Ecophysiology and Status of World Species

Total Page:16

File Type:pdf, Size:1020Kb

Ecophysiology and Status of World Species ECOPHYSIOLOGY AND STATUS OF WORLD SPECIES I Wayan Kasa Faculty of Science, Udayana University Denpasar, Bali 2018 1 ECOPHYSIOLOGY AND STATUS OF WORLD SPECIES I Wayan Kasa Faculty of Science, Udayana University Denpasar, Bali 2018 2 Table of Contents Introduction Habitat destruction Commercial exploitation Introduced species International Union for Conservation of Nature and Natural Resources (IUCN) IUCN Red List categories Endangered species that moved to a more threatened status Spicies Status According to IUCN. 1. Harvestman, Bee Creek Cave Texella reddelli 2. Spider, no-eyed big-eyed wolf Adelocosa anops 3. Spider, Tooth Cave Neoleptoneta myopica 4. Tarantula, red-kneed Euathlus smithi (also Brachypelma smithi) 5. Albatross, short-tailed Diomedea albatrus 6. Blackbird, yellow-shouldered Agelaius xanthomus 7. Booby, Abbott’s Sula (or papsula) abbotti 8. Bullfinch, Azores Pyrrhula murina 9. Condor, California Gymnogyps californianus 10. Cormorant, Galápagos Phalacrocorax harrisi 11. Crane, Siberian Grus leucogeranus 12. Crane, whooping Grus Americana References 3 Introduction Ecophysiologically, species have been disappearing from the face of Earth since the beginning of life on the planet. Most of the species that have ever lived on Earth are now extinct. Extinction and endangerment can occur naturally as a normal process in the course of evolution. It can be the result of a catastrophic event, such as the collision of an asteroid with Earth. Scientists believe an asteroid struck the planet off Mexico’s Yucatán Peninsula some 65,000,000 years ago, bringing about the extinction of almost 50 percent of the plant species and 75 percent of the animal species then living on Earth, including the dinosaurs. Widespread climate changes, disease, and competition among species can also result in natural extinction. To date, scientists believe there have been five great natural extinction episodes in Earth’s history. Since humans became the dominant species on the planet, however, the rate at which other species have become extinct has increased dramatically. Especially since the seventeenth century, technological advances and an ever-expanding human population have changed the natural world as never before. At present, scientists believe extinctions caused by humans are taking place at 100 to 1,000 times nature’s normal rate between great extinction episodes. Species are disappearing faster than they can be created through evolution. In fact, some biologists estimate that in the early 2000s three or more plant and animal species become extinct each day. Because scientists have described and named only a small percentage of Earth’s species, it is impossible to measure the total number of species endangered or going extinct. Just 1,400,000 species—out of an estimated 10,000,000 to 100,000,000—have been described to date. Scientists do know that humans are endangering species and the natural world primarily in three ways: habitat destruction, commercial exploitation of animals and plants, and the transplantation of species from one part of the world to another. Habitat destruction Habitat destruction all over the world is the primary reason species are becoming extinct or endangered. Houses, highways, dams, industrial buildings, and ever-spreading farms now dominate landscapes formerly occupied by forests, prairies, deserts, scrublands, and wetlands. Since the beginning of European settlement in America, over 65,000,000 acres of wetlands have been drained. One million acres alone vanished between 1985 and 1995. Habitat destruction can be obvious or it can be subtle, occurring over a long period of time without being noticed. 4 Pollution, such as sewage from cities and chemical runoff from farms, can change the quality and quantity of water in streams and rivers. To species living in a delicately balanced habitat, this disturbance can be as fatal as the clear-cutting of a rain forest. As remaining habitats are carved into smaller and smaller pockets or islands, remaining species are forced to exist in these crowded areas, which causes further habitat destruction. These species become less adaptable to environmental change; they become more vulnerable to extinction. Scientists believe that when a habitat is cut by 90 percent, onehalf of its plants, animals, insects, and microscopic life-forms will become extinct. Commercial exploitation Living organisms have been hunted by humans not only for their meat but for parts of their bodies that are used to create medicines, love potions, and trinkets. Overhunting has caused the extinction of any species and brought a great many others to the brink of extinction. Examples include species of whales, slaughtered for their oil and baleen. The rhinoceroses of Africa are critically endangered, having been killed mainly for their horns. Sharks’ fins, cruelly cut off of the live animal, are used in Asia as an aphrodisiac, and 75 shark species are