Autophagy, Cell Viability, and Chemoresistance Are Regulated By

Total Page:16

File Type:pdf, Size:1020Kb

Autophagy, Cell Viability, and Chemoresistance Are Regulated By Published OnlineFirst May 21, 2018; DOI: 10.1158/1541-7786.MCR-17-0634 Cell Death and Survival Molecular Cancer Research Autophagy, Cell Viability, and Chemoresistance Are Regulated By miR-489 in Breast Cancer Mithil Soni1,2, Yogin Patel1,2, Eleni Markoutsa3, Chunfa Jie4, Shou Liu1,2, Peisheng Xu3, and Hexin Chen1,2 Abstract It is postulated that the complexity and heterogeneity in autophagy inhibition and LAPTM4B downregulation as cancer may hinder most efforts that target a single pathway. a major mechanism responsible for miR-489–mediated Thus, discovery of novel therapeutic agents targeting multi- doxorubicin sensitization. Finally, miR-489 and LAPTM4B ple pathways, such as miRNAs, holds promise for future levels were inversely correlated in human tumor clinical cancer therapy. One such miRNA, miR-489, is downregu- specimens, and more importantly, miR-489 expression lated in a majority of breast cancer cells and several drug- levels predict overall survival in patients with 8q22 ampli- resistant breast cancer cell lines, but its role and underlying fication (the region in which LAPTM4B resides). mechanism for tumor suppression and drug resistance needs further investigation. The current study identifies autophagy Implications: These findings expand the understanding of as a novel pathway targeted by miR-489 and reports Unc-51 miR-489–mediated tumor suppression and chemosensitiza- like autophagy activating kinase 1 (ULK1) and lysosomal tion in and suggest a strategy for using miR-489 as a thera- protein transmembrane 4 beta (LAPTM4B) to be direct peutic sensitizer in a defined subgroup of resistant breast targets of miR-489. Furthermore, the data demonstrate cancer patients. Mol Cancer Res; 16(9); 1348–60. Ó2018 AACR. Introduction Since then, several groups have demonstrated its tumor-suppres- sive role in many different cancers including gastric cancer, lung Despite recent advances in chemotherapy and novel treatment cancer, ovarian cancer, hepatic cancer, osteosarcoma, and bladder strategies for breast cancer, the development of broad-range cancer (4–12). Remarkably, miR-489 has been reported to induce treatments has been restricted due to the discrepancy in transcrip- cell-cycle arrest and apoptosis, inhibit metastasis and epithelial- tional and genomic heterogeneity of the disease, and the com- to-mesenchymal transition in context-dependent manner. A thor- plexity of resistance mechanisms. Therefore, identification of a ough understanding of miR-489–mediated tumor suppression in single therapeutic agent targeting multiple oncogenic and pro- a specific cancer will be valuable in evaluating the possibility of survival pathways would provide a promising future cancer miRNA-489–based therapy. Hence, this study was aimed to therapy (1, 2). Because miRNAs target multiple pathways and identify novel pathways and molecular targets affected by control gene expression of their targets, they could offer consid- miR-489, which will lead to better understanding of miR-489– erable therapeutic options. miRNAs are small noncoding RNAs mediated tumor suppression. that posttranscriptionally regulate expression of their target genes Macroautophagy (referred to as autophagy now onwards) has (3). Because miRNAs regulate many genes, their dysregulation recently received great attention in the field of cancer and che- have been shown to cause various pathologic conditions includ- moresistance due to its prosurvival role under stressful condi- ing cancer. Identifying such dysregulated miRNAs and their targets tions. Autophagy is a highly conserved process by which cells might provide insights for the development of novel therapy. capture intracellular proteins, lipids, and organelles, and deliver Previously, we have established miR-489 as a tumor suppressor them to the lysosomal compartment for degradation (13). The miRNA in breast cancer by targeting HER2 signaling pathway (4). role of autophagy in cancer remains controversial, as it exhibits tumor-suppressive and tumor-promoting activity in context and – 1Department of Biological Science, University of South Carolina, Columbia, South molecular subtype dependent manner. For example, autophagy Carolina. 2Center for Colon Cancer Research, University of South Carolina, has been shown to inhibit tumor initiation and progression by Columbia, South Carolina. 