Tarantulas Is a Notoriously Confusing Issue Especially When the Systematics of Tarantulas Is Constantly Under Review by the Experts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dna Sequence Data Indicates the Polyphyl Y of the Family Ctenidae (Araneae )
1993. The Journal of Arachnology 21 :194–201 DNA SEQUENCE DATA INDICATES THE POLYPHYL Y OF THE FAMILY CTENIDAE (ARANEAE ) Kathrin C . Huber', Thomas S . Haider2, Manfred W . Miiller2, Bernhard A . Huber' , Rudolf J. Schweyen2, and Friedrich G . Barth' : 'Institut fair Zoologie, Althanstr . 14; 1090 Wien; and 2lnstitut fur Mikrobiologie and Genetik; Dr. Bohrgasse 9 ; 1030 Wien (Vienna), Austria . ABSTRACT. Mitochondrial DNA fragments comprising more than 400 bases of the 16S rDNA from nine spider species have been sequenced: Cupiennius salei, C. getazi, C. coccineus and Phoneutria boliviensis (Ctenidae), Pisaura mirabilis, Dolomedes fimbriatus (Pisauridae), Pardosa agrestis (Lycosidae), Clubiona pallidula (Clubi- onidae) and Ryuthela nishihirai (syn. Heptathela nishihirai; Heptathelidae: Mesothelae). Sequence divergence ranges from 3–4% among Cupiennius species and up to 36% in pairwise comparisons of the more distantly related spider DNAs. Maximally parsimonious gene trees based on these sequences indicate that Phoneutri a and Cupiennius are the most distantly related species of the examined Lycosoidea . The monophyly of the family Ctenidae is therefore doubted ; and a revision of the family, which should include DNA-data, is needed . Cupiennius salei (Ctenidae) is one of the most get a high copy number of the DNA segment of extensively studied species of spiders (see Lach - interest. The PCR depends on the availability of muth et al. 1985). The phylogeny of the Ctenidae , oligonucleotides that specifically bind to the a mainly South and Central American family, i s flanking sequences of this DNA segment. These poorly understood ; and systematists propose oligonucleotides serve as primers for a polymer- highly contradicting views on its classification ization reaction that copies the segment in vitro. -
Birth of Maria Sibylla Merian Naturalist and Artist Maria Sibylla Merian Was Born on April 2, 1647, in Frankfurt-Am- Main, Germany
This Day in History… April 2, 1647 Birth of Maria Sibylla Merian Naturalist and artist Maria Sibylla Merian was born on April 2, 1647, in Frankfurt-am- Main, Germany. Merian spent her life studying insects and plants and capturing them in beautifully detailed paintings and drawings. Merian’s father was an engraver and publisher, but he died when she was three. Her mother remarried artist Jacob Marrel in 1651 and he encouraged her to paint and draw. When she was 13, Merian did her first painting of plants and insects based on live specimens she collected. She was fascinated by caterpillars and collected all she could find so she could witness how they changed into beautiful butterflies and moths. Merian married her stepfather’s apprentice, Johann Andreas Graff, in 1665 and they moved to Nuremberg in 1670. She The set of four Merian Botanicals stamps were continued to paint and design embroidery. She also gave drawing issued for Women’s lessons to the daughters of wealthy families. This helped raise her History Month in 1997. social standing while also giving her access to some of the area’s finest gardens, where she could continue to collect and study insects. While other female artists included insects in their paintings of flowers, few others bred or studied them like Merian did. She published her first book on insects in 1679, which focused on their metamorphosis. At the time, little was known about this process. Some This stamp pictures a people wrote about it, but most people believed they were “born of flowering pineapple mud” – having been born spontaneously. -
Amblypygids : Model Organisms for the Study of Arthropod Navigation