now endangered. International treaties outlaw the capture and trade of many endangered or threatened species. These laws, however, are difficult to enforce. The smuggling of endangered species is a huge business. In the early 2000s, the illegal trade in wildlife products was estimated at $15 billion a year worldwide—second only to the value of the international illegal drug trade. Introduced species The native species are those that have inhabited a given biological landscape for a long period of time. They have adapted to the environment, climate, and other species in that locale. Introduced or exotic species are those that have been brought into that landscape by humans, either accidentally or intentionally. In some cases, these introduced species may not cause any harm. They may, over time, adapt to their new surroundings and fellow species, becoming “native.” Most often, however, introduced species seriously disrupt ecological balances. They compete with native species for food and shelter. Often, they prey on the native species, who lack natural defenses against the intruders. In the last 500 years, introduced insects, cats, pigs, 5 rats, and others have caused the endangerment or outright extinction of hundreds of native species. International Union for Conservation of Nature and Natural Resources (IUCN) The IUCN is one of the world’s oldest international conservation organizations. It was established in Fountainbleau, France, on October 5, 1947. It is a worldwide alliance of governments, government agencies, and nongovernmental organizations. Working with scientists and experts, the IUCN tries to encourage and assist nations and societies around the world to conserve nature and to use natural resources wisely. At present, IUCN members represent 74 governments, 105 government agencies, and more than 700 nongovernmental organizations. The IUCN has six volunteer commissions. The largest and most active of these is the Species Survival Commission (SSC). The mission of the SSC is to conserve biological diversity by developing programs that help save, restore, and manage species and their habitats. One of the many activities of the SSC is the production of the IUCN Red List of Threatened Animalsand the IUCN Red List of Threatened Plants.These publications, which have provided the foundation for Endangered Species, present scientifically based information on the status of threatened species around the world. Species are classified according to their existence in the wild and the current threats to that existence. The categories differ slightly between animals and plants. IUCN Red List categories The IUCN Red List of Threatened Animals places threatened animals into one of nine categories: • Extinct: A species that no longer exists anywhere around the world. • Extinct in the wild: A species that no longer exists in the wild, but exists in captivity or in an area well outside its natural range. • Critically endangered: A species that is facing an extremely high risk of extinction in the wild in the immediate future. • Endangered: A species that is facing a high risk of extinction in the wild in the near future. • Vulnerable: A species that is facing a high risk of extinction in the wild in the medium- term future. 6 • Lower risk: Conservation dependent: A species that is currently the focus of a conservation program. If the program is halted, the species would suffer and wouldqualify for one of the threatened categories above within a period of five years. • Lower risk: Near threatened: A species that does not qualify for Conservation Dependent status, but is close to qualifying for Vulnerable status. • Lower risk: Least concern: A species that qualifies for neither Conservation Dependent status or Near Threatened status. • Data deficient: A species on which there is little information to assess its risk of extinction. Because of the possibility that future research will place the species in a threatened category, more information is required. The IUCN Red List of Threatened Plants places threatened plants into one of six categories: • Extinct: A species that no longer exists anywhere around the world. • Extinct/Endangered: A species that is considered possibly to be extinct in the wild. •Endangered: A species that is in immediate danger of extinction if the factors threatening it continue. •Vulnerable: A species that will likely become endangered if the factors threatening it continue. •Rare: A species with a small world population that is currently neither endangered nor threatened, but is at risk. •Indeterminate: A species that is threatened, but on which
Recommended publications
  • Sustentable De Especies De Tarántula
