Ideas in Ecology and Evolution 1: 1-10, 2008

Total Page:16

File Type:pdf, Size:1020Kb

Ideas in Ecology and Evolution 1: 1-10, 2008 1 11: 47–60, 2018 2 doi: 10.4033/iee.2018.11.6.n 3 © 2018 The Author 4 iee Received 5 June 2018; Accepted 1 October 2018 5 6 7 8 New Idea 9 10 11 The sexual selection of hominin bipedalism 12 13 14 Michael T. Dale 15 16 Michael T. Dale ([email protected]), Department of Philosophy, The University of Texas at Austin, 2210 17 Speedway, C3500, Austin, TX, USA 78712 18 19 20 Abstract Introduction 21 22 In this article, I advance a novel hypothesis on the Why did our hominin ancestors become bipedal? As it 23 evolution of hominin bipedalism. I begin by arguing is likely that bipedalism preceded the expansion of the 24 extensively for how the transition to bipedalism must brain, language, tool-use, loss of body hair, and many 25 have been problematic for hominins during the Neogene. other traits idiosyncratic to Homo sapiens (Tuttle 2014), 26 Due to this and the fact that no other primate has made bipedalism is perhaps the first step (!) in the development 27 the unusual switch to bipedalism, it seems likely that the of modern humanity. While many hypotheses have been 28 selection pressure towards bipedalism was unusually put forward, none have made a thoroughly convincing 29 strong. With this in mind, I briefly lay out some of the case, and thus this pivotal transition in our evolutionary 30 most promising hypotheses on the evolutionary origin of history remains a mystery. 31 hominin bipedalism and show how most, if not all, fail in In this article, I advance a novel hypothesis regarding 32 the face of the need for an unusually strong selection the evolution of hominin bipedalism. I will begin by 33 pressure. For example, some hypotheses maintain that discussing what we know about the timeline of the 34 hominins became bipedal so they could use their hands evolution of bipedalism. I will then argue extensively for 35 for carrying infants, food, or other valuable objects. But how the transition to bipedalism must have been 36 extant apes are able to carry objects in one of their front problematic for hominins during the Neogene. Due to this 37 limbs (while walking with the other three), and thus it and the fact that no other primate has made the unusual 38 does not seem plausible that our hominin ancestors went switch to bipedalism, it seems likely that the selection 39 through the troublesome transition to bipedalism just so pressure towards bipedalism was unusually strong. With 40 they could carry objects a little more efficiently. After I this in mind, I will briefly lay out some of the most 41 show that past hypotheses are wanting in the face of this promising hypotheses on the evolutionary origin of 42 challenge, I argue that there is only one selection pressure hominin bipedalism and show how most, if not all, fail in 43 powerful enough to instigate a strange and problematic the face of the need for an unusually strong selection 44 evolutionary adaptation like bipedalism, and that is pressure. Next, I will argue that there is only one selection 45 sexual selection. Specifically, from the fact that bipedal pressure powerful enough to instigate a strange and 46 locomotion is an important strategy for intimidating problematic evolutionary adaptation like bipedalism, and 47 others and ascending the dominance hierarchy in extant that is sexual selection. Specifically, I will contend that 48 apes, I argue that for no particular selective reason for no particular selective reason bipedal locomotion 49 bipedal locomotion became a signal for high fitness became a signal for high fitness (much as a large and 50 (much as a large and intricate tail became a signal for intricate tail became a signal for high fitness for peahens), 51 high fitness for peahens), and this led to the trait being and this led to the trait being continuously reinforced in 52 continuously reinforced in spite of all its deleterious spite of all its deleterious fitness consequences. Indeed, 53 fitness consequences. not only does this seem like the most plausible reason that 54 such a troublesome transition occurred, but it also fits 55 Keywords: bipedalism, evolution, hominin, quadru- well with the fossil record. I end the paper by discussing 56 pedalism, handicap, sexual selection, upright. iee 11 (2018) This work is licensed under a Creative Commons Attribution 3.0 License. 