PERSPECTIVE published: 08 March 2016 doi: 10.3389/fnbeh.2016.00047 Amblypygids: Model Organisms for the Study of Arthropod Navigation Mechanisms in Complex Environments? Daniel D. Wiegmann 1,2*, Eileen A. Hebets 3, Wulfila Gronenberg 4, Jacob M. Graving 1 and Verner P. Bingman 2,5 1 Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA, 2 J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA, 3 School of Biological Sciences, University of Nebraska, Lincoln, NE, USA, 4 Department of Neuroscience, University of Arizona, Tucson, AZ, USA, 5 Department of Psychology, Bowling Green State University, Bowling Green, OH, USA Navigation is an ideal behavioral model for the study of sensory system integration and the neural substrates associated with complex behavior. For this broader purpose, however, it may be profitable to develop new model systems that are both tractable and sufficiently complex to ensure that information derived from a single sensory modality and path integration are inadequate to locate a goal. Here, we discuss some recent discoveries related to navigation by Edited by: amblypygids, nocturnal arachnids that inhabit the tropics and sub-tropics. Nocturnal Marie Dacke, Lund University, Sweden displacement experiments under the cover of a tropical rainforest reveal that these Reviewed by: animals possess navigational abilities that are reminiscent, albeit on a smaller Uwe Homberg, spatial scale, of true-navigating vertebrates. Specialized legs, called antenniform Philipps-Universität Marburg, Germany legs, which possess hundreds of olfactory and tactile sensory hairs, and vision Keram Pfeiffer, appear to be involved. These animals also have enormous mushroom bodies, Philipps-Universität Marburg, Germany higher-order brain regions that, in insects, integrate contextual cues and may *Correspondence: be involved in spatial memory. -
Sustentable De Especies De Tarántula
Plan de acción de América del Norte para un comercio sustentable de especies de tarántula Comisión para la Cooperación Ambiental Citar como: CCA (2017), Plan de acción de América del Norte para un comercio sustentable de especies de tarántula, Comisión para la Cooperación Ambiental, Montreal, 48 pp. La presente publicación fue elaborada por Rick C. West y Ernest W. T. Cooper, de E. Cooper Environmental Consulting, para el Secretariado de la Comisión para la Cooperación Ambiental. La información que contiene es responsabilidad de los autores y no necesariamente refleja los puntos de vista de los gobiernos de Canadá, Estados Unidos o México. Se permite la reproducción de este material sin previa autorización, siempre y cuando se haga con absoluta precisión, su uso no tenga fines comerciales y se cite debidamente la fuente, con el correspondiente crédito a la Comisión para la Cooperación Ambiental. La CCA apreciará que se le envíe una copia de toda publicación o material que utilice este trabajo como fuente. A menos que se indique lo contrario, el presente documento está protegido mediante licencia de tipo “Reconocimiento – No comercial – Sin obra derivada”, de Creative Commons. Detalles de la publicación Categoría del documento: publicación de proyecto Fecha de publicación: mayo de 2017 Idioma original: inglés Procedimientos de revisión y aseguramiento de la calidad: Revisión final de las Partes: abril de 2017 QA311 Proyecto: Fortalecimiento de la conservación y el aprovechamiento sustentable de especies listadas en el Apéndice II de la -
The First Haemolymph Analysis of Nhandu Chromatus Tarantulas — Biochemical Parameters
DOI: 10.1515/FV-2016-0029 FOLIA VETERINARIA, 60, 3: 47—53, 2016 THE FIRST HAEMOLYMPH ANALYSIS OF NHANDU CHROMATUS TARANTULAS — BIOCHEMICAL PARAMETERS Muir, R. E., Halán, M. Department of Parasitology, University of Veterinary Medicine and Pharmacy Komenskeho 73, 041 81 Košice The Slovak Republic [email protected] ABSTRACT originally proposed for this investigation are based on 2 separate feeding regimes, differing in terms of feed Tarantulas are a relatively unstudied category of quantity and the effect on the aforementioned biochemi- invertebrate which are popular with hobbyists and in- cal parameters. Upon receipt of the biochemical results creasingly used in laboratory research. As their pres- from the first sampling, it became apparent that unex- ence in the veterinary setting is limited, very little is pected correlations could be made between the stage of known about the biochemistry of their haemolymph as ecdysis, susceptibility to anaesthesia and the total pro- obtained by in house sampling and analysis. A handful tein levels in the haemolymph. Those that were due to of studies have been performed to attempt to establish shed imminently, indicated by cessation in feeding, had a normal range for certain parameters in healthy mem- recognisably and significantly higher total protein levels bers of a few particular species, but that is the extent of and reached a better level of anaesthesia in less time. Ad- the current research. In this study, 12 tarantulas of the ditional samplings are planned in the future to specify Nhandu chromatus species purchased as immature sib- more definitive parameters. The observations made in- lings and kept under standardised conditions for 2.5 advertently so far could constitute novel information years were anaesthetised with isoflurane and had 0.2 ml and be practically useful to tarantula enthusiasts and of haemolymph sampled and analysed for: total protein, anaesthetists, and therefore, potentially of high clinical glucose, calcium, phosphorous and uric acid. -
