Darwin's Theory of Evolution Through Natural Selection

Total Page:16

File Type:pdf, Size:1020Kb

Darwin's Theory of Evolution Through Natural Selection THE EVOLUTION OF LIFE NOTEBOOK Darwin’s Theory of Evolution Through Natural Selection OBSERVING PHENOMENA Phenomenon: Darwin found many kinds of finches with different sized and shaped beaks on the different islands of the Galápagos. 1. What questions do you have about this phenomenon? 1 - Darwin’s Voyage on the Beagle 1. What did Darwin see in South America that surprised him? 2. What was Lyell’s argument about Earth’s land features and what did it cause Darwin to question about the mountains? © Teachers’ Curriculum Institute Darwin’s Theory of Evolution Through Natural Selection 1 NOTEBOOK 2 - Darwin Visits the Galápagos Islands 1. What did many the species of animals in the Galapagos island resemble? 2. What is a trait? Give one example of a trait. 2 Darwin’s Theory of Evolution Through Natural Selection © Teachers’ Curriculum Institute NOTEBOOK INVESTIGATION 1 1. Which tool is a model for which bird’s beak? Match them below. Tools A. toothpick B. tweezers C. nail clippers D. pliers Tool Finch Large ground finch Vegetarian finch Cactus finch Woodpecker finch 2. Keep track of how many of each bird there are after each round. Station 1 Finch Before Round 1 After Round 1 After Round 2 Large ground finch 1 Vegetarian finch 1 Cactus finch 1 Woodpecker finch 1 Station 2 Finch Before Round 1 After Round 1 After Round 2 Large ground finch 1 Vegetarian finch 1 Cactus finch 1 Woodpecker finch 1 © Teachers’ Curriculum Institute Darwin’s Theory of Evolution Through Natural Selection 3 NOTEBOOK Station 3 Finch Before Round 1 After Round 1 After Round 2 Large ground finch 1 Vegetarian finch 1 Cactus finch 1 Woodpecker finch 1 Station 4 Finch Before Round 1 After Round 1 After Round 2 Large ground finch 1 Vegetarian finch 1 Cactus finch 1 Woodpecker finch 1 3. Darwin hypothesized that there was one population of ancestor finches that had arrived to the Galápagos Islands from South America. This population took over the different islands. Based on what you have learned so far in this unit, construct an explanation for why Darwin might have come up with this hypothesis. 4 Darwin’s Theory of Evolution Through Natural Selection © Teachers’ Curriculum Institute NOTEBOOK 3 - Darwin Develops a Theory 1. How did Lamarck believe that living things changed over time? 2. How did Lyell’s ideas influence Darwin’s ideas on how living things changed over time? 3. What was Malthus’s idea? How did it influence Darwin’s thoughts on living things? 4 - Darwin’s Idea of Natural Selection 1. Why would a collection of apples you take home with you be more red and crunchy on average than the average redness and crunchiness of the apples at the store? 2. Are all individuals in a population of animals or a population of plants identical? 3. What is the variation in these birds’ traits? © Teachers’ Curriculum Institute Darwin’s Theory of Evolution Through Natural Selection 5 NOTEBOOK 4. How does natural selection change the traits of living things over long periods of time? 5. What does the word evolution mean? 6. If birds with long and thin beaks are better at getting food in a specific environment than birds with short and thick beaks, what do you expect the population will look like after 50 generations? 7. What is an adaptation? 6 Darwin’s Theory of Evolution Through Natural Selection © Teachers’ Curriculum Institute NOTEBOOK INVESTIGATION 2 1. What is some of the variety in the spoon mouthparts? How are they the same? How are they different? 2. How many marbles did you collect in 10 seconds? 3. Which mouthpieces were the most successful? Do you think the results would be the same if you were “eating” something small and squishy? 4. If the animals with the most successful food capturing capabilities were to have an offspring, what would it look like? Do you predict that the offspring would be good or bad at collecting food? Why? © Teachers’ Curriculum Institute Darwin’s Theory of Evolution Through Natural Selection 7 NOTEBOOK 5 - Darwin Publishes His Work 1. Why didn’t Darwin want to publish his work right away? 2. Is Darwin’s theory widely accepted by scientists today? MAKING SENSE OF PHENOMENA Phenomenon: Darwin found many kinds of finches with different sized and shaped beaks on the different islands of the Galápagos. 1. Use what you have learned to explain this phenomenon. 8 Darwin’s Theory of Evolution Through Natural Selection © Teachers’ Curriculum Institute.