3Department of Drug Discovery and Biomedical protecting cells from ROS-induced DNA damage and mutagen- Sciences, South Carolina College of Pharmacy, University of South Carolina, esis. Conversely, other studies reported that autophagy protects 4 Columbia, South Carolina. Master of Science in Biomedical Sciences Program, cancer cells from metabolic stress such as starvation or hypoxia Des Moines University, Des Moines, Iowa. (14). Because of its cytoprotective function, it enables cancer cells Note: Supplementary data for this article are available at Molecular Cancer to cope with cytotoxic or other stress induced by treatment. Research Online (http://mcr.aacrjournals.org/). Indeed, autophagy inhibition has been shown to reverse resis- Corresponding Author: Hexin Chen, Department of Biological Sciences, tance to several chemotherapeutic agents. Currently, chloroquine, University of South Carolina, 715 Sumter Street, PSC621, Columbia, SC 29205. an antimalarial drug, is under clinical trials for adjuvant therapy to Phone: 803-777-2928; Fax: 803-777-4002; E-mail: [email protected] reduce resistance via autophagy inhibition in various cancers. doi: 10.1158/1541-7786.MCR-17-0634 Many miRNAs have also been shown to sensitize cancer cells to Ó2018 American Association for Cancer Research. chemotherapy by inhibiting autophagy. For example, miR-200b 1348 Mol Cancer Res; 16(9) September 2018 Downloaded from mcr.aacrjournals.org on September 26, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst May 21, 2018; DOI: 10.1158/1541-7786.MCR-17-0634 miR-489 Regulates Autophagy in Breast Cancer Cells has been shown to reverse autophagy-mediated resistance to cells were transfected with 9.3 nmol/L scr or mimic in complete docetaxel by targeting ATG12 (15), while miR-140-5p disrupts media or low serum in presence or absence of 3-MA, siATG5, or cancer stem cell growth in colorectal cancer via autophagy inhi- Bafilomycin A1 followed by cell viability assay using MTT bition (16, 17). Understanding the role of miRNA in autophagy- reagent and Western blot analysis to examine the effect on mediated cancer cell survival and resistance may provide detailed autophagy and apoptosis. To examine the effect of miR-489 on insight on potential miRNA-based therapies. doxorubicin-induced cytoprotective autophagy, MDA-MB-231 In this study, for the first time, we reported that miR-489 and HCC1954 cells were transfected with 28 nmol/L scr or inhibits autophagy by affecting multiple genes involved in the mimic with or without doxorubicin. Protein was isolated 72 process. We further report that miR-489 induced autophago- hours posttreatment and Western blot analysis was performed. some accumulation is partially responsible for its cytotoxic effect. Moreover, we found that miR-489 can also sensitize Chemosensitization assays breast cancer cells to doxorubicin via autophagy inhibition. To study doxorubicin localization, cells were treated with From the combination of our in vitro and in vivo studies, 28 nmol/L scr or mimic for 24 hours then treated with we report that miR-489 inhibits autophagy by targeting ULK1 0.5 mmol/L doxorubicin for 48 hours followed by confocal and LAPTM4B and sensitizes tumor cells to doxorubicin by microscopy. MDA-MB-231 cells were transfected with inhibiting doxorubicin-induced cytoprotective autophagy and 9.3 nmol/L scr or mimic for 24 hours and treated with indicated LAPTM4B expression. concentration of doxorubicin in presence or absence of 3-MA (5 mmol/L), siATG5 (50 nmol/L), or Bafilomycin A1 (50 nmol/L) Materials and Methods for 48 hours and cell proliferation was measured by MTT assay to examine role of autophagy inhibition in miR-489–mediated The detailed procedures about cell lines and reagents, plasmid doxorubicin sensitization. To assess lysosomal integrity, MDA- construction, cell culture, Western blot analysis, IHC, qRT-PCR, MB-231 cells were transfected with 28 nmol/L scr or mimic and luciferase assay, and MTT assay are described in detail in Supple- stained with Acridine orange (1 mg/mL) for 20 minutes followed mentary Experimental Procedures. All the primer sequences are by flow cytometry and confocal microscopy. listed in Supplementary Table S1. Microarray analysis miRNA-nanoparticles' preparation T47D cells were seeded in 6-well culture dish, treated with Liposomes were prepared as described elsewhere with slight fi fl 28 nmol/L scramble miRNA or miR-489 mimic for 72 hours. RNA modi