    Plan de acción de América del Norte para un comercio sustentable de especies de tarántula Comisión para la Cooperación Ambiental Citar como: CCA (2017), Plan de acción de América del Norte para un comercio sustentable de especies de tarántula, Comisión para la Cooperación Ambiental, Montreal, 48 pp. La presente publicación fue elaborada por Rick C. West y Ernest W. T. Cooper, de E. Cooper Environmental Consulting, para el Secretariado de la Comisión para la Cooperación Ambiental. La información que contiene es responsabilidad de los autores y no necesariamente refleja los puntos de vista de los gobiernos de Canadá, Estados Unidos o México. Se permite la reproducción de este material sin previa autorización, siempre y cuando se haga con absoluta precisión, su uso no tenga fines comerciales y se cite debidamente la fuente, con el correspondiente crédito a la Comisión para la Cooperación Ambiental. La CCA apreciará que se le envíe una copia de toda publicación o material que utilice este trabajo como fuente. A menos que se indique lo contrario, el presente documento está protegido mediante licencia de tipo “Reconocimiento – No comercial – Sin obra derivada”, de Creative Commons. Detalles de la publicación Categoría del documento: publicación de proyecto Fecha de publicación: mayo de 2017 Idioma original: inglés Procedimientos de revisión y aseguramiento de la calidad: Revisión final de las Partes: abril de 2017 QA311 Proyecto: Fortalecimiento de la conservación y el aprovechamiento sustentable de especies listadas en el Apéndice II de la
    [Show full text]
  • Lab 8: Arthropoda OEB 51 Lab 8: Arthropoda
    Lab 8: Arthropoda OEB 51 Lab 8: Arthropoda 6 April 2016 ATTENTION: Today we will be examining several preserved specimens from along the arthropod diversity and some exciting live specimens that you have not seen in the fieldtrip! Please keep all preserved specimens submerged. Examine using forceps and probes – be careful not to damage or remove the limbs of any specimen. And remember to return the specimen to its original spot in the lateral bench so your friends can find the animals properly labeled. • For each specimen, even when specific instructions are not given, make detailed observations and drawings and take notes on important characters in the evolution of arthropods, such as tagmata and adaptations to the specific environment where the organism lives. 1 Lab 8: Arthropoda OEB 51 Myriapoda With these living myriapods, take the opportunity to make a few notes on behavior – locomotory, hygienic (they frequently clean their antennae). CHOOSE ONE • Chilopoda (live) Do not handle these centipedes directly, as they are venomous (not deadly, but still). Watch these animals move, but don’t let them escape! Try to draw if you can. Compare to the large, preserved Scolopendra gigantea (MCZ specimen). Draw from the preserved for more morphological details. • Diplopoda (live) Contrary to centipedes, millipedes are docile (but they have deterrent substances, like cyanide compounds, which you might be able to smell after handling the specimens). Observe their movement. Make a sketch of the whole body and drawings of specific parts in more detail. • What is the most conspicuous difference between these two groups of myriapods? 2 Lab 8: Arthropoda OEB 51 Pycnogonida • Colossendeis colossea (Museum specimens, handle with care) • What characteristics of pycnogonids are not found in other arthropods? 3 Lab 8: Arthropoda OEB 51 Chelicerata • Xiphosura – Limulus (horseshoe crab).
    [Show full text]
  • Research Article Extinctions of Late Ice Age Cave Bears As a Result of Climate/Habitat Change and Large Carnivore Lion/Hyena/Wolf Predation Stress in Europe
    Hindawi Publishing Corporation ISRN Zoology Volume 2013, Article ID 138319, 25 pages http://dx.doi.org/10.1155/2013/138319 Research Article Extinctions of Late Ice Age Cave Bears as a Result of Climate/Habitat Change and Large Carnivore Lion/Hyena/Wolf Predation Stress in Europe Cajus G. Diedrich Paleologic, Private Research Institute, Petra Bezruce 96, CZ-26751 Zdice, Czech Republic Correspondence should be addressed to Cajus G. Diedrich; [email protected] Received 16 September 2012; Accepted 5 October 2012 Academic Editors: L. Kaczmarek and C.-F. Weng Copyright © 2013 Cajus G. Diedrich. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Predation onto cave bears (especially cubs) took place mainly by lion Panthera leo spelaea (Goldfuss),asnocturnalhuntersdeep in the dark caves in hibernation areas. Several cave bear vertebral columns in Sophie’s Cave have large carnivore bite damages. Different cave bear bones are chewed or punctured. Those lets reconstruct carcass decomposition and feeding technique caused only/mainlybyIceAgespottedhyenasCrocuta crocuta spelaea, which are the only of all three predators that crushed finally the long bones. Both large top predators left large tooth puncture marks on the inner side of cave bear vertebral columns, presumably a result of feeding first on their intestines/inner organs. Cave bear hibernation areas, also demonstrated in the Sophie’s Cave, were far from the cave entrances, carefully chosen for protection against the large predators. The predation stress must have increased on the last and larger cave bear populations of U.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Tarantulas and Social Spiders
    Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences.