47 some of the interesting consequences this hypothesis has (Brunet et al. 2002), but many claim that the evidence is for the evolutionary history of Homo sapiens. unreliable (Pickford 2005, Wolpoff et al. 2002, 2006, Schwartz 2004, Senut 2012). Interestingly, Senut et al. Evolutionary Timeline (2001) firmly argue that the femora of Orrorin tugenensis (6.1–5.7 Ma) indicate that the species was terrestrially The earliest uncontroversial evidence of obligate bipedal while the phalanges and humerus imply that it bipedal1 Homininae is the 3.66 Ma Laetoli (site G) was also arboreal. But again, it is difficult to make such footprints uncovered 45 km south of Olduvai Gorge. claims convincingly, as only a few bones of O. tugenensis These preserved footprint trails are the result of three have been recovered. Moreover, just because there are bipedal hominins walking through volcanic ash (Tuttle signs of bipedality doesn’t mean that the species was a 2014: 143). The hominins that made them are considered terrestrial biped. Perhaps O. tugenensis was a bipedal obligately bipedal because they walked through 27 branch walker, similar to Pongo. meters of open habitat without leaving a single handprint. Overall, as the previous paragraphs have illustrated, Moreover, even though there is some contention over hominoid fossils from the Late Miocene are few and far whether it was the same creature that left the Laetoli between. Notwithstanding the few bones from the species footprints, Australopithecus afarensis (Lucy), a hominin just discussed (which really don’t tell us much about that lived between 3.9 and 2.9 Ma, was most likely locomotion specifics) and some miscellaneous teeth and bipedal (Lovejoy 1988). Interestingly, though, A. mandibles (e.g. Samburupithecus kiptalami, Chorora- afarensis also had adaptations for arboreality, such as pithecus abyssinicus, and Nakalipithecus nakayamai), curved phalanges, and ape-like scapula, a long pisiform this time period represents a significant gap in the fossil bone, and a laterally flared ilium (Tuttle 1981, Green and record, which is unfortunate as it was likely a pivotal Alemseged 2012). A plausible interpretation of the period in hominoid evolution. evidence is that A. afarensis was terrestrially bipedal but However, we do know that we most likely evolved still engaged in significant amounts of arboreal activity. from quadrupedal primates that existed during the Middle However, this is ultimately just speculation. All we can Miocene. While some middle Miocene primate fossils really state is that it is very likely that a terrestrially show evidence of semi-terrestriality (e.g. Kenyapithecus bipedal hominin existed in east Africa around 3 to 4 Ma. and Equatorrius), all of them were quadrupedal animals If we look back further than the mid-Pliocene, the that spent a significant amount of time climbing and evidence becomes murkier. While there is a compelling maneuvering in trees (Senut 2012). Thus, up until 10 Ma., case that Ardipithecus ramidus (4.4 Ma) was a woodland our ancestors were primarily arboreal, quadrupedal dwelling hominin capable of bipedalism (Lovejoy 2009, primates. Then, sometime between 10 Ma. and 4 Ma., Lovejoy et al. 2009), it is unclear how much bipedal there was a major transition to bipedalism. Unfortunately, activity Ar. ramidus engaged in. For one, its opposable this is about all we can say for sure about the timeline of toes (Lovejoy et al. 2009), which seem to be much more the evolution of hominin bipedalism, but we can put adapted to grasping branches, would have made any type forward one important (yet tentative) conclusion. bipedal gait primitive and awkward. Indeed, even Because many of the hominins that existed between 10 Lovejoy (2009) (one of the prominent advocates of a and 4 Ma. show adaptations for arboreality, terrestriality, bipedal Ar. ramidus) admits that upright walking would and bipedalism, it is likely that the transition to bipedal- not have been an energy efficient option for the species. ism was a very slow, complicated process. Indeed, this Moreover, its upper pelvis and large femoral shaft also makes sense because becoming bipedal is no straight- indicate that Ar. ramidus spent a significant amount of forward matter. As the next section will show in more time in the trees (White et al. 2009, Senut 2012). With all detail, not only must the physiology of a transitioning this said, however, it is important to understand that many biped undergo significant change, but the animal’s pivotal aspects of the skeleton of Ar. ramidus have yet to behavior, diet, and social life must revolutionize, as well. be discovered and thus it is difficult to put forward a truly Thus, the transition to bipedality was most likely a convincing argument either way (Senut 2012, Tuttle gradual, tinkered process that occurred over many 2014: 246). millennia. Going back even further, not enough fossils of Ardipithecus kadabba (5.6–5.2 Ma) have been found to The Unwelcome Consequences of Bipedalism make a compelling argument about the locomotion of the species (Stern and Susman 1983, Susman et al. 1984, Homo sapiens is the only bipedal primate, and there is Stern 2000). Some maintain that that the cranium of good reason why all other primates are not bipedal. Sahelanthropus tchadensis (6–7 Ma) hints at bipedality Indeed, the physiology and skeleton of primates are so 1 An obligately bipedal animal is one that uses bipedalism a primary means of locomotion.