cations (18, 19). Brie y, cationic liposomes consisting of was extracted with TRIzol reagent, followed by clean-up and DOTAP and cholesterol (2:1 molar ratio) were prepared using the fi fi DNase I treatment with QIAGEN RNeasy mini kit in accordance thin- lm hydration method. The lm was hydrated with nuclease with the prescribed protocol provided with the kit. Quality free water and sonicated using probe sonicator for 15 minutes. control was performed with Agilent Bioanalyser before perform- The lipid concentration adjusted at 10 mg/mL. For miRNA- m ing microarray. The data were normalized using the default nanoparticles' preparation, 231.4 L of cationic liposomes and m fi quantile normalization with R/bioconductor package lumi ver- 90 L of miRNA were
Recommended publications
  • Lysosomal Transmembrane Protein LAPTM4B Promotes Autophagy and Tolerance to Metabolic Stress in Cancer Cells
    Author Manuscript Published OnlineFirst on October 28, 2011; DOI: 10.1158/0008-5472.CAN-11-0940 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Lysosomal transmembrane protein LAPTM4B promotes autophagy and tolerance to metabolic stress in cancer cells Yang Li1, Qing Zhang1, Ruiyang Tian1, Qi Wang1, Jean J. Zhao1, J. Dirk Iglehart1, 2, Zhigang Charles Wang1, Andrea L. Richardson1, 2 1 Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 USA 2 Brigham and Women’s Hospital, Harvard Medical School, Boston MA 02115 USA Correspondence: [email protected] or [email protected] Running Title: LAPTM4B promotes autophagy and cell tolerance to stress Precis: Overexpression of a lysosomal protein implicated in chemoresistance and breast cancer is shown to promote autophagy and inhibit lysosome-mediated death pathways. Key Words: breast cancer, autophagy, lysosome-mediated death, metabolic stress This work supported by Susan G. Komen For the Cure (AR, ZW, YL, RT), Breast Cancer Research Foundation (JDI, AR, ZW), Terri Brodeur Breast Cancer Foundation (YL), and Friends of DFCI (YL). The authors have no conflicts of interest to disclose. Word count: 4997; Figures: 6 1 Downloaded from cancerres.aacrjournals.org on October 1, 2021. © 2011 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 28, 2011; DOI: 10.1158/0008-5472.CAN-11-0940 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Amplification of chromosome 8q22, which includes the gene for lysosomal-associated transmembrane protein LAPTM4B, has been linked to de novo anthracycline resistance in primary breast cancers with poor prognosis.
    [Show full text]
  • LAPTM4B Promotes the Progression of Nasopharyngeal Cancer
    BJBMS RESEARCH ARTICLE MOLECULAR BIOLOGY LAPTM4B promotes the progression of nasopharyngeal cancer Qun Su, Hongtao Luo, Ming Zhang, Liying Gao, Fengju Zhao* ABSTRACT Lysosomal protein transmembrane 4 beta (LAPTM4B) is a protein that contains four transmembrane domains. The impact of LAPTM4B on the malignancy of nasopharyngeal carcinoma (NPC) remains unclear. In the present study, we aimed to investigate the role of LAPTM4B in NPC. NPC tissue samples were used to evaluate the expression of LAPTM4B and its relationship with patient prognosis. Furthermore, we inhibited the expression of LAPTM4B in NPC cell lines and examined the effects of LAPTM4B on NPC cell proliferation, migration, and invasion. We found that LAPTM4B protein was mainly localized in the cytoplasm and intracellular membranes of NPC cells. LAPTM4B protein was upregulated in NPC tissues and cell lines. High LAPTM4B expression was closely related to pathological subtypes and disease stages in NPC patients. NPC patients with high LAPTM4B expression had a worse prognosis. LAPTM4B knockdown inhibited the proliferation, migration, and invasion ability of NPC cells. LAPTM4B plays a cancer-promoting role in the progression of NPC and may be a potential target for NPC therapy. KEYWORDS: NPC; LAPTM4B; prognosis; proliferation; migration; invasion INTRODUCTION molecular regulatory mechanisms of NPC metastasis and find effective therapeutic targets. Nasopharyngeal carcinoma (NPC) is a malignant tumor Similar to other malignant solid tumors, the development originating from nasopharyngeal mucosal epithelial cells, of NPC is a complex process involving activation of onco- which usually occurs in the pharyngeal recess. Compared genes and inactivation of tumor suppressor genes. Lysosomal with other malignant solid tumors, NPC shows lower mor- protein transmembrane 4 beta (LAPTM4B) is a protein that bidity and mortality rates.
