Sumi TRUST Monthly Commentary October 2016

Total Page:16

File Type:pdf, Size:1020Kb

Sumi TRUST Monthly Commentary October 2016 SuMi TRUST Monthly Commentary October 2016 Contents 1. Topic of the month: The Nobel Prize and medical technologies The 2016 Nobel Prize in Physiology or Medicine was awarded to Mr Yoshinori Ohsumi, a Japanese emeritus professor. He discovered and elucidated mechanisms underlying “autophagy”, a fundamental process for degrading and recycling cellular components. "Autophagy" is expected to be used to create new medicines for the treatment of cancer and other illnesses. Science is one of Japan's strengths. Many investment opportunities have been created in the past by its advanced technologies in science. In this report, we touch upon the Nobel Prize and related medical technologies. 2. Market Review 1. Topic of the month: The Nobel Prize and medical technologies Nobel Prize The Royal Swedish Academy of Sciences selects and awards the Nobel Prize in Physics, Chemistry and Economics, while the Karolinska Institute awards the Prize in Physiology or Medicine. The agencies awarding the three prizes in natural sciences issue a recommendation request for the following year’s candidates to major research institutions and universities around the world, and select the prize winners by reviewing these recommendations. A person will not be able to receive the prize without a recommendation. The award ceremony of the Nobel Prize is carried out on 10th December, which is the anniversary of Alfred Nobel’s passing. The 2016 Nobel Prize in Physiology or Medicine was awarded to Mr Yoshinori Ohsumi, a Japanese emeritus professor. He discovered and elucidated mechanisms underlying “autophagy”, a fundamental process for degrading and recycling cellular components. "Autophagy" is expected to be used to create new medicines for the treatment of cancer and other illnesses. In recent years, many Japanese scientists have received high acclaim in the field of science including physics and chemistry. Table 1 shows the number of Nobel Prize winners in the three natural science divisions. From 1991 to 2000, the United States was the dominant country. But, in the 21st Table 1: The number of Nobel Prize winner in science divisions century (2001~2015), 15 Japanese 1991-2000 2001-2015 scientists were awarded the prize, the second most in the world. USA 39 55 It is said it takes about 30 years on average Japan 1 15 to win the Nobel Prize since the start of the UK 3 10 study. The awards for Japan in the 21st century can Germany 5 6 be considered the harvest of seeds sowed in France 3 6 1970s and 80s. Source: Ministry of Education, Culture, Sports, Science and Technology, SuMi TRUST Autophagy Autophagy is a recycling mechanism performed by decomposing proteins and the turnover of destroyed cell organelles for new cells. Autophagy and its elucidation should lead to the development of treatments for diseases such as cancer and neurological diseases. After the Nobel Prize announcement, companies associated with autophagy have attracted attention in the stock market and news media. Going forward, we expect the practical use and expansion of this technology. From an equity investors' view, the focus is on further support by the government and the emergence of companies involved in this new technology. In this context, we are taking a closer look at Takara Bio, a company that we'll touch upon in this report. Cover A reference case : iPS cells As a reference, we have reviewed the case of "iPS cells" discovered by Shinya Yamanaka, who won the Nobel Prize in Physiology or Medicine in 2012. iPS cells are versatile cells that can be divided into various types of cells. Because it can proliferate infinitely and transform into various cells such as nerve cells and heart muscle cells, their application to regenerative medicine and drugs are expected. There are pharmaceutical companies including emerging venture capital companies which are investing in iPS-related businesses and trying to put them into practical use. This is because huge potential is seen in the regenerative medicine market (Figure1) The Nobel Prize award has brought much attention to regenerative medicine and has led the government to start supporting it aggressively. The Abe government, in its "Japan Revitalization Strategy", has placed health and medicine as the next generation growth industries. It has reformed the system and executed measures for the expansion of medical-related industries and its markets. The government has also decided to issue about 110 billion yen in the 10 years from FY 2013 to support the research of regenerative medicine and drug discovery related to iPS cells. In addition, in 2014, an early approval system for regenerative medicine has been introduced, and regenerative medicine can now be commercialised quicker. Until that measure was introduced, a great deal of time and cost was required in the