The Next Frontier for Planetary and Human Exploration

Total Page:16

File Type:pdf, Size:1020Kb

The Next Frontier for Planetary and Human Exploration comment The next frontier for planetary and human exploration The surface of Mars has been well mapped and characterized, yet the subsurface — the most likely place to fnd signs of extant or extinct life and a repository of useful resources for human exploration — remains unexplored. In the near future this is set to change. V. Stamenković, L. W. Beegle, K. Zacny, D. D. Arumugam, P. Baglioni, N. Barba, J. Baross, M. S. Bell, R. Bhartia, J. G. Blank, P. J. Boston, D. Breuer, W. Brinckerhof, M. S. Burgin, I. Cooper, V. Cormarkovic, A. Davila, R. M. Davis, C. Edwards, G. Etiope, W. W. Fischer, D. P. Glavin, R. E. Grimm, F. Inagaki, J. L. Kirschvink, A. Kobayashi, T. Komarek, M. Malaska, J. Michalski, B. Ménez, M. Mischna, D. Moser, J. Mustard, T. C. Onstott, V. J. Orphan, M. R. Osburn, J. Plaut, A.-C. Plesa, N. Putzig, K. L. Rogers, L. Rothschild, M. Russell, H. Sapers, B. Sherwood Lollar, T. Spohn, J. D. Tarnas, M. Tuite, D. Viola, L. M. Ward, B. Wilcox and R. Woolley xploration of the Martian subsurface, it would have likely been transported with habitability of Mars and the search for to depths from a few metres to many the receding groundwater towards greater biosignatures of extinct life in materials Ekilometres, offers an unprecedented depths4. In the subsurface — shielded accessible on the Martian surface. In the opportunity to answer one of the biggest from the harmful effects of ionizing search for life, extinct or extant, the Martian questions contemplated by humankind: radiation, reactive chemical oxidants and subsurface likely holds the key for answering was or is there life beyond Earth? desiccation — life could have been sustained the ultimate question of Mars exploration: Simultaneously, Mars subsurface exploration by hydrothermal activity, radiolysis, was there ever or is there still life on Mars? lays the foundation for self-sufficient degassing, and water–rock reactions as human settlements beyond our own planet found in terrestrial subsurface microbial Pristine cores for high-resolution climate and provides an emerging potential for communities5,6. Therefore, the most likely reconstruction. Beyond the search synergistic collaborations with the rising place to find biosignatures of putative modern for evidence of life, direct access to the commercial space sector and traditional day extant life is in the subsurface, where subsurface would help reconstruct the long- mining companies. Our understanding of groundwater (likely in the form of brines term climatic and geochemical evolution the Martian subsurface and the technologies containing pure water mixed with salts) could of Mars, with a level of detail and temporal for exploring it — with a dual focus on still be stable7 (see Fig. 1 for stability depth). resolution that is beyond the reach of the search for signs of extinct and extant Recent results from the Curiosity rover8 surface instruments, which typically have life, and resource characterization and suggest the preservation of complex organic to deal with samples that have been altered acquisition — have matured enough for molecules even in near-surface settings. by damaging atmospheric photochemical serious consideration as part of future However, molecular biosignatures are oxidants or solar/cosmic radiation. robotic missions to Mars. likely best preserved at depths of at least a Extended subsurface cores of lake sediments few metres, where they are shielded from or volcanic deposits would provide an The search for life leads underground ionizing radiation and reactive chemical unprecedented record of geochemical Data collected from orbiters and rovers oxidants that can obscure or destroy conditions and atmospheric composition indicate a once warmer and wetter Mars structural complexity that is indicative of dating back hundreds of millions to several that may have been supportive of life as biogenicity, independent of whether putative billion years. Deep cores of polar ice we know it1,2. Results from the MAVEN ancient Martian organisms once inhabited deposits would help reconstruct orbit-driven mission3 suggest that a significant fraction surface or subsurface environments9. Results climate excursions over shorter timescales of the Martian atmosphere was likely lost from terrestrial cratons 2.7 billion years of tens of millions of years. early in the planet’s evolution — sometime old have recently demonstrated that fluid between the Noachian and Amazonian components can be preserved in subsurface Accessing resources for human periods — which would have led to surface fracture groundwaters for billions of years10. exploration. Human exploration of Mars temperatures dropping, to an increase in The practical challenge