    [Show full text]
  • Frequency of Pathology in a Large Natural Sample from Natural Trap
    Reumatismo, 2003; 55(1):58-65 RUBRICA DALLA RICERCA ALLA PRATICA Frequency of pathology in a large natural sample from Natural Trap Cave with special remarks on erosive disease in the Pleistocene La patologia osteoarticolare, con particolare riguardo a quella di tipo erosivo, nel Pleistocene: studio di un campione di reperti paleopatologici provenienti dalla Natural Trap Cave (Wyoming, USA) B.M. Rothschild1, L.D. Martin2 1The Arthritis Center of Northeast Ohio, University of Kansas Museum of Natural History, Carnegie Museum of Natural History, Northeastern Ohio Universities College of Medicine and University of Akron; 2Museum of Natural History and Department of Systematics and Ecology, University of Kansas, Lawrence, Kansas 66045 RIASSUNTO Nel presente studio vengono riportati i rilievi paleopatologici, con particolare riguardo alla presenza di artrite ero- siva, di osteoartrosi, di DISH , nonché ai segni di danno della dentizione, relativi ad un’ampia popolazione di mam- miferi, i cui resti (più di 30.000 ossa di 24 specie diverse) sono stati ritrovati nella Natural Trap Cave, Wyoming, USA. L’evidenza di artrite erosiva è confinata ai bovidi, Bison, Ovis e Bootherium, fatto osservabile anche in bisonti del tardo Pleistocene ritrovati nel Kansas (Twelve Mile Creek) e in un’altra località del Wisconsin, riferibile cronologi- camente al primo Olocene. Questi dati, ovvero la restrizione di tali segni di patologia articolare ad un singolo gene- re animale (Bovidi) e ad un determinato periodo storico, rende plausibile l’ipotesi che un agente patogeno, identifi- cabile col Mycobacterium tubercolosis, possa essere stato implicato nella genesi dell’artrite erosiva. Osteoartrosi e DISH sono risultate poco rappresentate nella popolazione animale della Natural Trap Cave, anche se il genere Bi- son ha dimostrato una discreta prevalenza di segni di osteoartrosi.
    [Show full text]
  • Māhā'ulepū, Island of Kaua'i Reconnaissance Survey
    National Park Service U.S. Department of the Interior Pacific West Region, Honolulu Office February 2008 Māhā‘ulepū, Island of Kaua‘i Reconnaissance Survey THIS PAGE INTENTIONALLY LEFT BLANK TABLE OF CONTENTS 1 SUMMARY………………………………………………………………………………. 1 2 BACKGROUND OF THE STUDY……………………………………………………..3 2.1 Background of the Study…………………………………………………………………..……… 3 2.2 Purpose and Scope of an NPS Reconnaissance Survey………………………………………4 2.2.1 Criterion 1: National Significance………………………………………………………..4 2.2.2 Criterion 2: Suitability…………………………………………………………………….. 4 2.2.3 Criterion 3: Feasibility……………………………………………………………………. 4 2.2.4 Criterion 4: Management Options………………………………………………………. 4 3 OVERVIEW OF THE STUDY AREA…………………………………………………. 5 3.1 Regional Context………………………………………………………………………………….. 5 3.2 Geography and Climate…………………………………………………………………………… 6 3.3 Land Use and Ownership………………………………………………………………….……… 8 3.4. Maps……………………………………………………………………………………………….. 10 4 STUDY AREA RESOURCES………………………………………..………………. 11 4.1 Geological Resources……………………………………………………………………………. 11 4.2 Vegetation………………………….……………………………………………………...……… 16 4.2.1 Coastal Vegetation……………………………………………………………………… 16 4.2.2 Upper Elevation…………………………………………………………………………. 17 4.3 Terrestrial Wildlife………………..........…………………………………………………………. 19 4.3.1 Birds……………….………………………………………………………………………19 4.3.2 Terrestrial Invertebrates………………………………………………………………... 22 4.4 Marine Resources………………………………………………………………………...……… 23 4.4.1 Large Marine Vertebrates……………………………………………………………… 24 4.4.2 Fishes……………………………………………………………………………………..26
    [Show full text]
  • Figurative and Decorative Art of Kostenki: Chronological and Cultural Differentiation
    CLOTTES J. (dir.) 2012. — L’art pléistocène dans le monde / Pleistocene art of the world / Arte pleistoceno en el mundo Actes du Congrès IFRAO, Tarascon-sur-Ariège, septembre 2010 – Symposium « Art mobilier pléistocène » Figurative and decorative art of Kostenki: chronological and cultural differentiation Andrei A. SINITSYN* To the memory of N.D. Praslov The very high concentration of open-air sites within a small territory is one of the main characteristics of the Palaeolithic group of Kostenki. As a matter of fact, twenty- six Palaeolithic sites are known from the territory of the actual villages of Kostenki and Borshchevo: almost half of them are stratified sites, containing up