clinical trial process before introducing regenerative medicine products to the market. The government has now made it possible to save time and costs in clinical trials (Figure 2) We believe the government may announce further support measures for further expansion of the healthcare market, and that there will be attractive investment opportunities forthcoming in this field. Figure 1: Future Expectation for the Regenerative Medicine Market JPY (billion) JPY (billion) 3,000 Japan World Related Industries Market 2,500 40,000 38,000 Related Industries Market 2,500 35,000 2,000 Manufactured and Processed Products 30,000 Manufactured and Processed Market 25,000 Products Market 1,300 1,500 20,000 1,000 15,000 1,000 15,000 12,000 550 10,000 500 5,200 95 95 5,000 1,100 1,000 0 0 2020 2030 2050 Year 2020 2030 2050 Source: Ministry of Economy, Trade and Industry, SuMi TRUST Figure 2: Revised approval system Longertime and higher development cost for data collection and evaluation Before Clinical Clinical trial Approval Sales Enforcement research Sales Approval Clinical Clinical Early /conditional After + Further or Sales Enforcement research trial Approval clinical trial disapproval Condition: Safety verification and effectiveness Effectiveness Fewer cases verification Source: Ministry of Health, Labour and and shorter trial after sales Welfare, SuMi TRUST Takara Bio (4974) Takara Bio is a chemical company which sells research reagents and scientific instruments to universities and companies. It began as the biomedical business unit of Takara Shuzo (now Takara Holdings Inc.). Takara Bio focuses on three business segments, the Bioindustry Business, the AgriBio Business and the Gene Therapy Business. It has acquired companies which have leading-edge medical technology to expand its product line-up. Reagent sales and development contracts, Takara Bio‘s flagship business, are growing because research and development of gene therapy and cell therapy is growing globally. We believe that the company is at a turning point, moving from a reagent manufacturer to a drug developer with multiple developing pipelines, such as the oncolytic virus HF10 and CAR-T gene therapy. 2. Market Review The TOPIX was down by 0.51% in September. The market started the month with a short rally over expectations for an increase in US interest rates. However, the tone stepped back over decreasing consensus for a US rate hike and concerns over possible further rate cuts by the BoJ. The market continued to fluctuate in a range after the monetary policy announcement in the US and Japan. At the beginning of the month, US employment data fuelled expectations for an increase in US interest rates, and this supported the short rally associated with Yen depreciation. However, as the US non- manufacturing PMI showed its weakest number over the past 6 years, expectations pulled back and the market declined alongside concerns that further rate cuts by the BoJ could impact the financial sector. The market showed some rebound after the BoJ announced that the central bank will maintain its current negative interest rate policy. However the market dropped and the Yen appreciated after the FOMC maintained its current monetary policy. The market then moved in a range over the increase in oil prices after an OPEC agreement to cut oil production, and fears over the global financial system with the credit issue of Deutsche Bank. Financial sector stocks such as Mitsubishi UFJ Financial Group (8306 JT) and Resona Holdings (8308 JT) , underperformed the market over fears for global financial system. Nintendo (7974 JT) was among the top performers on the news that it would release a mobile game, Super Mario Run, on Apple Inc.'s App Store. Figure 3: TOPIX and USD/JPY in 2016 Table2: Global Equity Market Performance (as of 30th Sep. 2016) 1,600 130 TOPIX Index September QTD YTD 125 USD/JPY(RHS) USD 1.62% 7.57% 1.55% TOPIX 1,400 120 JPY -0.51% 6.18% -14.51% 115 S&P500 USD -0.12% 3.31% 6.08% USD 0.78% 4.84% -2.77% 1,200 110 Eurofirst 300 EUR -0.12% 3.64% -6.04% 105 MSCI AC Asia USD 1.42% 9.38% 10.20% (ex. Japan) 1,000 100 Jan Feb Mar Apr May Jun Jul Aug Source: Bloomberg, SuMi TRUST Disclaimer This marketing communication is issued by Sumitomo Mitsui Trust International Limited (“SMTI”). SMTI is authorised and regulated by the United All enquiries regarding this report should be made to: Kingdom’s Financial Conduct Authority (the “FCA”), whose address is 25 The North Colonnade, Canary Wharf, London, E14 5HS, United Kingdom. This marketing communication has been made available to you only because SMTI has classified you as a professional client in accordance with the FCA’s rules. If you have received this marketing communication from a source other than SMTI, you should contact SMTI before using it or relying on it. You must not send this marketing communication to any other person without first having received written approval from SMTI.