By Lasiodora Klugi (Aranea: Theraphosidae) in the Semiarid Caatinga Region of Northeastern Brazil
Predation on Tropidurus hispidus (Squamata: Tropiduridae) by Lasiodora klugi (Aranea: Theraphosidae) in the semiarid caatinga region of northeastern Brazil Vieira, W.L.S. et al. Biota Neotrop. 2012, 12(4): 000-000. On line version of this paper is available from: http://www.biotaneotropica.org.br/v12n4/en/abstract?short-communication+bn02112042012 A versão on-line completa deste artigo está disponível em: http://www.biotaneotropica.org.br/v12n4/pt/abstract?short-communication+bn02112042012 Received/ Recebido em 31/07/12 - Revised/ Versão reformulada recebida em 08/11/12 - Accepted/ Publicado em 16/11/12 ISSN 1676-0603 (on-line) Biota Neotropica is an electronic, peer-reviewed journal edited by the Program BIOTA/FAPESP: The Virtual Institute of Biodiversity. This journal’s aim is to disseminate the results of original research work, associated or not to the program, concerned with characterization, conservation and sustainable use of biodiversity within the Neotropical region. Biota Neotropica é uma revista do Programa BIOTA/FAPESP - O Instituto Virtual da Biodiversidade, que publica resultados de pesquisa original, vinculada ou não ao programa, que abordem a temática caracterização, conservação e uso sustentável da biodiversidade na região Neotropical. Biota Neotropica is an eletronic journal which is available free at the following site http://www.biotaneotropica.org.br A Biota Neotropica é uma revista eletrônica e está integral e gratuitamente disponível no endereço http://www.biotaneotropica.org.br Biota Neotrop., vol. 12, no. 4 Predation -
Psalmopoeus Cambridgei (Trinidad Chevron Tarantula)
UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Psalmopoeus cambridgei (Trinidad Chevron Tarantula) Order: Araneae (Spiders) Class: Arachnida (Spiders and Scorpions) Phylum: Arthropoda (Arthropods) Fig. 1. Trinidad chevron tarantula, Psalmopoeus cambridgei. [http://www.exoreptiles.com/my/index.php?main_page=product_info&products_id=1127, downloaded 30 April 2015] TRAITS. A large spider, maximum size 11-14cm across the legs, with chevrons (V-shaped marks) on the abdomen (Fig. 1). Males are either grey or brown in colour, and females vary from green to brown with red or orange markings on the legs (Wikipedia, 2013). The Trinidad chevron tarantula is hairy in appearance, has eight legs, and its body is divided into two parts, the cephalothorax and the abdomen which are connected by a pedicel that looks like a narrow stalk (Fig. 2). The cephalothorax has eight legs plus a pair of smaller leg-like appendages (pedipalps) used to catch prey; in males these have palpal bulbs attached to the ends for holding sperm (Fig. 3). The mouth has chelicerae with fangs at the ends and swollen bases that house the venom glands, and there are eight small eyes (Foelix, 2010). However, even with eight eyes the Trinidad chevron tarantula can hardly see and so depends mostly on touch, smell, and taste to find its way. There are organs on their feet to detect changes in the environment and special type of hair on their legs and pedipalps for taste. The second part, the abdomen attached to a narrow waist, can UWI The Online Guide to the Animals of Trinidad and Tobago Ecology expand and contract to accommodate food and eggs; two pairs of spinnerets are located at the end of the abdomen (Fig. -
Lab 8: Arthropoda OEB 51 Lab 8: Arthropoda