    [Show full text]
  • LAPTM4B: an Oncogene in Various Solid Tumors and Its Functions
    OPEN Oncogene (2016) 35, 6359–6365 © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0950-9232/16 www.nature.com/onc REVIEW LAPTM4B: an oncogene in various solid tumors and its functions Y Meng1,5, L Wang1,5, D Chen1, Y Chang1, M Zhang1, J-J XU1, R Zhou2 and Q-Y Zhang1 The oncogene Lysosome-associated protein transmembrane-4β (LAPTM4B) gene was identified, and the polymorphism region in the 5ʹ-UTR of this gene was certified to be associated with tumor susceptibility. LAPTM4B-35 protein was found to be highly expressed in various solid tumors and could be a poor prognosis marker. The functions of LAPTM4B in solid tumors were also explored. It is suggested that LAPTM4B could promote the proliferation of tumor cells, boost invasion and metastasis, resist apoptosis, initiate autophagy and assist drug resistance. Oncogene (2016) 35, 6359–6365; doi:10.1038/onc.2016.189; published online 23 May 2016 INTRODUCTION is in agreement with the size of the mRNA observed in Northern Carcinogenesis is a complicated process that involves multiple blots. There are two polyadenylation signal sites in the 3ʹ-UTR, stages with gene mutations accumulated, which results in AATAAA and AATTAAA. The alternative polyadenylation (AATAAA) 2 deregulation of proliferation, invasion and metastasis, recurrence may result in another 1.42 -kb mRNA variant. and drug resistance, leading to a poor prognosis. Despite the fact that more and more oncogenes have been found and various therapies targeting these oncogenes also have been developed in STRUCTURE OF THE LAPTM4B PROTEIN recent years, the cure rate of cancers is not satisfactory.
    [Show full text]
  • Lysosomal Transmembrane Protein LAPTM4B Promotes Autophagy and Tolerance to Metabolic Stress in Cancer Cells
    Author Manuscript Published OnlineFirst on October 28, 2011; DOI: 10.1158/0008-5472.CAN-11-0940 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Lysosomal transmembrane protein LAPTM4B promotes autophagy and tolerance to metabolic stress in cancer cells Yang Li1, Qing Zhang1, Ruiyang Tian1, Qi Wang1, Jean J. Zhao1, J. Dirk Iglehart1, 2, Zhigang Charles Wang1, Andrea L. Richardson1, 2 1 Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 USA 2 Brigham and Women’s Hospital, Harvard Medical School, Boston MA 02115 USA Correspondence: [email protected] or [email protected] Running Title: LAPTM4B promotes autophagy and cell tolerance to stress Precis: Overexpression of a lysosomal protein implicated in chemoresistance and breast cancer is shown to promote autophagy and inhibit lysosome-mediated death pathways. Key Words: breast cancer, autophagy, lysosome-mediated death, metabolic stress This work supported by Susan G. Komen For the Cure (AR, ZW, YL, RT), Breast Cancer Research Foundation (JDI, AR, ZW), Terri Brodeur Breast Cancer Foundation (YL), and Friends of DFCI (YL). The authors have no conflicts of interest to disclose. Word count: 4997; Figures: 6 1 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2011 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 28, 2011; DOI: 10.1158/0008-5472.CAN-11-0940 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Amplification of chromosome 8q22, which includes the gene for lysosomal-associated transmembrane protein LAPTM4B, has been linked to de novo anthracycline resistance in primary breast cancers with poor prognosis.