Recommended publications
  • 書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
    書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S.
    [Show full text]
  • The Rise and Rise of a Biology Superstar
    JAPAN | NATURE INDEX PROFILE: YOSHINORI OHSUMI THE RISE AND RISE OF A BIOLOGY SUPERSTAR Nobel laureate Yoshinori Ohsumi’s persistent study of baker’s yeast spawned an exciting new field, and proves the value of supporting scientists in pursuit of their passion BY TIM HORNYAK biology superstar owes a lot to the humble microorganism that has provided the world with bread and Abooze since antiquity. Yoshinori Ohsumi’s dogged study of yeast’s inner workings spanned PARKS BENJAMIN decades, eventually winning the 2016 Nobel Prize in Physiology or Medicine for his insights into how cells digest and recycle their own components. Autophagy, as these processes are known, is the subject of wide-ranging research in such fields as longevity and cancer. But, few people knew much about Ohsumi before he took the podium at the Karolinska Institute in Stockholm in December 2016 to deliver his Nobel lecture in which he extolled yeast’s many lessons, and its “wonderful gifts of sake and liquor.” It’s unusual for the medicine Nobel to go to a single researcher, and Ohsumi’s win high- lighted the importance of individual research in the age of large, international collaborations. Yoshinori Ohsumi’s ground-breaking work on yeast molecules was largely a solo pursuit. “In my time, I would do research because I was interested in a subject, but young people Ohsumi then returned to the University Ohsumi estimates that fewer than 20 papers want to know whether a subject will yield a of Tokyo and in 1988 opened his own lab. on autophagy were published each year when good paper or be beneficial for their career,” He focused on yeast vacuoles, specialized he began, but that tally is now in the thousands.
    [Show full text]
  • Creating New Value
    OECD Learning Compass 2030 Transformative Competencies Creating New Value Shinya Yamanaka Professor, Kyoto University Director of the Center for iPS Cell Research and Application (CiRA) 2012 Nobel Prize in Physiology or Medicine Award Winner Kyoto, Japan OECD Learning Compass 2030 Transformative Competencies: Creating New Value Shinya Yamanaka1 Professor, Kyoto University Director of the Center for iPS Cell Research and Application (CiRA) 2012 Nobel Prize in Physiology or Medicine Award Winner Kyoto, Japan I believe that “creating new value”, as articulated by the For students who aspire to become scientists, it is OECD Learning Compass 2030, is a competency that important to reiterate that the natural world is still full of every student needs for the future. This is especially true “unknowns”. The mission of scientists is to discover these for aspiring scientists. unknowns. In much the same way that artists use free thinking to create unique works on a blank canvas, One of the most important competencies in science is the scientists use their free thinking to develop and test willingness to doubt commonly accepted theories. unique hypotheses about unknowns. Such discoveries Scientists must be able to think for themselves, without can contribute to society in significant ways, through believing 100% of what textbooks and teachers tell advancements in science and technology, but they also them. It is with this mind-set that people generate new involve potential risks and threats to humans. Scientists ideas. This is particularly important today, given the must therefore have high ethical standards, as well. I breakneck pace at which developments in science and sincerely hope that many children will develop an technology are advancing; and it will only become more interest in the natural sciences and grow up to become important as progress accelerates further.
