................................................................................................................... 18 Saproxylic Beetles ........................................................................................................ 18 Cerambycidae ............................................................................................................... 20 Non-Cerambycidae ....................................................................................................... 27 Individual Species of Cerambycidae and Non-Cerambycidae ..................................... 32 Harvest Wounds ............................................................................................................ 36 Discussion .......................................................................................................................... 36 Literature Cited .................................................................................................................. 40 Chapter 3: Nest and Roost Tree and Site Selection of Pileated Woodpeckers (Dryocopus pileatus) in Partial Cut and Uncut Bottomland Hardwood Forests ...................................... 46 Introduction ....................................................................................................................... 46 Study Area ......................................................................................................................... 47 Methods ............................................................................................................................. 48 Study Design ................................................................................................................. 48 Vegetation Plots ............................................................................................................ 50 Selection of Tree Characteristics .................................................................................. 51 Selection of Site Characteristics ................................................................................... 52 iv Results................................................................................................................................53 Selection of Tree Characteristics .................................................................................. 53 Selection of Site characteristics .................................................................................... 57 Discussion .......................................................................................................................... 58 Literature Cited .................................................................................................................. 61 Chapter 4: Foraging Ecology of Pileated Woodpeckers (Dryocopus pileatus) in Partial Cut and Uncut Bottomland Hardwood Forests ............................................................................ 64 Introduction ....................................................................................................................... 64 Study Area ......................................................................................................................... 66 Methods ............................................................................................................................. 66 Capture .......................................................................................................................... 66
Recommended publications
  • Detecting Signs and Symptoms of Asian Longhorned Beetle Injury
    DETECTING SIGNS AND SYMPTOMS OF ASIAN LONGHORNED BEETLE INJURY TRAINING GUIDE Detecting Signs and Symptoms of Asian Longhorned Beetle Injury TRAINING GUIDE Jozef Ric1, Peter de Groot2, Ben Gasman3, Mary Orr3, Jason Doyle1, Michael T Smith4, Louise Dumouchel3, Taylor Scarr5, Jean J Turgeon2 1 Toronto Parks, Forestry and Recreation 2 Natural Resources Canada - Canadian Forest Service 3 Canadian Food Inspection Agency 4 United States Department of Agriculture - Agricultural Research Service 5 Ontario Ministry of Natural Resources We dedicate this guide to our spouses and children for their support while we were chasing this beetle. Library and Archives Canada Cataloguing in Publication Detecting Signs and Symptoms of Asian Longhorned Beetle Injury : Training / Jozef Ric, Peter de Groot, Ben Gasman, Mary Orr, Jason Doyle, Michael T Smith, Louise Dumouchel, Taylor Scarr and Jean J Turgeon © Her Majesty in Right of Canada, 2006 ISBN 0-662-43426-9 Cat. No. Fo124-7/2006E 1. Asian longhorned beetle. 2. Trees- -Diseases and pests- -Identification. I. Ric, Jozef II. Great Lakes Forestry Centre QL596.C4D47 2006 634.9’67648 C2006-980139-8 Cover: Asian longhorned beetle (Anoplophora glabripennis) adult. Photography by William D Biggs Additional copies of this publication are available from: Publication Office Plant Health Division Natural Resources Canada Canadian Forest Service Canadian Food Inspection Agency Great Lakes Forestry Centre Floor 3, Room 3201 E 1219 Queen Street East 59 Camelot Drive Sault Ste. Marie, Ontario Ottawa, Ontario CANADA P6A 2E5 CANADA K1A 0Y9 [email protected] [email protected] Cette publication est aussi disponible en français sous le titre: Détection des signes et symptômes d’attaque par le longicorne étoilé : Guide de formation.