Recommended publications
  • Download Full Article in PDF Format
    Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade David R. BEGUN University of Toronto, Department of Anthropology, 19 Russell Street, Toronto, ON, M5S 2S2 (Canada) [email protected] Begun R. D. 2009. — Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade. Geodiversitas 31 (4) : 789-816. ABSTRACT Darwin famously opined that the most likely place of origin of the common ancestor of African apes and humans is Africa, given the distribution of its liv- ing descendents. But it is infrequently recalled that immediately afterwards, Darwin, in his typically thorough and cautious style, noted that a fossil ape from Europe, Dryopithecus, may instead represent the ancestors of African apes, which dispersed into Africa from Europe. Louis de Bonis and his collaborators were the fi rst researchers in the modern era to echo Darwin’s suggestion about apes from Europe. Resulting from their spectacular discoveries in Greece over several decades, de Bonis and colleagues have shown convincingly that African KEY WORDS ape and human clade members (hominines) lived in Europe at least 9.5 million Mammalia, years ago. Here I review the fossil record of hominoids in Europe as it relates to Primates, Dryopithecus, the origins of the hominines. While I diff er in some details with Louis, we are Hispanopithecus, in complete agreement on the importance of Europe in determining the fate Rudapithecus, of the African ape and human clade. Th ere is no doubt that Louis de Bonis is Ouranopithecus, hominine origins, a pioneer in advancing our understanding of this fascinating time in our evo- new subtribe.
    [Show full text]
  • Unravelling the Positional Behaviour of Fossil Hominoids: Morphofunctional and Structural Analysis of the Primate Hindlimb
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Doctorado en Biodiversitat Facultad de Ciènces Tesis doctoral Unravelling the positional behaviour of fossil hominoids: Morphofunctional and structural analysis of the primate hindlimb Marta Pina Miguel 2016 Memoria presentada por Marta Pina Miguel para optar al grado de Doctor por la Universitat Autònoma de Barcelona, programa de doctorado en Biodiversitat del Departamento de Biologia Animal, de Biologia Vegetal i d’Ecologia (Facultad de Ciències). Este trabajo ha sido dirigido por el Dr. Salvador Moyà Solà (Institut Català de Paleontologia Miquel Crusafont) y el Dr. Sergio Almécija Martínez (The George Washington Univertisy). Director Co-director Dr. Salvador Moyà Solà Dr. Sergio Almécija Martínez A mis padres y hermana. Y a todas aquelas personas que un día decidieron perseguir un sueño Contents Acknowledgments [in Spanish] 13 Abstract 19 Resumen 21 Section I. Introduction 23 Hominoid positional behaviour The great apes of the Vallès-Penedès Basin: State-of-the-art Section II. Objectives 55 Section III. Material and Methods 59 Hindlimb fossil remains of the Vallès-Penedès hominoids Comparative sample Area of study: The Vallès-Penedès Basin Methodology: Generalities and principles Section IV.