Recommended publications
  • Table 7: Species Changing IUCN Red List Status (2014-2015)
    IUCN Red List version 2015.4: Table 7 Last Updated: 19 November 2015 Table 7: Species changing IUCN Red List Status (2014-2015) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2014 (IUCN Red List version 2014.3) and 2015 (IUCN Red List version 2015-4) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered, EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2014) List (2015) change version Category Category MAMMALS Aonyx capensis African Clawless Otter LC NT N 2015-2 Ailurus fulgens Red Panda VU EN N 2015-4
    [Show full text]
  • Ecuador & the Galapagos Islands
    Ecuador & the Galapagos Islands - including Sacha Lodge Extension Naturetrek Tour Report 29 January – 20 February 2018 Medium Ground-finch Blue-footed Booby Wire-tailed Manakin Galapagos Penguin Green Sea Turtle Report kindly compiled by Tour participants Sally Wearing, Rowena Tye, Debbie Hardie and Sue Swift Images courtesy of David Griffiths, Sue Swift, Debbie Hardie, Jenny Tynan, Rowena Tye, Nick Blake and Sally Wearing Naturetrek Mingledown Barn Wolf’s Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Ecuador & the Galapagos Islands - including Sacha Lodge Extension Tour Leader in the Galapagos: Juan Tapia with 13 Naturetrek Clients This report has kindly been compiled by tour participants Sally Wearing, Rowena Tye, Debbie Hardie and Sue Swift. Day 1 Monday 29th January UK to Quito People arrived in Quito via Amsterdam with KLM or via Madrid with Iberia, while Tony came separately from the USA. Everyone was met at the airport and taken to the Hotel Vieja Cuba; those who were awake enough went out to eat before a good night’s rest. Day 2 Tuesday 30th January Quito. Weather: Hot and mostly sunny. The early risers saw the first few birds of the trip outside the hotel: Rufous- collared Sparrow, Great Thrush and Eared Doves. After breakfast, an excellent guide took us on a bus and walking tour of Quito’s old town. This started with the Basilica del Voto Nacional, where everyone marvelled at the “grotesques” of native Ecuadorian animals such as frigatebirds, iguanas and tortoises.
    [Show full text]
  • Can Darwin's Finches and Their Native Ectoparasites Survive the Control of Th
    Insect Conservation and Diversity (2017) 10, 193–199 doi: 10.1111/icad.12219 FORUM & POLICY Coextinction dilemma in the Galapagos Islands: Can Darwin’s finches and their native ectoparasites survive the control of the introduced fly Philornis downsi? 1 2 MARIANA BULGARELLA and RICARDO L. PALMA 1School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand and 2Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand Abstract. 1. The survival of parasites is threatened directly by environmental alter- ation and indirectly by all the threats acting upon their hosts, facing coextinction. 2. The fate of Darwin’s finches and their native ectoparasites in the Galapagos Islands is uncertain because of an introduced avian parasitic fly, Philornis downsi, which could potentially drive them to extinction. 3. We documented all known native ectoparasites of Darwin’s finches. Thir- teen species have been found: nine feather mites, three feather lice and one nest mite. No ticks or fleas have been recorded from them yet. 4. Management options being considered to control P. downsi include the use of the insecticide permethrin in bird nests which would not only kill the invasive fly larvae but the birds’ native ectoparasites too. 5. Parasites should be targeted for conservation in a manner equal to that of their hosts. We recommend steps to consider if permethrin-treated cotton sta- tions are to be deployed in the Galapagos archipelago to manage P. downsi. Key words. Chewing lice, coextinction, Darwin’s finches, dilemma, ectoparasites, feather mites, Galapagos Islands, permethrin, Philornis downsi. Introduction species have closely associated species which are also endangered (Dunn et al., 2009).