    [Show full text]
  • Scientific Background: Discoveries of Mechanisms for Autophagy
    Scientific Background Discoveries of Mechanisms for Autophagy The 2016 Nobel Prize in Physiology or Medicine is a previously unknown membrane structure that de awarded to Yoshinori Ohsumi for his discoveries of Duve named the lysosome1,2. Comparative mechanisms for autophagy. Macroautophagy electron microscopy of purified lysosome-rich liver (“self-eating”, hereafter referred to as autophagy) is fractions and sectioned liver identified the an evolutionarily conserved process whereby the lysosome as a distinct cellular organelle3. Christian eukaryotic cell can recycle part of its own content de Duve and Albert Claude, together with George by sequestering a portion of the cytoplasm in a Palade, were awarded the 1974 Nobel Prize in double-membrane vesicle that is delivered to the Physiology or Medicine for their discoveries lysosome for digestion. Unlike other cellular concerning the structure and functional degradation machineries, autophagy removes organization of the cell. long-lived proteins, large macro-molecular complexes and organelles that have become Soon after the discovery of the lysosome, obsolete or damaged. Autophagy mediates the researchers found that portions of the cytoplasm digestion and recycling of non-essential parts of the are sequestered into membranous structures cell during starvation and participates in a variety during normal kidney development in the mouse4. of physiological processes where cellular Similar structures containing a small amount of components must be removed to leave space for cytoplasm and mitochondria were observed in the new ones. In addition, autophagy is a key cellular proximal tubule cells of rat kidney during process capable of clearing invading hydronephrosis5. The vacuoles were found to co- microorganisms and toxic protein aggregates, and localize with acid-phosphatase-containing therefore plays an important role during infection, granules during the early stages of degeneration in ageing and in the pathogenesis of many human and the structures were shown to increase as diseases.
    [Show full text]
  • Shinya Yamanaka Is Focused on Daily Efforts to Realize Clinical Applications of Ips Cells As Soon As Possible and Deliver the Benefits to Patients
    Director, Center for iPS Cell Research President & Chief Executive Officer, and Application (CiRA), Kyoto University The Norinchukin Bank Shinya Yamanaka is focused on daily efforts to realize clinical applications of iPS cells as soon as possible and deliver the benefits to patients. Despite busy days traveling not only nationwide frequently but also between Japan and the United States every month, Dr. Yamanaka maintains an exercise routine of running. His favorite running course during his frequent Tokyo visits is the area surrounding the Imperial Palace. At our request, he stopped by The Norinchukin Bank’s Head Office, which faces the moat of the Imperial Palace, for a talk with Kazuto Oku, who recently became President & Chief Executive Officer of The Norinchukin Bank. 8 prising that you run almost every day. Status of Research Yamanaka:Yes. This morning, I ran around the Impe- rial Palace. But “every day” is an overstatement. I run Oku:Professor Yamanaka, I heard that your father en- about 260 days a year and a little less than 10 kilome- couraged you to become a medical doctor. ters (6.2 miles) a day. I also run full marathons to Yamanaka:Yes. That is true. My father used to run a raise donations for our lab a few times a year. small factory in Osaka. He suggested I should be a Oku:At what stage is your research on iPS cells? doctor because he thought I was not suited to run a Yamanaka:We are currently compiling an inventory of company. That he had an illness and a declining iPS cells.