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]
  • Orangutan Positional Behavior and the Nature of Arboreal Locomotion in Hominoidea Susannah K.S
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 000:000–000 (2006) Orangutan Positional Behavior and the Nature of Arboreal Locomotion in Hominoidea Susannah K.S. Thorpe1* and Robin H. Crompton2 1School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 2Department of Human Anatomy and Cell Biology, University of Liverpool, Liverpool L69 3GE, UK KEY WORDS Pongo pygmaeus; posture; orthograde clamber; forelimb suspend ABSTRACT The Asian apes, more than any other, are and orthograde compressive locomotor modes are ob- restricted to an arboreal habitat. They are consequently an served more frequently. Given the complexity of orangu- important model in the interpretation of the morphological tan positional behavior demonstrated by this study, it is commonalities of the apes, which are locomotor features likely that differences in positional behavior between associated with arboreal living. This paper presents a de- studies reflect differences in the interplay between the tailed analysis of orangutan positional behavior for all age- complex array of variables, which were shown to influence sex categories and during a complete range of behavioral orangutan positional behavior (Thorpe and Crompton [2005] contexts, following standardized positional mode descrip- Am. J. Phys. Anthropol. 127:58–78). With the exception tions proposed by Hunt et al. ([1996] Primates 37:363–387). of pronograde suspensory posture and locomotion, orang- This paper shows that orangutan positional behavior is utan positional behavior is similar to that of the African highly complex, representing a diverse spectrum of posi- apes, and in particular, lowland gorillas. This study sug- tional modes. Overall, all orthograde and pronograde sus- gests that it is orthogrady in general, rather than fore- pensory postures are exhibited less frequently in the pres- limb suspend specifically, that characterizes the posi- ent study than previously reported.
    [Show full text]
  • 8. Primate Evolution
    8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America.
    [Show full text]
  • Verhaegen M. the Aquatic Ape Evolves
    HUMAN EVOLUTION Vol. 28 n.3-4 (237-266) - 2013 Verhaegen M. The Aquatic Ape Evolves: Common Miscon- Study Center for Anthropology, ceptions and Unproven Assumptions About Mechelbaan 338, 2580 Putte, the So-Called Aquatic Ape Hypothesis Belgium E-mail: [email protected] While some paleo-anthropologists remain skeptical, data from diverse biological and anthropological disciplines leave little doubt that human ancestors were at some point in our past semi- aquatic: wading, swimming and/or diving in shallow waters in search of waterside or aquatic foods. However, the exact sce- nario — how, where and when these semi-aquatic adaptations happened, how profound they were, and how they fit into the KEY WORDS: human evolution, hominid fossil record — is still disputed, even among anthro- Littoral theory, Aquarboreal pologists who assume some semi-aquatic adaptations. theory, aquatic ape, AAT, Here, I argue that the most intense phase(s) of semi-aquatic Archaic Homo, Homo erectus, adaptation in human ancestry occurred when populations be- Neanderthal, bipedalism, speech longing to the genus Homo adapted to slow and shallow littoral origins, Alister Hardy, Elaine diving for sessile foods such as shellfish during part(s) of the Morgan, comparative biology, Pleistocene epoch (Ice Ages), possibly along African or South- pachyosteosclerosis. Asian coasts. Introduction The term aquatic ape gives an incorrect impression of our semi-aquatic ancestors. Better terms are in my opinion the coastal dispersal model (Munro, 2010) or the littoral theory of human evolution, but although littoral seems to be a more appropriate biologi- cal term here than aquatic, throughout this paper I will use the well-known and common- ly used term AAH as shorthand for all sorts of waterside and semi-aquatic hypotheses.