we face on Mars is to remains a primary long-term objective for harmful radiation reaching the surface, and identify the subsurface sites that have been NASA. Relative to the Moon, Mars offers to the boundary between cryosphere and least exposed to surface conditions. more in situ resources in the form of ices, liquid groundwater moving to greater depths To date, only the Viking landers — hydrated minerals, and CO2 — enabling below the surface, where the temperature launched over forty years ago — have a more sustainable human presence that and pressure would have been high enough sought direct evidence of extant life, but would not depend heavily on frequent to sustain liquid water. they focused on the Martian surface alone. deliveries from Earth. However, to select Regardless of whether life may have ever Subsequent missions have focused instead the most advantageous site for human emerged on or below the surface of Mars, on the related question of the ancient exploration, we need to better grasp the NATURE ASTRONOMY | www.nature.com/natureastronomy comment 2 3 4 (m) Potential missions 0 0.1 1 10 10 10 10 throughout the year and more benign 1 m–kms temperatures; (2) potential chemical and Next generation particulate hazards in the subsurface; and Under demonstration (3) the local likelihood at the landing site for Drilling Demonstrated extant life (and hence also liquid water) and Penetrator to preserve signs of extinct life, to make sure >10s km MTF (G/O) we minimize possible cross-contamination ~10 km and do not alter a potential ecosystem. TEM (G) 100 m Diverse subsurface environments Sounding Surface GPR (G) While Mars subsurface exploration is still in 1–10 m SAR (O) its infancy, the little data we do have support Impactor (O) the idea of a diverse and exciting Martian So far and planned subsurface. Specifically: 100s m (broadly) (~km for ice/volcanic ash) (1) Gamma-ray spectrometers and MARSIS (O) neutron detectors on Mars Odyssey have SHARAD (O) Metres provided on a global scale the elemental InSight (G) abundances of hydrogen, iron, chlorine, ExoMars (G) silicon, potassium and thorium in the very Rimfax/Wisdom (G) cm–dm shallow Martian subsurface (cm–dm). GRS (O) (2) Orbital radars — the Mars Advanced Sounding/drilling mm–cm Radar for Subsurface and Ionosphere MERs (G) Phoenix (G) Sounding (MARSIS) on Mars Express and MSL (G) the Shallow Radar (SHARAD) on the Mars M2020 (G) John Klein Cumberland Windjana Reconnaissance Orbiter (MRO) — have Ice provided rich datasets for characterizing Confidence Hills Mojave Telegraph Peak the stratigraphy of polar regions to a depth Brine of 1–3 km. MARSIS data were recently used Buckskin Big Sky Greenhorn to establish the possibility of perchlorate- Subsurface H2O(l) containing water beneath the south polar layered deposits at a depth of 1.5 km (ref. 11). 2 3 4 0 0.1 1 10 10 10 10 (m) Data from both radars suggest the presence of relatively shallow ice deposits ISRU Life in a few non-polar regions (for example, Deuteronilus Mensae12). However, both Fig. 1 | Sounding and drilling capabilities on Mars. We plot the sounding (dashed arrows) and drilling instruments are ‘blind’ to the top ~10 m, (solid arrows) depths for missions that have already been delivered to Mars or are scheduled (navy and have poor depth perception beyond blue) versus selected potential instruments that could help explore the Martian subsurface (orange). 200 m other than through ice or volcanic ash The arrows indicate the reach of sounding and drilling (minimum and maximum). For drilling, we overburdens, and hence their effectiveness 13 show current capabilities that have been (~15 m) or are currently being demonstrated (~100 m) under is mainly limited to the poles . Hence, simulated Mars conditions, and next generation drills under development (> 1 km). O and G indicate both instruments have not been able to orbital and ground-based missions, respectively. G/O indicates that orbital and ground-based assets conclusively reveal shallow ices closer to the need to work together. MTF, magnetic transfer function; TEM, transient electromagnetics using equator or subsurface liquid water (Fig. 1). own active EM source; GPR, ground-penetrating radar; SAR, synthetic aperture radar; M2020, Mars (3) Rovers like Curiosity have directly 2020; GRS, Gamma Ray Spectrometer on Mars Odyssey; MERs, Mars Exploration Rovers Spirit and sampled the Martian subsurface down to Opportunity; MSL, Mars Science Laboratory/Curiosity rover. The arrows for MARSIS/SHARAD illustrate a depth of approximately six centimetres. a penetration depth of less than 200 m outside of ice or volcanic ash overburdens, and around 1 km in The Phoenix lander managed to scoop one such zones (mainly poles). Depths where ice (cyan), brines (pink), and pure water (blue) could occur sample from 18 cm beneath the surface.