    [Show full text]
  • Lasker Interactive Research Nom'18.Indd
    THE 2018 LASKER MEDICAL RESEARCH AWARDS Nomination Packet albert and mary lasker foundation November 1, 2017 Greetings: On behalf of the Albert and Mary Lasker Foundation, I invite you to submit a nomination for the 2018 Lasker Medical Research Awards. Since 1945, the Lasker Awards have recognized the contributions of scientists, physicians, and public citizens who have made major advances in the understanding, diagnosis, treatment, cure, and prevention of disease. The Medical Research Awards will be offered in three categories in 2018: Basic Research, Clinical Research, and Special Achievement. The Lasker Foundation seeks nominations of outstanding scientists; nominations of women and minorities are encouraged. Nominations that have been made in previous years are not automatically reconsidered. Please see the Nomination Requirements section of this booklet for instructions on updating and resubmitting a nomination. The Foundation accepts electronic submissions. For information on submitting an electronic nomination, please visit www.laskerfoundation.org. Lasker Awards often presage future recognition of the Nobel committee, and they have become known popularly as “America’s Nobels.” Eighty-seven Lasker laureates have received the Nobel Prize, including 40 in the last three decades. Additional information on the Awards Program and on Lasker laureates can be found on our website, www.laskerfoundation.org. A distinguished panel of jurors will select the scientists to be honored with Lasker Medical Research Awards. The 2018 Awards will
    [Show full text]
  • Conference Program and Schedule
    02_BCR11_front_Layout 1 8/30/11 2:25 PM Page 10 Conference Program and Schedule Wednesday, September 14 Special Opening Lecture: Cancer genomes and their implications for basic 6:00 p.m.-7:00 p.m. and applied research* Keynote Lecture Bert Vogelstein, Johns Hopkins Sidney Kimmel Grand Ballroom Comprehensive Cancer Center, Baltimore, MD Opening remarks Discovery in cancer genomics by next-generation sequencing Conference Chairperson: Elizabeth H. Blackburn, and data analysis* University of California, San Francisco, CA Elaine Mardis, Washington University School of Medicine, St. Louis, MO Building molecules to guide anticancer therapy* Insights into tumor biology and therapeutic resistance from Roger Y. Tsien, University of California, San Diego, systematic genetic studies La Jolla, CA Levi A. Garraway, Dana-Farber Cancer Institute, Boston, MA 7:00 p.m.-8:30 p.m. 10:00 a.m.-10:30 a.m. Opening Welcome Reception Break InterContinental Ballroom 10:30 a.m.-12:30 p.m. Session 2: Cancer as an Organ Grand Ballroom Thursday, September 15 Chairperson: Zena Werb, University of California, 7:00 a.m.-8:00 a.m. San Francisco, CA Continental Breakfast Normalizing the tumor microenvironment to enhance Pacific Terrace therapeutic outcome* Rakesh K. Jain, Massachusetts General Hospital, Boston, MA Meet-the-Expert Roundtables † Jackson, Howard, and Fremont The role of nitric oxide in tumor microenvironment* Dai Fukumura, Massachusetts General Hospital, Boston, MA †Advance sign up is required at Registration in the Grand Ballroom Foyer. DNA-damaging anticancer therapies modify the tumor microenvironment* Judith Campisi, Buck Institute for Age Research, Novato, CA 8:00 a.m.-10:00 a.m.