Lab 8: Arthropoda OEB 51 Lab 8: Arthropoda 6 April 2016 ATTENTION: Today we will be examining several preserved specimens from along the arthropod diversity and some exciting live specimens that you have not seen in the fieldtrip! Please keep all preserved specimens submerged. Examine using forceps and probes – be careful not to damage or remove the limbs of any specimen. And remember to return the specimen to its original spot in the lateral bench so your friends can find the animals properly labeled. • For each specimen, even when specific instructions are not given, make detailed observations and drawings and take notes on important characters in the evolution of arthropods, such as tagmata and adaptations to the specific environment where the organism lives. 1 Lab 8: Arthropoda OEB 51 Myriapoda With these living myriapods, take the opportunity to make a few notes on behavior – locomotory, hygienic (they frequently clean their antennae). CHOOSE ONE • Chilopoda (live) Do not handle these centipedes directly, as they are venomous (not deadly, but still). Watch these animals move, but don’t let them escape! Try to draw if you can. Compare to the large, preserved Scolopendra gigantea (MCZ specimen). Draw from the preserved for more morphological details. • Diplopoda (live) Contrary to centipedes, millipedes are docile (but they have deterrent substances, like cyanide compounds, which you might be able to smell after handling the specimens). Observe their movement. Make a sketch of the whole body and drawings of specific parts in more detail. • What is the most conspicuous difference between these two groups of myriapods? 2 Lab 8: Arthropoda OEB 51 Pycnogonida • Colossendeis colossea (Museum specimens, handle with care) • What characteristics of pycnogonids are not found in other arthropods? 3 Lab 8: Arthropoda OEB 51 Chelicerata • Xiphosura – Limulus (horseshoe crab). -
Pet Health and Happiness Is Our Primary Concern
Pet Health and Happiness Is Our Primary Concern CONCISE CARE SHEETS PINK-TOES find more caresheets at nwzoo.com/care AND TREE SPIDERS INTRO QUICK TIPS PSALMOPOEUS The tropics of the New World or Americas are home to many popular The Trinidad Chevron (Psalmopoeus tree-dwelling tarantulas. These include a wide variety of “Pink-toes” of the » 76-82°F with a drop in tem- cambridgei] and Venezuelan Suntiger (P. genus Avicularia, the closely related Antilles “pink-toe” or tree tarantula perature at night (72-76ºF) irminia) are the best known members of (Caribena versicolor), the lightning-fast and agile Tapinauchenius and » Requires 70-80% humidity, a genus popular with tarantula keepers. a handful of species of Psalmopoeus like the Venezuelan Suntiger and but also good ventilation. Both are fairly large (P. cambridgei can Trinidad Chevron. » Most species will eat a reach a legspan of seven inches) and variety of arthropods and make exceptional display subjects for These tarantulas are found in a variety of subtropical and tropical habitats, small vertebrates yet thrive the spacious vertically-oriented forest but their general care is similar enough to cover them all in a single care on roaches or crickets in terrarium. Psalmopoeus tarantulas are sheet. Optimal captive husbandry is focused on providing warm, humid captivity. very hardy and often more forgiving of air in an enclosure that allows for sufficient ventilation. It is a balancing drier conditions than other New World act of sorts, but the conscientious and cautious keeper soon learns to err arboreal tarantulas. Both the Chevron on the side of good airflow as it is easier to add moisture than to correct and Suntiger appreciate a couple of layers of vertical cork bark slabs to overly damp or stagnant conditions. -
Role of the Different Eyes in the Visual Odometry in the Wolf Spider Lycosa Tarantula (Araneae, Lycosidae) Joaquin Ortega-Escobar* and Miguel A
© 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 259-265 doi:10.1242/jeb.145763 RESEARCH ARTICLE Role of the different eyes in the visual odometry in the wolf spider Lycosa tarantula (Araneae, Lycosidae) Joaquin Ortega-Escobar* and Miguel A. Ruiz ABSTRACT et al., 2000). When the grating was placed in the ventral visual field, The wolf spider Lycosa tarantula returns home by means of path Ronacher and Wehner (1995) found a very small effect of optic flow integration. Previous studies demonstrated: (i) that the angular on the distance walked when the visual patterns they used (e.g. component of the outbound run is measured using a polarized-light gratings of black-and-white stripes) were moved in the direction of compass associated with the anterior median eyes; (ii) changes in insect walking or in the opposite direction. However, when the direction of the substratum are detected by the anterior lateral eyes pattern was stationary and the ventral halves of the eyes were (ALEs); and (iii) in relation to the linear component of the outbound covered, the mean traveled distance was not statistically different run, an increase of optic flow, in either the lateral or ventral fields of from the distance walked by ants without eye covers (Ronacher and view, caused spiders to search for the burrow at a point nearer to the Wehner, 1995). Wittlinger and Wolf (2013) investigated the goal. However, the role of the secondary eyes [ALEs, posterior lateral possible interactions of the two mechanisms by which deserts eyes (PLEs) and posterior median eyes (PMEs)] in the perception of ants estimate distance: stride integration and ventral optic flow. -