Recommended publications
  • Mars Express Orbiter Radio Science
    MaRS: Mars Express Orbiter Radio Science M. Pätzold1, F.M. Neubauer1, L. Carone1, A. Hagermann1, C. Stanzel1, B. Häusler2, S. Remus2, J. Selle2, D. Hagl2, D.P. Hinson3, R.A. Simpson3, G.L. Tyler3, S.W. Asmar4, W.I. Axford5, T. Hagfors5, J.-P. Barriot6, J.-C. Cerisier7, T. Imamura8, K.-I. Oyama8, P. Janle9, G. Kirchengast10 & V. Dehant11 1Institut für Geophysik und Meteorologie, Universität zu Köln, D-50923 Köln, Germany Email: [email protected] 2Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg, Germany 3Space, Telecommunication and Radio Science Laboratory, Dept. of Electrical Engineering, Stanford University, Stanford, CA 95305, USA 4Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91009, USA 5Max-Planck-Instuitut für Aeronomie, D-37189 Katlenburg-Lindau, Germany 6Observatoire Midi Pyrenees, F-31401 Toulouse, France 7Centre d’etude des Environnements Terrestre et Planetaires (CETP), F-94107 Saint-Maur, France 8Institute of Space & Astronautical Science (ISAS), Sagamihara, Japan 9Institut für Geowissenschaften, Abteilung Geophysik, Universität zu Kiel, D-24118 Kiel, Germany 10Institut für Meteorologie und Geophysik, Karl-Franzens-Universität Graz, A-8010 Graz, Austria 11Observatoire Royal de Belgique, B-1180 Bruxelles, Belgium The Mars Express Orbiter Radio Science (MaRS) experiment will employ radio occultation to (i) sound the neutral martian atmosphere to derive vertical density, pressure and temperature profiles as functions of height to resolutions better than 100 m, (ii) sound
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • Mars Subsurface Water Ice Mapping (Swim): Radar Subsurface Reflectors
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2069.pdf MARS SUBSURFACE WATER ICE MAPPING (SWIM): RADAR SUBSURFACE REFLECTORS. A. M. Bramson1, E. I. Petersen1, Z. M. Bain2, N. E. Putzig2, G. A. Morgan2, M. Mastrogiuseppe3, M. R. Perry2, I. B. Smith2, H. G. Sizemore2, D. M. H. Baker4, R. H. Hoover5, B. A. Campbell6. 1Lunar and Planetary Laboratory, University of Arizona ([email protected]), 2Planetary Science Institute, 3California Institute of Technology, 4NASA Goddard Space Flight Center, 5Southwest Research Institute, 6Smithsonian Institution Introduction: The Subsurface Water Ice Mapping Consistency Mapping: To enable a quantitative as- (SWIM) in the Northern Hemisphere of Mars, supports sessment of how consistent (or inconsistent) the various an effort by NASA’s Mars Exploration Program to de- remote sensing datasets are with the presence of shallow termine in situ resource availability. We are performing (<5 m) and deep (>5 m) ice across these regions, we in- global reconnaissance mapping as well as focused troduce the SWIM Equation. Outlined in detail by Perry multi-dataset mapping from 0º to 60ºN in four longitude et al. [this LPSC], the SWIM Equation yields con- bands: “Arcadia” (150–225ºE, which also contains our sistency values ranging between +1 and -1, where +1 pilot study region), “Acidalia” (290–360ºE), “Onilus” means that the data are consistent with the presence of (0–70ºE, which covers Deuteronilus and Protonilus ice, 0 means that the data give no indications of the pres- Mensae), and “Utopia” (70–150ºE). Our maps are being ence or absence of ice, and -1 means that the data are made available to the community on the SWIM Project inconsistent with the presence of ice.