    [Show full text]
  • Integrative Bulk and Single-Cell Profiling of Premanufacture T-Cell Populations Reveals Factors Mediating Long-Term Persistence of CAR T-Cell Therapy
    Published OnlineFirst April 5, 2021; DOI: 10.1158/2159-8290.CD-20-1677 RESEARCH ARTICLE Integrative Bulk and Single-Cell Profiling of Premanufacture T-cell Populations Reveals Factors Mediating Long-Term Persistence of CAR T-cell Therapy Gregory M. Chen1, Changya Chen2,3, Rajat K. Das2, Peng Gao2, Chia-Hui Chen2, Shovik Bandyopadhyay4, Yang-Yang Ding2,5, Yasin Uzun2,3, Wenbao Yu2, Qin Zhu1, Regina M. Myers2, Stephan A. Grupp2,5, David M. Barrett2,5, and Kai Tan2,3,5 Downloaded from cancerdiscovery.aacrjournals.org on October 1, 2021. © 2021 American Association for Cancer Research. Published OnlineFirst April 5, 2021; DOI: 10.1158/2159-8290.CD-20-1677 ABSTRACT The adoptive transfer of chimeric antigen receptor (CAR) T cells represents a breakthrough in clinical oncology, yet both between- and within-patient differences in autologously derived T cells are a major contributor to therapy failure. To interrogate the molecular determinants of clinical CAR T-cell persistence, we extensively characterized the premanufacture T cells of 71 patients with B-cell malignancies on trial to receive anti-CD19 CAR T-cell therapy. We performed RNA-sequencing analysis on sorted T-cell subsets from all 71 patients, followed by paired Cellular Indexing of Transcriptomes and Epitopes (CITE) sequencing and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) on T cells from six of these patients. We found that chronic IFN signaling regulated by IRF7 was associated with poor CAR T-cell persistence across T-cell subsets, and that the TCF7 regulon not only associates with the favorable naïve T-cell state, but is maintained in effector T cells among patients with long-term CAR T-cell persistence.
    [Show full text]
  • Molecular Cloning and Characterization of LAPTM4B, a Novel Gene Upregulated in Hepatocellular Carcinoma
    Oncogene (2003) 22, 5060–5069 & 2003 Nature Publishing Group All rights reserved 0950-9232/03 $25.00 www.nature.com/onc Molecular cloning and characterization of LAPTM4B, a novel gene upregulated in hepatocellular carcinoma Gen-Ze Shao1, Rou-Li Zhou*,1, Qing-Yun Zhang1, Ye Zhang1, Jun-Jian Liu1, Jing-An Rui2, Xue Wei2 and Da-Xiong Ye2 1Department of Cell Biology & Genetics, School of Basic Medical Sciences, Peking University, Beijing 100083, China; 2Department of Basic Surgery, Peking Union Medical College Hospital, Beijing 100032, China Lysosomal-associated protein transmembrane-4 beta mortality rates. A recent statistic (Nakakuya et al., (LAPTM4B), a novel gene upregulated in hepatocellular 2000) showed that 89% of the HCC cases around the carcinoma (HCC), was cloned using fluorescence differ- world occurred in developing countries, especially in ential display, RACE, and RT–PCR. It contains seven Southeast Asia and South Africa. In many countries, exons and encodes a 35-kDa protein with four putative including the United States, a definite increase in the transmembrane regions. Both the N- and C-termini of the incidence of HCC was also noticed in the report (El- protein are proline-rich, and may serve as potential Serag, 2002). As estimated by IARC, the total incidence ligands for the SH3 domain. Immunohistochemical in 2000 was 564 000 and the mortality was up to 549 000. analysis localized the protein predominantly to intracel- The major risk factors for this cancer have been lular membranes. Northern blot showed that the identified as chronic infections with hepatitis B (HBV) LAPTM4B mRNAs were remarkably upregulated in or hepatitis C (HCV) viruses, and dietary exposure to HCC (87.3%) and correlated inversely with differentia- aflatoxins.