    [Show full text]
  • Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2
    Insects of Western North America 4. Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Survey of Selected Insect Taxa of Fort Sill, Comanche County, Oklahoma 2. Dragonflies (Odonata), Stoneflies (Plecoptera) and selected Moths (Lepidoptera) by Boris C. Kondratieff, Paul A. Opler, Matthew C. Garhart, and Jason P. Schmidt C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 March 15, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration (top to bottom): Widow Skimmer (Libellula luctuosa) [photo ©Robert Behrstock], Stonefly (Perlesta species) [photo © David H. Funk, White- lined Sphinx (Hyles lineata) [photo © Matthew C. Garhart] ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences, Colorado State University, Fort Collins, Colorado 80523 Copyrighted 2004 Table of Contents EXECUTIVE SUMMARY……………………………………………………………………………….…1 INTRODUCTION…………………………………………..…………………………………………….…3 OBJECTIVE………………………………………………………………………………………….………5 Site Descriptions………………………………………….. METHODS AND MATERIALS…………………………………………………………………………….5 RESULTS AND DISCUSSION………………………………………………………………………..…...11 Dragonflies………………………………………………………………………………….……..11
    [Show full text]
  • Insects That Feed on Trees and Shrubs
    INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture,
    [Show full text]
  • And Lepidoptera Associated with Fraxinus Pennsylvanica Marshall (Oleaceae) in the Red River Valley of Eastern North Dakota
    A FAUNAL SURVEY OF COLEOPTERA, HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH FRAXINUS PENNSYLVANICA MARSHALL (OLEACEAE) IN THE RED RIVER VALLEY OF EASTERN NORTH DAKOTA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By James Samuel Walker In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Entomology March 2014 Fargo, North Dakota North Dakota State University Graduate School North DakotaTitle State University North DaGkroadtaua Stet Sacteho Uolniversity A FAUNAL SURVEYG rOFad COLEOPTERA,uate School HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH Title A FFRAXINUSAUNAL S UPENNSYLVANICARVEY OF COLEO MARSHALLPTERTAitl,e HEM (OLEACEAE)IPTERA (HET INER THEOPTE REDRA), AND LAE FPAIDUONPATLE RSUAR AVSESYO COIFA CTOEDLE WOIPTTHE RFRAA, XHIENMUISP PTENRNAS (YHLEVTAENRICOAP TMEARRAS),H AANLDL RIVER VALLEY OF EASTERN NORTH DAKOTA L(EOPLIDEAOCPTEEAREA) I ANS TSHOEC RIAETDE RDI VWEITRH V FARLALXEIYN UOSF P EEANSNTSEYRLNV ANNOICRAT HM DAARKSHOATALL (OLEACEAE) IN THE RED RIVER VAL LEY OF EASTERN NORTH DAKOTA ByB y By JAMESJAME SSAMUEL SAMUE LWALKER WALKER JAMES SAMUEL WALKER TheThe Su pSupervisoryervisory C oCommitteemmittee c ecertifiesrtifies t hthatat t hthisis ddisquisition isquisition complies complie swith wit hNorth Nor tDakotah Dako ta State State University’s regulations and meets the accepted standards for the degree of The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of University’s regulations and meetMASTERs the acce pOFted SCIENCE standards for the degree of MASTER OF SCIENCE MASTER OF SCIENCE SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: David A. Rider DCoa-­CCo-Chairvhiadi rA.
    [Show full text]
  • North American Species of Cerambycid Beetles in the Genus Neoclytus Share a Common Hydroxyhexanone-Hexanediol Pheromone Structural Motif
    FOREST ENTOMOLOGY North American Species of Cerambycid Beetles in the Genus Neoclytus Share a Common Hydroxyhexanone-Hexanediol Pheromone Structural Motif ANN M. RAY,1,2 JOCELYN G. MILLAR,3 JARDEL A. MOREIRA,3 J. STEVEN MCELFRESH,3 4,5 6 4 ROBERT F. MITCHELL, JAMES D. BARBOUR, AND LAWRENCE M. HANKS J. Econ. Entomol. 108(4): 1860–1868 (2015); DOI: 10.1093/jee/tov170 ABSTRACT Many species of cerambycid beetles in the subfamily Cerambycinae are known to use male-produced pheromones composed of one or a few components such as 3-hydroxyalkan-2-ones and the related 2,3-alkanediols. Here, we show that this pheromone structure is characteristic of the ceram- bycine genus Neoclytus Thomson, based on laboratory and field studies of 10 species and subspecies. Males of seven taxa produced pheromones composed of (R)-3-hydroxyhexan-2-one as a single compo- nent, and the synthetic pheromone attracted adults of both sexes in field bioassays, including the eastern North American taxa Neoclytus caprea (Say), Neoclytus mucronatus mucronatus (F.), and Neoclytus scu- tellaris (Olivier), and the western taxa Neoclytus conjunctus (LeConte), Neoclytus irroratus (LeConte), and Neoclytus modestus modestus Fall. Males of the eastern Neoclytus acuminatus acuminatus (F.) and the western Neoclytus tenuiscriptus Fall produced (2S,3S)-2,3-hexanediol as their dominant or sole pheromone component. Preliminary data also revealed that males of the western Neoclytus balteatus LeConte produced a blend of (R)-3-hydroxyhexan-2-one and (2S,3S)-2,3-hexanediol but also (2S,3S)- 2,3-octanediol as a minor component. The fact that the hydroxyketone-hexanediol structural motif is consistent among these North American species provides further evidence of the high degree of conservation of pheromone structures among species in the subfamily Cerambycinae.