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]
  • Postcranial Evidence of Late Miocene Hominin Bipedalism in Chad
    Postcranial evidence of late Miocene hominin bipedalism in Chad Franck Guy ( [email protected] ) Université de Poitiers / CNRS UMR 7262 - PALEVOPRIM Paléontologie, Evolution, Paléo-écosytèmes, Paléoprimatologie Guillaume Daver CNRS, UMR 7262 Hassane Taisso Mackaye Université de N'Djamena Andossa Likius Université de N'Djamena - Faculté de Sciences Exactes et Appliquées -Département de Paléontologie Jean-Renaud Boisserie Université de Poitiers and CNRS Abderamane Moussa Université de N'Djamena - Faculté de Sciences Exactes et Appliquées -Département de Paléontologie Patrick Vignaud CNRS UMR 6046 Clarisse Nekoulnang Centre National de Développement et de la Recherches (CNRD) - Service de Conservation et Valorisation des Fossiles Research Article Keywords: Terrestrial bipedal, Miocene hominins, postcranial remains DOI: https://doi.org/10.21203/rs.3.rs-69453/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Terrestrial bipedal locomotion is one of the key adaptations deƒning the hominin clade. Evidences of undisputed bipedalism are known from postcranial remains of late Miocene hominins as soon as 6 Ma in eastern Africa. Bipedality of Sahelanthropus tchadensis was hitherto documented at 7 Ma in central Africa (Chad) by cranial evidence. Here, we present the ƒrst postcranial evidence of the locomotor behavior of the Chadian hominin with new insights on bipedalism at the early stage of our evolutionary history. The original material was discovered at locality TM 266 (Toros-Menalla fossiliferous area), and consists in one left femur and two antimeric ulnae. These new ƒndings conƒrm that hominins were already terrestrial biped relatively soon after the human-chimpanzee divergence but also suggest that careful climbing arboreal behaviors was still a signiƒcant part of their locomotor repertoire.
    [Show full text]
  • Fleagle and Lieberman 2015F.Pdf
    15 Major Transformations in the Evolution of Primate Locomotion John G. Fleagle* and Daniel E. Lieberman† Introduction Compared to other mammalian orders, Primates use an extraordinary diversity of locomotor behaviors, which are made possible by a complementary diversity of musculoskeletal adaptations. Primate locomotor repertoires include various kinds of suspension, bipedalism, leaping, and quadrupedalism using multiple pronograde and orthograde postures and employing numerous gaits such as walking, trotting, galloping, and brachiation. In addition to using different locomotor modes, pri- mates regularly climb, leap, run, swing, and more in extremely diverse ways. As one might expect, the expansion of the field of primatology in the 1960s stimulated efforts to make sense of this diversity by classifying the locomotor behavior of living primates and identifying major evolutionary trends in primate locomotion. The most notable and enduring of these efforts were by the British physician and comparative anatomist John Napier (e.g., Napier 1963, 1967b; Napier and Napier 1967; Napier and Walker 1967). Napier’s seminal 1967 paper, “Evolutionary Aspects of Primate Locomotion,” drew on the work of earlier comparative anatomists such as LeGros Clark, Wood Jones, Straus, and Washburn. By synthesizing the anatomy and behavior of extant primates with the primate fossil record, Napier argued that * Department of Anatomical Sciences, Health Sciences Center, Stony Brook University † Department of Human Evolutionary Biology, Harvard University 257 You are reading copyrighted material published by University of Chicago Press. Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal and injures the author and publisher. fig. 15.1 Trends in the evolution of primate locomotion.
    [Show full text]
  • Ontogeny of Postcranial Morphology and Locomotor Behavior in Propithecus Verreauxi Coquereli and Lemur Catta Stephanie Ann Wolf James Madison University
    James Madison University JMU Scholarly Commons Masters Theses The Graduate School Spring 2011 Ontogeny of postcranial morphology and locomotor behavior in Propithecus verreauxi coquereli and Lemur catta Stephanie Ann Wolf James Madison University Follow this and additional works at: https://commons.lib.jmu.edu/master201019 Part of the Biology Commons Recommended Citation Wolf, Stephanie Ann, "Ontogeny of postcranial morphology and locomotor behavior in Propithecus verreauxi coquereli and Lemur catta" (2011). Masters Theses. 371. https://commons.lib.jmu.edu/master201019/371 This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact [email protected]. Ontogeny of postcranial morphology and locomotor behavior in Propithecus verreauxi coquereli and Lemur catta Stephanie Ann Wolf A thesis submitted to the Graduate Faculty of JAMES MADISON UNIVERSITY In Partial Fulfillment of the Requirements for the degree of Master of Science Department of Biology May 2011 This thesis is dedicated with sincere gratitude to my mother, Debra Wolf. ii Acknowledgements Numerous people have committed time and energy allowing for the completion of this thesis. Foremost among them is my graduate advisor Dr. Roshna Wunderlich. I would like to thank her for her patience, advice, and dedication to this project, and the valuable hours she spent working with me. I additionally want to thank her for agreeing to take me on as a graduate student, despite already having another graduate student and many undergraduates in her lab to advise.