Toxins-67579-Rd 1 Proofed-Supplementary
Supplementary Information Table S1. Reviewed entries of transcriptome data based on salivary and venom gland samples available for venomous arthropod species. Public database of NCBI (SRA archive, TSA archive, dbEST and GenBank) were screened for venom gland derived EST or NGS data transcripts. Operated search-terms were “salivary gland”, “venom gland”, “poison gland”, “venom”, “poison sack”. Database Study Sample Total Species name Systematic status Experiment Title Study Title Instrument Submitter source Accession Accession Size, Mb Crustacea The First Venomous Crustacean Revealed by Transcriptomics and Functional Xibalbanus (former Remipedia, 454 GS FLX SRX282054 454 Venom gland Transcriptome Speleonectes Morphology: Remipede Venom Glands Express a Unique Toxin Cocktail vReumont, NHM London SRP026153 SRR857228 639 Speleonectes ) tulumensis Speleonectidae Titanium Dominated by Enzymes and a Neurotoxin, MBE 2014, 31 (1) Hexapoda Diptera Total RNA isolated from Aedes aegypti salivary gland Normalized cDNA Instituto de Quimica - Aedes aegypti Culicidae dbEST Verjovski-Almeida,S., Eiglmeier,K., El-Dorry,H. etal, unpublished , 2005 Sanger dideoxy dbEST: 21107 Sequences library Universidade de Sao Paulo Centro de Investigacion Anopheles albimanus Culicidae dbEST Adult female Anopheles albimanus salivary gland cDNA library EST survey of the Anopheles albimanus transcriptome, 2007, unpublished Sanger dideoxy Sobre Enfermedades dbEST: 801 Sequences Infeccionsas, Mexico The salivary gland transcriptome of the neotropical malaria vector National Institute of Allergy Anopheles darlingii Culicidae dbEST Anopheles darlingi reveals accelerated evolution o genes relevant to BMC Genomics 10 (1): 57 2009 Sanger dideoxy dbEST: 2576 Sequences and Infectious Diseases hematophagyf An insight into the sialomes of Psorophora albipes, Anopheles dirus and An. Illumina HiSeq Anopheles dirus Culicidae SRX309996 Adult female Anopheles dirus salivary glands NIAID SRP026153 SRS448457 9453.44 freeborni 2000 An insight into the sialomes of Psorophora albipes, Anopheles dirus and An. -
Inclusion of All Species in the Genus Poecilotheria in Appendix II
Prop. 11.52 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA Amendments to Appendices I and II of CITES Eleventh Meeting of the Conference of the Parties Nairobi (Kenya), April 10-20, 2000 A. PROPOSAL Inclusion of all species in the genus Poecilotheria in Appendix II. Poecilotheria spp. are arboreal tarantula spiders that occur in the eastern hemisphere. B. PROPONENT Sri Lanka and the United States of America. C. SUPPORTING STATEMENT 1. Taxonomy 1.1 Class: Arachnida 1.2 Order: Araneae 1.3 Family: Theraphosidae 1.4 Genus and species: Poecilotheria Simon, 1885 (synonym: Scurria C.L. Koch 1851) Poecilotheria fasciata (Latreille, 1804), central Sri Lanka Poecilotheria formosa Pocock, 1899, southern India Poecilotheria hillyardi from the region of Trivandrum, southern India (expected publication and validation in 2000 by P. Kirk) Poecilotheria metallica Pocock, 1899, southwestern India Poecilotheria miranda Pocock, 1900, northeastern India Poecilotheria ornata Pocock, 1899, southern Sri Lanka Poecilotheria pederseni from the region of Yala, southeastern Sri Lanka (expected publication and validation in 2000 by P. Kirk) Poecilotheria regalis Pocock, 1899, southwestern India Poecilotheria rufilata Pocock, 1899, southern India Poecilotheria smithi Kirk, 1996, southcentral Sri Lanka Poecilotheria striata Pocock, 1895, southern India Poecilotheria subfusca Pocock, 1895, southcentral Sri Lanka Poecilotheria uniformis Strand, 1913, Sri Lanka 1.5 Scientific synonyms: P. fasciata Mygale fasciata Latreille, 1804 Avicularia fasciata Lamarck,1818 Theraphosa fasciata Gistel, 1848 Scurria fasciata C.L. Koch, 1851 Lasiodora fasciata Simon, 1864 P. formosa none P. hillyard none Prop. 11.52 – p. 1 P. metallica none P. miranda none P. ornata none P. pederseni none P.