    [Show full text]
  • CIRCULAR Issue No
    FDACS-P-01915 CIRCULAR Issue No. 40 | October 2018 Florida Department of Agriculture and Consumer Services Division of Plant Industry The Buckthorns (Genus Sideroxylon): An Underappreciated Group of Florida Native Plants Paul T. Corogin; Bureau of Entomology, Nematology and Plant Pathology [email protected] or 1-888-397-1517 INTRODUCTION Tucked away amongst the rich diversity of Florida plant life surrounding us, one plant group can easily escape our notice: the genus Sideroxylon, belonging to the pantropical family Sapotaceae (sapodilla family). This circular will introduce the Sideroxylon species native to North America, featuring in detail species adapted to the temperate zone that may be of interest to the southern United States (U.S.). Some are endangered in Florida, and some are Florida endemics. Certain species have landscaping potential, but have long been ignored, but a few species are occasionally available from native plant nurseries (Betrock’s Plant Search 2018; FNPS 2018). Species of Sideroxylon attract pollinators when blooming, and birds and wildlife when fruiting; thus, they can be desirable additions to any Florida landscape. Sapotaceae are recognized by the presence of milky sap, brownish T-shaped hairs, fasciculate inflorescences (flowers in a bundle) and seeds with a large scar at one end (Pennington 1990, 1991). This woody family makes a large contribution to tropical plant biodiversity, being a major floristic component of tropical lowland wet forests in the Americas, Asia, Africa and the Pacific Islands (Gentry 1988). Sapotaceous plants are also economically important to humans. “Sapote” comes from the Nahuatl word meaning sweet fruit; most species bear such a fruit (e.g., the sapodilla and mamey sapote) (Smith et al.
    [Show full text]
  • De Vila Dois Rios (Ilha Grande, Angra Dos Reis, Rio De Janeiro, Brasil) Biota Neotropica, Vol
    Redalyc Sistema de Información Científica Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Mourão dos Santos Rodrigues, Juliana; Monné, Miguel Angel; Miras Mermudes, José Ricardo Inventário das espécies de Cerambycidae (Coleoptera) de Vila Dois Rios (Ilha Grande, Angra dos Reis, Rio de Janeiro, Brasil) Biota Neotropica, vol. 10, núm. 3, septiembre, 2010, pp. 311-321 Instituto Virtual da Biodiversidade Campinas, Brasil Disponible en: http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=199115792028 Biota Neotropica [email protected]; [email protected] Instituto Virtual da Biodiversidade Brasil ¿Cómo citar? Número completo Más información del artículo Página de la revista www.redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Biota Neotrop., vol. 10, no. 3 Inventário das espécies de Cerambycidae (Coleoptera) de Vila Dois Rios (Ilha Grande, Angra dos Reis, Rio de Janeiro, Brasil) Juliana Mourão dos Santos Rodrigues1,4, Miguel Angel Monné2,3 & José Ricardo Miras Mermudes1 1Laboratório de Entomologia, Departamento de Zoologia, Universidade Federal do Rio de Janeiro – UFRJ, CP 68044, CEP 21941-971, Rio de Janeiro, RJ, Brasil 2Museu Nacional, Departamento de Entomologia, Universidade Federal do Rio de Janeiro – UFRJ, Quinta da Boa Vista, CEP 20940-040, São Cristóvão, RJ, Brasil 3Bolsista, Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq 4Autor para correspondência: Juliana Mourão dos Santos Rodrigues, e-mail: [email protected] RODRIGUES, J.M.S, MONNÉ, M.A. & MERMUDES, J.R.M. Inventory of the Cerambycidae species (Coleoptera) from Vila Dois Rios (Ilha Grande, Angra dos Reis, Rio de Janeiro, Brazil). Biota Neotrop., 10(3): http://www.biotaneotropica.org.br/v10n3/en/abstract?inventory+bn00310032010.
    [Show full text]
  • Your Name Here
    RELATIONSHIPS BETWEEN DEAD WOOD AND ARTHROPODS IN THE SOUTHEASTERN UNITED STATES by MICHAEL DARRAGH ULYSHEN (Under the Direction of James L. Hanula) ABSTRACT The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, ground- dwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.