    [Show full text]
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • Mariner to Mercury, Venus and Mars
    NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions.
    [Show full text]
  • Exploration of Mars by the European Space Agency 1
    Exploration of Mars by the European Space Agency Alejandro Cardesín ESA Science Operations Mars Express, ExoMars 2016 IAC Winter School, November 20161 Credit: MEX/HRSC History of Missions to Mars Mars Exploration nowadays… 2000‐2010 2011 2013/14 2016 2018 2020 future … Mars Express MAVEN (ESA) TGO Future ESA (ESA- Studies… RUSSIA) Odyssey MRO Mars Phobos- Sample Grunt Return? (RUSSIA) MOM Schiaparelli ExoMars 2020 Phoenix (ESA-RUSSIA) Opportunity MSL Curiosity Mars Insight 2020 Spirit The data/information contained herein has been reviewed and approved for release by JPL Export Administration on the basis that this document contains no export‐controlled information. Mars Express 2003-2016 … First European Mission to orbit another Planet! First mission of the “Rosetta family” Up and running since 2003 Credit: MEX/HRSC First European Mission to orbit another Planet First European attempt to land on another Planet Original mission concept Credit: MEX/HRSC December 2003: Mars Express Lander Release and Orbit Insertion Collission trajectory Bye bye Beagle 2! Last picture Lander after release, release taken by VMC camera Insertion 19/12/2003 8:33 trajectory Credit: MEX/HRSC Beagle 2 was found in January 2015 ! Only 6km away from landing site OK Open petals indicate soft landing OK Antenna remained covered Lessons learned: comms at all time! Credit: MEX/HRSC Mars Express: so many missions at once Mars Mission Phobos Mission Relay Mission Credit: MEX/HRSC Mars Express science investigations Martian Moons: Phobos & Deimos: Ionosphere, surface,
    [Show full text]
  • Estimated Attenuation Rates Using GPR and TDR in Volcanic Depos
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Electromagnetic signal penetration in a planetary soil 10.1002/2016JE005192 simulant: Estimated attenuation rates using GPR Key Points: and TDR in volcanic deposits on Mount Etna • GPR methodologies for evaluating the loss tangent of volcanic sediments S. E. Lauro1 , E. Mattei1 , B. Cosciotti1 , F. Di Paolo1 , S. A. Arcone2, M. Viccaro3,4 , • Characterization of electrical 1 properties of a planetary soil simulant and E. Pettinelli • Comparison between GPR and TDR 1 2 measurements Dipartimento di Matematica e Fisica, Università degli Studi Roma TRE, Rome, Italy, US Army ERDC-CRREL, Hanover, New Hampshire, USA, 3Dipartimento di Scienze Biologiche Geologiche e Ambientali, Università degli Studi di Catania, Catania, Italy, 4Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia, Catania, Italy Correspondence to: S. E. Lauro, Abstract Ground-penetrating radar (GPR) is a well-established geophysical terrestrial exploration method [email protected] and has recently become one of the most promising for planetary subsurface exploration. Several future landing vehicles like EXOMARS, 2020 NASA ROVER, and Chang’e-4, to mention a few, will host GPR. A GPR Citation: survey has been conducted on volcanic deposits on Mount Etna (Italy), considered a good analogue for Lauro, S. E., E. Mattei, B. Cosciotti, F. Di Paolo, S. A. Arcone, M. Viccaro, and Martian and Lunar volcanic terrains, to test a novel methodology for subsoil dielectric properties estimation. E. Pettinelli (2017), Electromagnetic The stratigraphy of the volcanic deposits was investigated using 500 MHz and 1 GHz antennas in two different signal penetration in a planetary soil configurations: transverse electric and transverse magnetic.