    [Show full text]
  • Darwins Finches and Their Diet Niches: the Sympatric Coexistence Of
    doi: 10.1111/jeb.12383 Darwin’s finches and their diet niches: the sympatric coexistence of imperfect generalists L. F. DE LEON*†,J.PODOS‡,T.GARDEZI†,A.HERREL§ &A.P.HENDRY† *Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Cientıficas y Servicios de Alta Tecnologıa (INDICASAT-AIP), Panama 5, Panama †Redpath Museum & Department of Biology, McGill University, Montreal, QC, Canada ‡Department of Biology, University of Massachusetts, Amherst, MA, USA §UMR 7179 C.N.R.S/M.N.H.N., Departement d’Ecologie et de Gestion de la Biodiversite, 57 rue Cuvier, Case postale 55, 75231, Paris Cedex 5, France Keywords: Abstract adaptive radiation; Adaptive radiation can be strongly influenced by interspecific competition ecological speciation; for resources, which can lead to diverse outcomes ranging from competitive Galapagos; exclusion to character displacement. In each case, sympatric species are generalist; expected to evolve into distinct ecological niches, such as different food Geospiza; types, yet this expectation is not always met when such species are exam- ground finches; ined in nature. The most common hypotheses to account for the coexistence niche partitioning; of species with substantial diet overlap rest on temporal variation in niches resource use; (often diets). Yet spatial variation in niche overlap might also be important, specialist; pointing to the need for spatiotemporal analyses of diet and diet overlap sympatry. between closely related species persisting in sympatry. We here perform such an analysis by characterizing the diets of, and diet overlap among, four sympatric Darwin’s ground finch species at three sites and over 5 years on a single Galapagos island (Santa Cruz).
    [Show full text]
  • And Socio-Ecology of Wild Goffin's Cockatoos (Cacatua Goffiniana)
    Behaviour 156 (2019) 661–690 brill.com/beh Extraction without tooling around — The first comprehensive description of the foraging- and socio-ecology of wild Goffin’s cockatoos (Cacatua goffiniana) M. O’Hara a,∗, B. Mioduszewska a,b, T. Haryoko c, D.M. Prawiradilaga c, L. Huber a and A. Auersperg a a Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Veterinaerplatz 1, 1210 Vienna, Austria b Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany c Research Center for Biology, Indonesian Institute of Sciences, Jl. Raya Jakarta - Bogor Km.46 Cibinong 16911 Bogor, Indonesia *Corresponding author’s e-mail address: [email protected] Received 7 June 2018; initial decision 14 August 2018; revised 8 October 2018; accepted 9 October 2018; published online 24 October 2018 Abstract When tested under laboratory conditions, Goffin’s cockatoos (Cacatua goffiniana) demonstrate numerous sophisticated cognitive skills. Most importantly, this species has shown the ability to manufacture and use tools. However, little is known about the ecology of these cockatoos, en- demic to the Tanimbar Islands in Indonesia. Here we provide first insights into the feeding- and socio-ecology of the wild Goffin’s cockatoos and propose potential links between their behaviour in natural settings and their advanced problem-solving capacities shown in captivity. Observational data suggests that Goffin’s cockatoos rely on a large variety of partially seasonal resources. Further- more, several food types require different extraction techniques. These ecological and behavioural characteristics fall in line with current hypotheses regarding the evolution of complex cognition and innovativeness.