    [Show full text]
  • Announcement of the Keio Medical Science Prize 2015
    Press Release September 14, 2015 Announcement of The Keio Medical Science Prize 2015 Keio University annually awards The Keio Medical Science Prize to recognize researchers who have made an outstanding contribution to the field of medicine or life sciences. It is the only prize of its kind awarded by a Japanese university, and 6 laureates of this Prize have later won the Nobel Prize. The 20th Keio Medical Science Prize is awarded to Prof. Jeffrey I. Gordon and Prof. Yoshinori Ohsumi. 1. Laureates Jeffrey I. Gordon, M.D. Dr. Robert J. Glaser Distinguished University Professor Director, Center for Genome Sciences and Systems Biology Washington University School of Medicine in St. Louis “Human gut microbiome and its impact on health and disease” Yoshinori Ohsumi, Ph.D. Honorary Professor, Frontier Research Center, Tokyo Institute of Technology “Elucidation of molecular mechanism of autophagy” 2. Prize Laureates receive a certificate of merit, medal, and a monetary award of 10 million yen. The award ceremony and commemorative lectures are held at Keio University. 3. Award Ceremony and Events The award ceremony and commemorative lectures will be held on November 25, 2015 at the School of Medicine, Shinanomachi Campus, Keio University, Tokyo, Japan. Award Ceremony and Commemorative Lectures Date: November 25, 2015 14:00-17:30 Venue: Kitasato Memorial Hall, Shinanomachi Campus, Keio University, Tokyo, Japan Language: English and Japanese Simultaneous translation available (English-Japanese/Japanese-English) Admission: Open to the public *Please
    [Show full text]
  • Recent Winners of the Nobel Medicine Prize 1 October 2018
    Recent winners of the Nobel Medicine Prize 1 October 2018 2015: William Campbell (US citizen born in Ireland) and Satoshi Omura (Japan), Tu Youyou (China) for unlocking treatments for malaria and roundworm. 2014: John O'Keefe (Britain, US), Edvard I. Moser and May-Britt Moser (Norway) for discovering how the brain navigates with an "inner GPS". 2013: Thomas C. Suedhof (US citizen born in Germany), James E. Rothman and Randy W. Schekman (US) for work on how the cell organises its transport system. 2012: Shinya Yamanaka (Japan) and John B. Gurdon (Britain) for discoveries showing how adult cells can be transformed back into stem cells. 2011: Bruce Beutler (US), Jules Hoffmann (French citizen born in Luxembourg) and Ralph Steinman (Canada) for work on the body's immune system. Credit: Wikipedia 2010: Robert G. Edwards (Britain) for the development of in-vitro fertilisation. 2009: Elizabeth Blackburn (Australia-US), Carol Here is a list of the winners of the Nobel Medicine Greider and Jack Szostak (US) for discovering how Prize in the past 10 years, after James Allison of chromosomes are protected by telomeres, a key the US and Tasuku Honjo of Japan were awarded factor in the ageing process. Monday for research that has revolutionised cancer treatment: © 2018 AFP 2018: Immunologists Allison and Honjo win for figuring out how to release the immune system's brakes to allow it to attack cancer cells more efficiently. 2017: US geneticists Jeffrey Hall, Michael Rosbash and Michael Young for their discoveries on the internal biological clock that governs the wake- sleep cycles of most living things.
    [Show full text]
  • Potential and Mentality of Genius and Inspiration and Milestone
    Crimson Publishers Research Article Wings to the Research Potential and Mentality of Genius and inspiration and milestone breakthroughs: longevity, diseases and Beyond Yue Zhang1,2,3* 1Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China 2Nobel Breakthroughs Inspiration Milestone Initiative, Pinghu Hospital of Shenzhen University, China 3Department of Rheumatology and Immunology, The First Clinical College of Harbin Medical University, China Abstract relatedThis diseases conceptual and beyond. study focusesIt aims to on help the promote evolving government field of potential strategy, andfostering the mentalityapprenticeships, of genius, and renewinginspiration ideas and aboutmilestone the role breakthroughs of family, hardship, alongside war, lines paradigm of stories shifts of andscientific religion life in of, developing longevity, geniusaging- and inspiration that will help make more groundbreaking discoveries in China. First, this essay reviews some of the factors that help stimulate, develop and inspire the leading scientists and researchers of the future. It then turns to some examples of inspired genius, before turning to my personal journey into the world of scientific research of longevity, aging-related diseases (e.g. *Corresponding author: Yue Zhang, some conclusions about how to inspire the prizewinning scientists of tomorrow’ China, even the world. Shenzhen Futian Hospital for Rheumatic Alzheimer’s diseases, Huntington’s diseases, cancer, Osteoarthritis (OA)) and beyond. We finish with Diseases, Shenzhen, #22 Nonglin road, China. Emai: [email protected] Factors Fostering Genius and Inspiration Numerous factors appear to be important in developing the brilliant scientists who make Submission: March 31, 2020 breakthrough discoveries. Here, we give only a brief review of each for reasons of space, as Published: April 22, 2020 large amounts of literature could be written on each one.