    [Show full text]
  • Mir-188-5P Inhibits Tumour Growth and Metastasis in Prostate Cancer by Repressing LAPTM4B Expression
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No.8 miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression Hongtuan Zhang1,2,3, Shiyong Qi1, Tao Zhang1, Andi Wang1, Ranlu Liu1, Jia Guo2, Yuzhuo Wang2,3 and Yong Xu1 1 Department of Urology, National Key Specialty of Urology, Second Hospital of Tianjin Medical University, Tianjin Key Institute of Urology, Tianjin Medical University, Tianjin, China 2 Vancouver Prostate Centre & Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada 3 Department of Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada Correspondence to: Yong Xu, email: [email protected] Keywords: miRNA, metastasis, miR-188-5p, prostate cancer, LAPTM4B Received: December 14, 2014 Accepted: January 03, 2015 Published: January 21, 2015 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Elucidation of the molecular targets and pathways regulated by the tumour- suppressive miRNAs can shed light on the oncogenic and metastatic processes in prostate cancer (PCa). Using miRNA profiling analysis, we find that miR-188-5p was significantly down-regulated in metastatic PCa. Down-regulation of miR-188-5p is an independent prognostic factor for poor overall and biochemical recurrence- free survival. Restoration of miR-188-5p in PCa cells (PC-3 and LNCaP) significantly suppresses proliferation, migration and invasion in vitro and inhibits tumour growth and metastasis in vivo. We also find overexpression of miR-188-5p in PC-3 cells can significantly enhance the cells’ chemosensitivity to adriamycin.
    [Show full text]
  • A Robust Twelve-Gene Signature for Prognosis Prediction Of
    Ouyang et al. Cancer Cell Int (2020) 20:207 https://doi.org/10.1186/s12935-020-01294-9 Cancer Cell International PRIMARY RESEARCH Open Access A robust twelve-gene signature for prognosis prediction of hepatocellular carcinoma Guoqing Ouyang1, Bin Yi2, Guangdong Pan1 and Xiang Chen3* Abstract Background: The prognosis of hepatocellular carcinoma (HCC) patients remains poor. Identifying prognostic mark- ers to stratify HCC patients might help to improve their outcomes. Methods: Six gene expression profles (GSE121248, GSE84402, GSE65372, GSE51401, GSE45267 and GSE14520) were obtained for diferentially expressed genes (DEGs) analysis between HCC tissues and non-tumor tissues. To identify the prognostic genes and establish risk score model, univariable Cox regression survival analysis and Lasso-penalized Cox regression analysis were performed based on the integrated DEGs by robust rank aggregation method. Then Kaplan–Meier and time-dependent receiver operating characteristic (ROC) curves were generated to validate the prognostic performance of risk score in training datasets and validation datasets. Multivariable Cox regression analysis was used to identify independent prognostic factors in liver cancer. A prognostic nomogram was constructed based on The Cancer Genome Atlas (TCGA) dataset. Finally, the correlation between DNA methylation and prognosis-related genes was analyzed. Results: A twelve-gene signature including SPP1, KIF20A, HMMR, TPX2, LAPTM4B, TTK, MAGEA6, ANX10, LECT2, CYP2C9, RDH16 and LCAT was identifed, and risk score was calculated by corresponding coefcients. The risk score model showed a strong diagnosis performance to distinguish HCC from normal samples. The HCC patients were stratifed into high-risk and low-risk group based on the cutof value of risk score.
    [Show full text]
  • Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
    www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.
    [Show full text]
  • Downloaded Package Was Applied to Remove Genes and Samples with Too from the Gene Expression Omnibus (GEO) Database of the Many Missing Values
    fgene-12-668448 June 29, 2021 Time: 18:22 # 1 ORIGINAL RESEARCH published: 05 July 2021 doi: 10.3389/fgene.2021.668448 Integrated Analysis of lncRNAs, mRNAs, and TFs to Identify Regulatory Networks Underlying MAP Infection in Cattle Maryam Heidari1, Abbas Pakdel1*, Mohammad Reza Bakhtiarizadeh2 and Fariba Dehghanian3 1 Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran, 2 Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran, 3 Department of Biology, University of Isfahan, Isfahan, Iran Johne’s disease is a chronic infection of ruminants that burdens dairy herds with a significant economic loss. The pathogenesis of the disease has not been revealed clearly due to its complex nature. In order to achieve deeper biological insights into molecular mechanisms involved in MAP infection resulting in Johne’s disease, a system biology approach was used. As far as is known, this is the first study that considers lncRNAs, Edited by: Natalia Polouliakh, TFs, and mRNAs, simultaneously, to construct an integrated gene regulatory network Sony Computer Science involved in MAP infection. Weighted gene coexpression network analysis (WGCNA) and Laboratories, Japan functional enrichment analysis were conducted to explore coexpression modules from Reviewed by: Shigetoshi Eda, which nonpreserved modules had altered connectivity patterns. After identification of The University of Tennessee, hub and hub-hub genes as well as TFs and lncRNAs in the nonpreserved modules, Knoxville, United States integrated networks of lncRNA-mRNA-TF were constructed, and cis and trans targets Hugo Tovar, Instituto Nacional de Medicina of lncRNAs were identified. Both cis and trans targets of lncRNAs were found in eight Genómica (INMEGEN), Mexico nonpreserved modules.