    [Show full text]
  • A New Late Miocene Great Ape from Kenya and Its Implications for the Origins of African Great Apes and Humans
    A new Late Miocene great ape from Kenya and its implications for the origins of African great apes and humans Yutaka Kunimatsua,b, Masato Nakatsukasac, Yoshihiro Sawadad, Tetsuya Sakaid, Masayuki Hyodoe, Hironobu Hyodof, Tetsumaru Itayaf, Hideo Nakayag, Haruo Saegusah, Arnaud Mazurieri, Mototaka Saneyoshij, Hiroshi Tsujikawak, Ayumi Yamamotoa, and Emma Mbual aPrimate Research Institute, Kyoto University, Aichi 484-8506, Japan; cGraduate School of Science, Kyoto University, Kyoto 606-8502, Japan; dFaculty of Science and Engineering, Shimane University, Shimane 690-8504, Japan; eResearch Center for Inland Seas, Kobe University, Kobe 657-8501, Japan; fResearch Institute of Natural Sciences, Okayama University of Science, Okayama 700-0005, Japan; gFaculty of Science, Kagoshima University, Korimoto 1-21-35, Kagoshima 890-0065, Japan; hInstitute of Natural and Environmental Sciences, University of Hyogo, Sanda 669-1546, Japan; iE´ tudes Recherches Mate´riaux, 86022 Poitiers, France; jHayashibara Natural History Museum, Okayama 700-0907, Japan; kSchool of Medicine, Tohoku University, Sendai 980-8575, Japan; and lDepartment of Earth Sciences, National Museums of Kenya, P.O. Box 40658-00100, Nairobi, Kenya Edited by Alan Walker, Pennsylvania State University, University Park, PA, and approved October 3, 2007 (received for review July 1, 2007) Extant African great apes and humans are thought to have di- (16, 17), in size and some morphological features, but a number verged from each other in the Late Miocene. However, few of differences lead us to assign the Nakali material to a different hominoid fossils are known from Africa during this period. Here we new genus. Nakalipithecus nakayamai and the associated primate describe a new genus of great ape (Nakalipithecus nakayamai gen.
    [Show full text]
  • Laboratory Primate Newsletter
    LABORATORY PRIMATE NEWSLETTER Vol. 47, No. 1 January 2008 JUDITH E. SCHRIER, EDITOR JAMES S. HARPER, GORDON J. HANKINSON AND LARRY HULSEBOS, ASSOCIATE EDITORS MORRIS L. POVAR, CONSULTING EDITOR ELVA MATHIESEN, ASSISTANT EDITOR ALLAN M. SCHRIER, FOUNDING EDITOR, 1962-1987 Published Quarterly by the Schrier Research Laboratory Psychology Department, Brown University Providence, Rhode Island ISSN 0023-6861 POLICY STATEMENT The Laboratory Primate Newsletter provides a central source of information about nonhuman primates and re- lated matters to scientists who use these animals in their research and those whose work supports such research. The Newsletter (1) provides information on care and breeding of nonhuman primates for laboratory research, (2) dis- seminates general information and news about the world of primate research (such as announcements of meetings, research projects, sources of information, nomenclature changes), (3) helps meet the special research needs of indi- vidual investigators by publishing requests for research material or for information related to specific research prob- lems, and (4) serves the cause of conservation of nonhuman primates by publishing information on that topic. As a rule, research articles or summaries accepted for the Newsletter have some practical implications or provide general information likely to be of interest to investigators in a variety of areas of primate research. However, special con- sideration will be given to articles containing data on primates not conveniently publishable elsewhere. General descriptions of current research projects on primates will also be welcome. The Newsletter appears quarterly and is intended primarily for persons doing research with nonhuman primates. Back issues may be purchased for $10.00 each.
    [Show full text]