    [Show full text]
  • DSCOVR Magnetometer Observations Adam Szabo, Andriy Koval NASA Goddard Space Flight Center
    DSCOVR Magnetometer Observations Adam Szabo, Andriy Koval NASA Goddard Space Flight Center 1 Locations of the Instruments Faraday Cup EPIC Omni Antenna Star Tracker Thruster Modules Digital Sun Sensor Electron Spectrometer +Z +X Magnetometer +Y 2 Goddard Fluxgate Magnetometer The Fluxgate Magnetometer measures the interplanetary vector magnetic field It is located at the tip of a 4.0 m boom to minimize the effect of spacecraft fields Requirement Value Method Performance Magnetometer Range 0.1-100 nT Test 0.004-65,500 nT Accuracy +/- 1 nT Measured +/- 0.2 nT Cadence 1 min Measured 50 vector/sec 3 Pre-flight Calibration • Determined the magnetometer zero levels, scale factors, and magnetometer orthogonalization matrix. • Determined the spacecraft generated magnetic fields – Subsystem level magnetic tests. Reaction wheels, major source of dynamic field, were shielded – Spacecraft unpowered magnetic test in the GSFC 40’ magnetic facility In-Flight Boom Deployment • Nominal deployment on 2/15/15, seen as 4.4 rotations in the magnetometer components Mostly spacecraft Boom deployment Interplanetary magnetic field induced fields 5 Alfven Waves in the Solar Wind • The solar wind contains magnetic field rotations that preserve the magnitude of the field, so called Alfven waves. • Alfven waves are ubiquitous and are possible to identify with automated routines. • Systematic deviations from a constant field magnitude during these waves are an indication of spacecraft induced offsets. • Minimizing the deviations with slowly changing offsets allows in-flight calibrations. 6 In-Flight Magnetometer Calibrations Z Magnetometer Zero Offsets X • X axis Roll and Z axis Slew data is Y consistent with ground calibration estimates X • Independent zero offset determination by rolls, slews and using solar wind Alfvenicity give consistent values Z • Time variation is consistent with yearly orbital change.
    [Show full text]
  • Range Resolution Enhancement of WISDOM/Exomars
    Range resolution enhancement of WISDOM/ExoMars radar soundings by the Bandwidth Extrapolation technique: Validation and application to field campaign measurements Nicolas Oudart, Valérie Ciarletti, Alice Le Gall, Marco Mastrogiuseppe, Yann Herve, Wolf-Stefan Benedix, Dirk Plettemeier, Vivien Tranier, Rafik Hassen-Khodja, Christoph Statz, et al. To cite this version: Nicolas Oudart, Valérie Ciarletti, Alice Le Gall, Marco Mastrogiuseppe, Yann Herve, et al.. Range resolution enhancement of WISDOM/ExoMars radar soundings by the Bandwidth Extrapolation tech- nique: Validation and application to field campaign measurements. Planetary and Space Science, Elsevier, 2021, 197 (March), pp.105173. 10.1016/j.pss.2021.105173. insu-03114236v2 HAL Id: insu-03114236 https://hal-insu.archives-ouvertes.fr/insu-03114236v2 Submitted on 28 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Planetary and Space Science 197 (2021) 105173 Contents lists available at ScienceDirect Planetary
    [Show full text]
  • The Pancam Instrument for the Exomars Rover
    ASTROBIOLOGY ExoMars Rover Mission Volume 17, Numbers 6 and 7, 2017 Mary Ann Liebert, Inc. DOI: 10.1089/ast.2016.1548 The PanCam Instrument for the ExoMars Rover A.J. Coates,1,2 R. Jaumann,3 A.D. Griffiths,1,2 C.E. Leff,1,2 N. Schmitz,3 J.-L. Josset,4 G. Paar,5 M. Gunn,6 E. Hauber,3 C.R. Cousins,7 R.E. Cross,6 P. Grindrod,2,8 J.C. Bridges,9 M. Balme,10 S. Gupta,11 I.A. Crawford,2,8 P. Irwin,12 R. Stabbins,1,2 D. Tirsch,3 J.L. Vago,13 T. Theodorou,1,2 M. Caballo-Perucha,5 G.R. Osinski,14 and the PanCam Team Abstract The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier.