    [Show full text]
  • How Birds Use Tools by Celeste Silling Usually, Birds Are Limited by the Tools They Are Born With- Their Beaks, Wings, Claws, Et
    How Birds Use Tools By Celeste Silling Usually, birds are limited by the tools they are born with- their beaks, wings, claws, etc. But some birds have learned to make use of other objects to help them hunt or forage. We humans tend to think of tools as things reserved for only the most advanced creatures like ourselves or apes. But birds might just be smarter than we think. Birds have most often been seen using tools to hunt or forage. The Woodpecker Finch in the Galapagos Islands is a classic example of this. These finches are not born with a woodpecker’s long and dexterous beak, but they have still found a way to hunt the same types of prey deep in cervices. The Woodpecker Finch uses long twigs or cactus thorns to poke into holes in the trees or ground and pry out insects or larvae. Several other bird species, like Green Jays and Chickadees have also been seen using sticks to forage. Other species have been known to use the combination of gravity and hard objects to get their meals. If you live near the shore, you might’ve seen a seagull dropping a shellfish on the rocks or pavement. This is an act of ingenuity, not clumsiness, as the force of the drop often opens up the hard shell for the gull to eat the insides. Similarly, Egyptian Vultures drop stones on Ostrich eggs to crack the shells without spilling too much of the yummy insides. Another tool that some birds use is bait. Burrowing Owls have occasionally been known to gather up dung from other animals and put it around their burrows.
    [Show full text]
  • Recent Conservation Efforts and Identification of the Critically Endangered Mangrove Finch Camarhynchus Heliobates in Galápagos Birgit Fessl, Michael Dvorak, F
    Cotinga 33 Recent conservation efforts and identification of the Critically Endangered Mangrove Finch Camarhynchus heliobates in Galápagos Birgit Fessl, Michael Dvorak, F. Hernan Vargas and H. Glyn Young Received 21 January 2010; final revision accepted 12 October 2010 first published online 16 March 2011 Cotinga 33 (2011): 27–33 El Pinzón de Manglar Camarhynchus heliobates es la especie más rara del grupo de los pinzones de Darwin, y su distribución está restringida a los manglares de la costa de Isabela. Aproximadamente 100 individuos sobreviven y están amenazados principalmente por la depredación de la rata introducida Rattus rattus y por el parasitismo de la mosca Philornis downsi. Un amplio programa de conservación se inició en 2006 con el fin de estudiar las aves sobrevivientes, reducir sus amenazas y restaurar la especie en sitios históricos donde anteriormente se la registró. Un número creciente de pinzones en los sitios donde actualmente existe significará mayores probabilidades de dispersión a los sitios históricos. La identificación correcta es necesaria para seguir y monitorear la dispersión de las aves. Esta publicación pretende ayudar a la identificación de la especie y da pautas para distinguirla del Pinzón Carpintero Camarhynchus pallidus, una especie estrechamente emparentada al Pinzón de Manglar. Las dos especies pueden distinguirse por el patrón de coloración de la cabeza y por su canto fácilmente diferenciable. Mangrove Finch Camarhynchus heliobates was the A second population persists on the south-east last species of Darwin’s finches to be described13. coast around Bahía Cartago (7 in Fig. 1; c.300 ha; Known historically from at least five different Figs.