to ten archaeological layers (Fig. 1). Fig. 1. Kostenki-Borshchevo locality of Palaeolithic sites. A. Geographic position. * Institute for the History of Material Culture, Russian Academy of Sciences, Dvortsovaia nab., 18, Saint- Petersburg 191186 Russia – [email protected] Symposium Art mobilier In general, we deal here with the remnants of over sixty well stratified settlements. Equal high concentrations of Palaeolithic sites are known from the locality of Les Eyzies (Dordogne, France) with its numerous stratified deposits in caves and rock- shelters and from the slopes of the Pavlov hill in Moravia with a series of open-air sites. However, a second characteristics associated with the group of Kostenki does not present any analogies: the record of the assemblages in this area allows to construct a specific model of the cultural evolution during the Palaeolithic period that differs significantly from the models proposed in other eastern European regions, for example the Middle Dniepr region, the Pontic steppe, the Dniestr, the North-East and probably the Urals (Sinitsyn 2010b).
    [Show full text]
  • Cave Bear, Cave Lion and Cave Hyena Skulls from The
    COBISS: 1.01 CAVE BEAR, CAVE LION AND CAVE HYENA SKULLS FROM THE PUBLIC COLLECTION AT THE HUMBOLDT MUSEUM IN BERLIN Lobanje jamskega medveda, jamskega leva in jamske hijene iz zbirke Humboldtovega muzeja V Berlinu Stephan KEMPE1 & Doris DÖPPES2 Abstract UDC 569(069.5)(430 Berlin) Izvleček UDK 569(069.5)(430 Berlin) 069.02:569(430 Berlin) 069.02:569(430 Berlin) Stephan Kempe and Doris Döppes: Cave bear, cave lion and Stephan Kempe and Doris Döppes: Lobanje jamskega medve- cave hyena skulls from the public collection at the Humboldt da, jamskega leva in jamske hijene iz zbirke Humboldtovega Museum in Berlin muzeja v Berlinu The Linnean binomial system rests on the description of a ho- Linnejev binomski sistem poimenovanja temelji na opisu ho- lotype. The first fossil vertebrate species named accordingly was lotipa. Jamski medved je bil prva vrsta fosilnih vretenčarjev za- Ursus spelaeus, the cave bear. It was described by Rosenmüller pisana v tem sistemu. V svoji disertaciji ga je opisal Rosenmül- in 1794 in his dissertation using a skull from the Zoolithen Cave ler leta 1794, pri čemer je uporabil okostje iz jame Zoolithen (Gailenreuth Cave) in Frankonia, Germany. The whereabouts of (Gailenreuthska jama) v Frankoniji. Okoliščine oziroma usoda this skull is unknown. In the Humboldt Museum, Berlin, histor- tega skeleta je neznana. Humboldtov muzej v Berlinu hrani tri ic skulls of the three “spelaeus species” (cave bear, cave lion, cave fosilne vrste jamskih vretenčarjev: jamskega medveda, hijeno in hyena) are displayed. We were allowed to investigate them and jamskega leva. Omogočeno nam je bilo raziskovanje teh okostij further material in the Museum’s archive in an attempt to locate in ostalega arhivskega gradiva, pri čemer je bil naš namen od- the holotype skull.
    [Show full text]
  • Human Origin Sites and the World Heritage Convention in Eurasia
    World Heritage papers41 HEADWORLD HERITAGES 4 Human Origin Sites and the World Heritage Convention in Eurasia VOLUME I In support of UNESCO’s 70th Anniversary Celebrations United Nations [ Cultural Organization Human Origin Sites and the World Heritage Convention in Eurasia Nuria Sanz, Editor General Coordinator of HEADS Programme on Human Evolution HEADS 4 VOLUME I Published in 2015 by the United Nations Educational, Scientific and Cultural Organization, 7, place de Fontenoy, 75352 Paris 07 SP, France and the UNESCO Office in Mexico, Presidente Masaryk 526, Polanco, Miguel Hidalgo, 11550 Ciudad de Mexico, D.F., Mexico. © UNESCO 2015 ISBN 978-92-3-100107-9 This publication is available in Open Access under the Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) license (http://creativecommons.org/licenses/by-sa/3.0/igo/). By using the content of this publication, the users accept to be bound by the terms of use of the UNESCO Open Access Repository (http://www.unesco.org/open-access/terms-use-ccbysa-en). The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The ideas and opinions expressed in this publication are those of the authors; they are not necessarily those of UNESCO and do not commit the Organization. Cover Photos: Top: Hohle Fels excavation. © Harry Vetter bottom (from left to right): Petroglyphs from Sikachi-Alyan rock art site.