    [Show full text]
  • Yoshinori Ohsumi's Nobel Prize For
    Yoshinori Ohsumi’s Nobel Prize for mechanism of autophagy: from basic yeast biology to therapeutic potential R. A. Frake1, D. C. Rubinsztein1* 1Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK *Corresponding author: D. C. Rubinsztein, phone: +44 (0)1223 762608, Fax: +44(0)1223 331206, E-mail: [email protected] Abstract At the start of October 2016 Japanese cell biologist Yoshinori Ohsumi was awarded the Nobel Prize in Physiology or Medicine ‘for his discoveries of mechanisms for autophagy’, autophagy being an intracellular degradation pathway that helps maintain cytoplasmic homeostasis. This commentary discusses Ohsumi’s Nobel prize-winning work in context, before explaining the clinical relevance of autophagy. Key words autophagy, Yoshinori Ohsumi, yeast genetics 1 Introduction Macroautophagy (hereafter referred to as autophagy) is an important means of maintaining cellular homeostasis by trafficking cytoplasmic material for enzymatic degradation in the lysosome. In mammalian cells, the process involves formation of a cup-shaped, double- membraned phagophore (or isolation membrane), which closes around cytoplasmic material to form a spherical, double-membraned autophagosome (Figure 1A). The autophagosome outer membrane ultimately fuses with a lysosome to form an autolysosome, resulting in degradation of the inner autophagosome membrane and sequestered cargo. Autophagy is both a constitutive process and subject to dynamic regulation by a range of physiological signals. Notably, autophagy is induced by nutrient starvation. The substrates of autophagy are extremely diverse, ranging from organelles such as mitochondria, through to aggregate-prone proteins and invading microorganisms. Characterisation of autophagy in yeast Yoshinori Ohsumi’s first contribution to autophagy research was demonstrating that autophagy in yeast is similar to that in mammalian cells (Figure 1B).
    [Show full text]
  • Nobel Laureates in Physiology Or Medicine
    All Nobel Laureates in Physiology or Medicine 1901 Emil A. von Behring Germany ”for his work on serum therapy, especially its application against diphtheria, by which he has opened a new road in the domain of medical science and thereby placed in the hands of the physician a victorious weapon against illness and deaths” 1902 Sir Ronald Ross Great Britain ”for his work on malaria, by which he has shown how it enters the organism and thereby has laid the foundation for successful research on this disease and methods of combating it” 1903 Niels R. Finsen Denmark ”in recognition of his contribution to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science” 1904 Ivan P. Pavlov Russia ”in recognition of his work on the physiology of digestion, through which knowledge on vital aspects of the subject has been transformed and enlarged” 1905 Robert Koch Germany ”for his investigations and discoveries in relation to tuberculosis” 1906 Camillo Golgi Italy "in recognition of their work on the structure of the nervous system" Santiago Ramon y Cajal Spain 1907 Charles L. A. Laveran France "in recognition of his work on the role played by protozoa in causing diseases" 1908 Paul Ehrlich Germany "in recognition of their work on immunity" Elie Metchniko France 1909 Emil Theodor Kocher Switzerland "for his work on the physiology, pathology and surgery of the thyroid gland" 1910 Albrecht Kossel Germany "in recognition of the contributions to our knowledge of cell chemistry made through his work on proteins, including the nucleic substances" 1911 Allvar Gullstrand Sweden "for his work on the dioptrics of the eye" 1912 Alexis Carrel France "in recognition of his work on vascular suture and the transplantation of blood vessels and organs" 1913 Charles R.
    [Show full text]