    [Show full text]
  • An Approach to Magnetic Cleanliness for the Psyche Mission M
    An Approach to Magnetic Cleanliness for the Psyche Mission M. de Soria-Santacruz J. Ream K. Ascrizzi ([email protected]), ([email protected]), ([email protected]) M. Soriano R. Oran University of Michigan Ann Arbor ([email protected]), ([email protected]), 500 S State St O. Quintero B. P. Weiss Ann Arbor, MI 48109 ([email protected]), ([email protected]) F. Wong Department of Earth, Atmospheric, ([email protected]), and Planetary Sciences S. Hart Massachusetts Institute of Technology ([email protected]), 77 Massachusetts Avenue M. Kokorowski Cambridge, MA 02139 ([email protected]) B. Bone ([email protected]), B. Solish ([email protected]), D. Trofimov ([email protected]), E. Bradford ([email protected]), C. Raymond ([email protected]), P. Narvaez ([email protected]) Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109 C. Keys C. Russell L. Elkins-Tanton ([email protected]), ([email protected]), ([email protected]) P. Lord University of California Los Angeles Arizona State University ([email protected]) 405 Hilgard Avenue PO Box 871404 Maxar Technologies Inc. Los Angeles, CA 90095 Tempe, AZ 85287 3825 Fabian Avenue Palo Alto, CA 94303 Abstract— Psyche is a Discovery mission that will visit the fields. Limiting and characterizing spacecraft-generated asteroid (16) Psyche to determine if it is the metallic core of a magnetic fields is therefore essential to the mission. This is the once larger differentiated body or otherwise was formed from objective of the Psyche’s magnetics control program described accretion of unmelted metal-rich material.
    [Show full text]
  • 18Th EANA Conference European Astrobiology Network Association
    18th EANA Conference European Astrobiology Network Association Abstract book 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Detectability of biosignatures in martian sedimentary systems A. H. Stevens1, A. McDonald2, and C. S. Cockell1 (1) UK Centre for Astrobiology, University of Edinburgh, UK ([email protected]) (2) Bioimaging Facility, School of Engineering, University of Edinburgh, UK Presentation: Tuesday 12:45-13:00 Session: Traces of life, biosignatures, life detection Abstract: Some of the most promising potential sampling sites for astrobiology are the numerous sedimentary areas on Mars such as those explored by MSL. As sedimentary systems have a high relative likelihood to have been habitable in the past and are known on Earth to preserve biosignatures well, the remains of martian sedimentary systems are an attractive target for exploration, for example by sample return caching rovers [1]. To learn how best to look for evidence of life in these environments, we must carefully understand their context. While recent measurements have raised the upper limit for organic carbon measured in martian sediments [2], our exploration to date shows no evidence for a terrestrial-like biosphere on Mars. We used an analogue of a martian mudstone (Y-Mars[3]) to investigate how best to look for biosignatures in martian sedimentary environments. The mudstone was inoculated with a relevant microbial community and cultured over several months under martian conditions to select for the most Mars-relevant microbes. We sequenced the microbial community over a number of transfers to try and understand what types microbes might be expected to exist in these environments and assess whether they might leave behind any specific biosignatures.
    [Show full text]