    [Show full text]
  • Husbandry Manual for Exotic Tarantulas
    Husbandry Manual for Exotic Tarantulas Order: Araneae Family: Theraphosidae Author: Nathan Psaila Date: 13 October 2005 Sydney Institute of TAFE, Ultimo Course: Zookeeping Cert. III 5867 Lecturer: Graeme Phipps Table of Contents Introduction 6 1 Taxonomy 7 1.1 Nomenclature 7 1.2 Common Names 7 2 Natural History 9 2.1 Basic Anatomy 10 2.2 Mass & Basic Body Measurements 14 2.3 Sexual Dimorphism 15 2.4 Distribution & Habitat 16 2.5 Conservation Status 17 2.6 Diet in the Wild 17 2.7 Longevity 18 3 Housing Requirements 20 3.1 Exhibit/Holding Area Design 20 3.2 Enclosure Design 21 3.3 Spatial Requirements 22 3.4 Temperature Requirements 22 3.4.1 Temperature Problems 23 3.5 Humidity Requirements 24 3.5.1 Humidity Problems 27 3.6 Substrate 29 3.7 Enclosure Furnishings 30 3.8 Lighting 31 4 General Husbandry 32 4.1 Hygiene and Cleaning 32 4.1.1 Cleaning Procedures 33 2 4.2 Record Keeping 35 4.3 Methods of Identification 35 4.4 Routine Data Collection 36 5 Feeding Requirements 37 5.1 Captive Diet 37 5.2 Supplements 38 5.3 Presentation of Food 38 6 Handling and Transport 41 6.1 Timing of Capture and handling 41 6.2 Catching Equipment 41 6.3 Capture and Restraint Techniques 41 6.4 Weighing and Examination 44 6.5 Transport Requirements 44 6.5.1 Box Design 44 6.5.2 Furnishings 44 6.5.3 Water and Food 45 6.5.4 Release from Box 45 7 Health Requirements 46 7.1 Daily Health Checks 46 7.2 Detailed Physical Examination 47 7.3 Chemical Restraint 47 7.4 Routine Treatments 48 7.5 Known Health Problems 48 7.5.1 Dehydration 48 7.5.2 Punctures and Lesions 48 7.5.3
    [Show full text]
  • 2003-2004 Recovery Report to Congress
    U.S. Fish & Wildlife Service Report to Congress on the Recovery of Threatened and Endangered Species Fiscal Years 2003-2004 U.S. Fish & Wildlife Service Endangered Species Program www.fws.gov/endangered December 2006 The U.S. Fish and Wildlife Service is responsible under the Endangered Species Act for conserving and recovering our nation’s rarest plant and animal species and their habitats, working in cooperation with other public and private partners. From the Director Endangered Species Program Contacts Do you want more information on a particular threatened or endangered species or recovery effort near you? Please contact the Regional Office that covers the This 2004 report provides an update on the State(s) you are interested in. If they cannot help you, they will gladly direct you recovery of threatened and endangered species to the nearest Service office. for the period between October 1, 2002, and Region Six — Mountain-Prairie September 30, 2004, and chronicles the progress Washington D.C. Office Region Four — Southeast 134 Union Boulevard, Suite 650 of efforts by the Fish and Wildlife Service and Endangered Species Program 1875 Century Boulevard, Suite 200 Lakewood, CO 80228 the many partners involved in recovery efforts. 4401 N. Fairfax Drive, Room 420 Atlanta, GA 30345 http://mountain-prairie.fws.gov/endspp Arlington, VA 22203 http://www.fws.gov/southeast/es/ During this time, recovery efforts enabled three http://www.fws.gov/endangered Chief, Division of Ecological Services: species to be removed from the Endangered and Chief,
    [Show full text]