    [Show full text]
  • The Relationship Between LAPTM4B Polymorphisms and Cancer Risk In
    Xia et al. SpringerPlus (2015) 4:179 DOI 10.1186/s40064-015-0941-7 a SpringerOpen Journal RESEARCH Open Access The relationship between LAPTM4B polymorphisms and cancer risk in Chinese Han population: a meta-analysis Ling-Zi Xia1,2, Zhi-Hua Yin1,2, Yang-Wu Ren1,2, Li Shen1,2, Wei Wu1,2, Xue-Lian Li1,2, Peng Guan1,2 and Bao-Sen Zhou1,2* Abstract LAPTM4B is a newly cloned gene that shows an active role in many solid tumors progression in substantial researches, mainly through the autophage function. Accumulated studies have been conducted to determine the association of LAPTM4B polymorphism with cancer risk. While the results are inconsistent, we conducted the meta-analysis to determine the strength of the relationship. Results showed that allele*2 carriers exhibited a significantly increased risk of cancer development with comparison to allele*1 homozygote (for *1/2, OR = 1.55, 95% CI 1.367-1.758; for *2/2, OR = 2.093, 95%CI 1.666-2.629; for *1/2 + *2/2, OR = 1.806, 95%CI 1.527-2.137). We also observed a significant association between *2/2 homozygote and cancer risk with comparison to allele*1 containing genotypes (OR = 1.714, 95%CI 1.408-2.088). Allele*2 is a risk factor for cancer risk (OR = 1.487, 95%CI 1.339-1.651). Stratified analysis by tumor type exhibits the significant association of this genetic variants with various cancers. In conclusion, LAPTM4B polymorphism is associated with cancer risk and allele*2 is a risk factor. Keywords: LAPTM4B; Polymorphism; Meta-analysis; Cancer risk Background (Scarlatti et al.
    [Show full text]
  • Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors
    University of Cincinnati Date: 12/20/2010 I, Arturo R Maldonado , hereby submit this original work as part of the requirements for the degree of Doctor of Philosophy in Developmental Biology. It is entitled: Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors Student's name: Arturo R Maldonado This work and its defense approved by: Committee chair: Jeffrey Whitsett Committee member: Timothy Crombleholme, MD Committee member: Dan Wiginton, PhD Committee member: Rhonda Cardin, PhD Committee member: Tim Cripe 1297 Last Printed:1/11/2011 Document Of Defense Form Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors A dissertation submitted to the Graduate School of the University of Cincinnati College of Medicine in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (PH.D.) in the Division of Molecular & Developmental Biology 2010 By Arturo Rafael Maldonado B.A., University of Miami, Coral Gables, Florida June 1993 M.D., New Jersey Medical School, Newark, New Jersey June 1999 Committee Chair: Jeffrey A. Whitsett, M.D. Advisor: Timothy M. Crombleholme, M.D. Timothy P. Cripe, M.D. Ph.D. Dan Wiginton, Ph.D. Rhonda D. Cardin, Ph.D. ABSTRACT Since 1999, cancer has surpassed heart disease as the number one cause of death in the US for people under the age of 85. Malignant Peripheral Nerve Sheath Tumor (MPNST), a common malignancy in patients with Neurofibromatosis, and colorectal cancer are midkine- producing tumors with high mortality rates. In vitro and preclinical xenograft models of MPNST were utilized in this dissertation to study the role of midkine (MDK), a tumor-specific gene over- expressed in these tumors and to test the efficacy of a MDK-transcriptionally targeted oncolytic HSV-1 (oHSV).
    [Show full text]