    [Show full text]
  • Phil. Trans. R. Soc. B
    Downloaded from http://rstb.royalsocietypublishing.org/ on February 29, 2016 Feeding innovations in a nested phylogeny of Neotropical passerines rstb.royalsocietypublishing.org Louis Lefebvre, Simon Ducatez and Jean-Nicolas Audet Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montre´al, Que´bec, Canada H3A 1B1 Several studies on cognition, molecular phylogenetics and taxonomic diversity Research independently suggest that Darwin’s finches are part of a larger clade of speciose, flexible birds, the family Thraupidae, a member of the New World Cite this article: Lefebvre L, Ducatez S, Audet nine-primaried oscine superfamily Emberizoidea. Here, we first present a new, J-N. 2016 Feeding innovations in a nested previously unpublished, dataset of feeding innovations covering the Neotropi- phylogeny of Neotropical passerines. Phil. cal region and compare the stem clades of Darwin’s finches to other neotropical Trans. R. Soc. B 371: 20150188. clades at the levels of the subfamily, family and superfamily/order. Both in http://dx.doi.org/10.1098/rstb.2015.0188 terms of raw frequency as well as rates corrected for research effort and phylo- geny, the family Thraupidae and superfamily Emberizoidea show high levels of innovation, supporting the idea that adaptive radiations are favoured when Accepted: 25 November 2015 the ancestral stem species were flexible. Second, we discuss examples of inno- vation and problem-solving in two opportunistic and tame Emberizoid species, One contribution of 15 to a theme issue the Barbados bullfinch Loxigilla barbadensis and the Carib grackle Quiscalus ‘Innovation in animals and humans: lugubris fortirostris in Barbados. We review studies on these two species and argue that a comparison of L.
    [Show full text]
  • FEATURED PHOTO POSSIBLE TOOL USE by a Williamson's
    FEATURED PHOTO POSSIBLE TOOL USE BY A WILLIAMSOn’S SAPSUCKER ANTHONY J. BRAKE and YVONNE E. MCHUGH, 1201 Brickyard Way, Richmond, California 94801; [email protected] Tool use has been demonstrated in a number of avian species (Lefebvre et al. 2002). Perhaps the best-known example is the Woodpecker Finch (Camarhynchus pallidus) of the Galápagos Islands, which breaks off cactus spines or twigs for use in extracting wood-boring insects (Eibl-Eibesfeldt 1961, Eibl-Eibesfeldt and Sielman 1962, Tebbich et al. 2002). New Caledonian Crows (Corvus moneduloides) display exceptional skill in selecting, manufacturing, and utilizing objects to obtain food items that they are otherwise unable to reach (Hunt 1996). In North America, Brown-headed Nuthatches (Sitta pusilla) have been observed to use flakes of pine bark to remove other pieces of bark in order to capture insects underneath (Morse 1968, Pranty 1995). All of the above behaviors are considered true tool use in that they involve a tool being held directly by the beak or foot of the bird (Lefebvre et al. 2002). Numerous woodpecker species have been observed to use “anvils” such as tree forks or crevices into which food items are wedged to facilitate consumption (Bondo et al. 2008). Most such cases represent proto-anvils consisting of natural crevices. Great Spotted Woodpeckers (Dendrocopos major), however, use “true anvils” that they excavate in tree trunks. Here we report observations of a Williamson’s Sapsucker (Sphyrapicus thyroideus) using a wood flake for foraging. We observed this behavior at the Mono Mills Historic Site in Inyo National Forest, approximately 16 km southeast of Lee Vining in Mono County, California.