    [Show full text]
  • An Annotated Checklist of the Coleoptera of the Smithsonian Environmental Research Center, Maryland
    B A N I S T E R I A A JOURNAL DEVOTED TO THE NATURAL HISTORY OF VIRGINIA ISSN 1066-0712 Published by the Virginia Natural History Society The Virginia Natural History Society (VNHS) is a nonprofit organization dedicated to the dissemination of scientific information on all aspects of natural history in the Commonwealth of Virginia, including botany, zoology, ecology, archaeology, anthropology, paleontology, geology, geography, and climatology. The society’s periodical Banisteria is a peer-reviewed, open access, online-only journal. Submitted manuscripts are published individually immediately after acceptance. A single volume is compiled at the end of each year and published online. The Editor will consider manuscripts on any aspect of natural history in Virginia or neighboring states if the information concerns a species native to Virginia or if the topic is directly related to regional natural history (as defined above). Biographies and historical accounts of relevance to natural history in Virginia also are suitable for publication in Banisteria. Membership dues and inquiries about back issues should be directed to the Co-Treasurers, and correspondence regarding Banisteria to the Editor. For additional information regarding the VNHS, including other membership categories, annual meetings, field events, pdf copies of papers from past issues of Banisteria, and instructions for prospective authors visit http://virginianaturalhistorysociety.com/ Editorial Staff: Banisteria Editor Todd Fredericksen, Ferrum College 215 Ferrum Mountain Road Ferrum, Virginia 24088 Associate Editors Philip Coulling, Nature Camp Incorporated Clyde Kessler, Virginia Tech Nancy Moncrief, Virginia Museum of Natural History Karen Powers, Radford University Stephen Powers, Roanoke College C. L. Staines, Smithsonian Environmental Research Center Copy Editor Kal Ivanov, Virginia Museum of Natural History Copyright held by the author(s).
    [Show full text]
  • (Coleoptera) of the Huron Mountains in Northern Michigan
    The Great Lakes Entomologist Volume 19 Number 3 - Fall 1986 Number 3 - Fall 1986 Article 3 October 1986 Ecology of the Cerambycidae (Coleoptera) of the Huron Mountains in Northern Michigan D. C. L. Gosling Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Gosling, D. C. L. 1986. "Ecology of the Cerambycidae (Coleoptera) of the Huron Mountains in Northern Michigan," The Great Lakes Entomologist, vol 19 (3) Available at: https://scholar.valpo.edu/tgle/vol19/iss3/3 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Gosling: Ecology of the Cerambycidae (Coleoptera) of the Huron Mountains i 1986 THE GREAT LAKES ENTOMOLOGIST 153 ECOLOGY OF THE CERAMBYCIDAE (COLEOPTERA) OF THE HURON MOUNTAINS IN NORTHERN MICHIGAN D. C. L Gosling! ABSTRACT Eighty-nine species of Cerambycidae were collected during a five-year survey of the woodboring beetle fauna of the Huron Mountains in Marquette County, Michigan. Host plants were deteTITIined for 51 species. Observations were made of species abundance and phenology, and the blossoms visited by anthophilous cerambycids. The Huron Mountains area comprises approximately 13,000 ha of forested land in northern Marquette County in the Upper Peninsula of Michigan. More than 7000 ha are privately owned by the Huron Mountain Club, including a designated, 2200 ha, Nature Research Area. The variety of habitats combines with differences in the nature and extent of prior disturbance to produce an exceptional diversity of forest communities, making the area particularly valuable for studies of forest insects.
    [Show full text]
  • Butterflies of North America
    Insects of Western North America 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University, Fort Collins, CO 80523-1177 2 Insects of Western North America. 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa by Boris C. Kondratieff, Luke Myers, and Whitney S. Cranshaw C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 August 22, 2011 Contributions of the C.P. Gillette Museum of Arthropod Diversity. Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523-1177 3 Cover Photo Credits: Whitney S. Cranshaw. Females of the blow fly Cochliomyia macellaria (Fab.) laying eggs on an animal carcass on Fort Sill, Oklahoma. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523-1177. Copyrighted 2011 4 Contents EXECUTIVE SUMMARY .............................................................................................................7 SUMMARY AND MANAGEMENT CONSIDERATIONS
    [Show full text]
  • Powell Mountain Karst Preserve: Biological Inventory of Vegetation Communities, Vascular Plants, and Selected Animal Groups
    Powell Mountain Karst Preserve: Biological Inventory of Vegetation Communities, Vascular Plants, and Selected Animal Groups Final Report Prepared by: Christopher S. Hobson For: The Cave Conservancy of the Virginias Date: 15 April 2010 This report may be cited as follows: Hobson, C.S. 2010. Powell Mountain Karst Preserve: Biological Inventory of Vegetation Communities, Vascular Plants, and Selected Animal Groups. Natural Heritage Technical Report 10-12. Virginia Department of Conservation and Recreation, Division of Natural Heritage, Richmond, Virginia. Unpublished report submitted to The Cave Conservancy of the Virginias. April 2010. 30 pages plus appendices. COMMONWEALTH of VIRGINIA Biological Inventory of Vegetation Communities, Vascular Plants, and Selected Animal Groups Virginia Department of Conservation and Recreation Division of Natural Heritage Natural Heritage Technical Report 10-12 April 2010 Contents List of Tables......................................................................................................................... ii List of Figures........................................................................................................................ iii Introduction............................................................................................................................ 1 Geology.................................................................................................................................. 2 Explanation of the Natural Heritage Ranking System..........................................................
    [Show full text]