    [Show full text]
  • Galápagos Natural History Extravaganza
    GALÁPAGOS NATURAL HISTORY EXTRAVAGANZA 21 NOVEMBER – 02 DECEMBER 2021 2022 (DATES ON REQUEST) 29 OCTOBER – 09 NOVEMBER 2023 Red-footed Booby is one of three booby species likely to be found on this trip. www.birdingecotours.com [email protected] 2 | ITINERARY Galapagos: Natural History Extravaganza Just 483 years ago the first man stepped onto the Galápagos Islands and marveled at this living laboratory. Today we continue to be awestruck by this constantly changing archipelago. As the Nazca Plate moves and new islands are formed, evolution is illustrated up close and personal. Visiting the Galápagos archipelago is a dream for all naturalists. From Quito we will fly to the island of Baltra. We then will make our way to our home for the next eight days, the Samba, a spacious and luxuriously designed motor sailing yacht with wide open and shaded sun decks, a fully stocked bar, and a library. The abundant marine life that visits these waters year-round, the Marine Iguanas that rule the rocky coastlines, and of course a unique group of birds make it easy to understand why this trip is a must for birders and natural history buffs. Some of the Galápagos specials that we hope to find on this trip include Galapagos Penguin, Waved Albatross, Galapagos Shearwater, Wedge-rumped and Elliot’s Storm Petrels, Magnificent Frigatebird, Nazca, Red-footed, and Blue-footed Boobies, Lava Heron, Galapagos Hawk, Lava Gull, Galapagos Martin, Galapagos Flycatcher, Vermilion Flycatcher, Galapagos, Floreana, San Cristobal, and Espanola Mockingbirds, Vegetarian Finch, Woodpecker Finch, Common Cactus Finch, Green Warbler-Finch, Large and Small Tree Finches, Small and Medium Ground Finches, and Mangrove Finch.
    [Show full text]
  • The Origin of Species: the Beak of the Finch [NARRATOR:] Our Planet
    The Origin of Species: The Beak of the Finch [NARRATOR:] Our planet has millions of species. Over 300,000 beetles alone. 17,000 butterflies. Thousands of mammals, fish and birds, all astonishingly different. How did so many species come to be? To seek insights into that question, researchers are focusing on places where species recently arose, such as the remote Galápagos Islands. [CARROLL:] Scientists are making observations and conducting experiments that would have surprised Charles Darwin. And they're discovering new insights into what the great naturalist called the "mystery of mysteries": How new species form. [NARRATOR:] The Galápagos Islands are one of the most spectacular landscapes in the world, home to a variety of species that live nowhere else. Biologists Peter and Rosemary Grant have been seeking answers to how species arise by focusing on one of the smaller islands, called Daphne Major. [PETER GRANT:] When we started out, we had no plan for the long term. In fact, we thought it was just going to be just a few years, maybe two years. [NARRATOR:] Two years have turned into a 40-year odyssey. The Grants have returned every summer since 1973. [ROSEMARY GRANT:] Oh, there's a bird. [PETER GRANT:] Is that 306? [ROSEMARY GRANT:] Three oh metal six. [NARRATOR:] Here, they've made some of the most remarkable observations in the history of field research as they studied the famed Galápagos finches. The finches were first brought to scientists' attention by Charles Darwin, when his voyage around South America brought him to this cluster of islands 600 miles from mainland Ecuador.
    [Show full text]
  • BRENNECKE the Role of Experience and Social Learning in the Tool
    BRENNECKE NINA TABEA BRENNECKE The Role of Experience and Social Learning in the Tool Use and Tool Making of the New Caledonian Crow (Corvus moneduloides) Review Tool use and manufacture are central points in the development of human culture and certain sophisticated aspects of it are believed to be uniquely human. Studies of New Caledonian crows present findings that question this uniqueness by attributing highly sophisticated tool behavior to these crows. The purpose of this paper is to discuss this behavior and to present different theories on how this behavior is obtained. Recurring evidence supports the view that inheritance interacts with experience and social learning over the course of the development of tool use and tool manufacture, but further research is required to identify the extent to which each aspect contributes to it. Nevertheless, the behavior of the New Caledonian crow may offer a new perspective on animal cognition. Keywords: social learning, development, tool manufacture Maastricht Student Journal of Psychology and Neuroscience 47| BRENNECKE INTRODUCTION Tool use and tool making in non-human animals have been studied intensely, but those non- human animals were mostly close relatives to humans, such as primates. In the past two decades researchers started to further investigate tool use in animals which are not related to humans, mainly a variety of bird species. Birds are frequent tool users, but due to the definition of ‘true’ tool use, which states that an object has to be held discretely in the hands or mouth to be considered a tool, many actions taken by birds do not classify as tool use (Lefebvre, 2002).
    [Show full text]