A Lunar Micro Rover System Overview for Aiding Science and ISRU Missions Virtual Conference 19–23 October 2020 R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mars Reconnaissance Orbiter
Chapter 6 Mars Reconnaissance Orbiter Jim Taylor, Dennis K. Lee, and Shervin Shambayati 6.1 Mission Overview The Mars Reconnaissance Orbiter (MRO) [1, 2] has a suite of instruments making observations at Mars, and it provides data-relay services for Mars landers and rovers. MRO was launched on August 12, 2005. The orbiter successfully went into orbit around Mars on March 10, 2006 and began reducing its orbit altitude and circularizing the orbit in preparation for the science mission. The orbit changing was accomplished through a process called aerobraking, in preparation for the “science mission” starting in November 2006, followed by the “relay mission” starting in November 2008. MRO participated in the Mars Science Laboratory touchdown and surface mission that began in August 2012 (Chapter 7). MRO communications has operated in three different frequency bands: 1) Most telecom in both directions has been with the Deep Space Network (DSN) at X-band (~8 GHz), and this band will continue to provide operational commanding, telemetry transmission, and radiometric tracking. 2) During cruise, the functional characteristics of a separate Ka-band (~32 GHz) downlink system were verified in preparation for an operational demonstration during orbit operations. After a Ka-band hardware anomaly in cruise, the project has elected not to initiate the originally planned operational demonstration (with yet-to-be used redundant Ka-band hardware). 201 202 Chapter 6 3) A new-generation ultra-high frequency (UHF) (~400 MHz) system was verified with the Mars Exploration Rovers in preparation for the successful relay communications with the Phoenix lander in 2008 and the later Mars Science Laboratory relay operations. -
Mars Express Orbiter Radio Science
MaRS: Mars Express Orbiter Radio Science M. Pätzold1, F.M. Neubauer1, L. Carone1, A. Hagermann1, C. Stanzel1, B. Häusler2, S. Remus2, J. Selle2, D. Hagl2, D.P. Hinson3, R.A. Simpson3, G.L. Tyler3, S.W. Asmar4, W.I. Axford5, T. Hagfors5, J.-P. Barriot6, J.-C. Cerisier7, T. Imamura8, K.-I. Oyama8, P. Janle9, G. Kirchengast10 & V. Dehant11 1Institut für Geophysik und Meteorologie, Universität zu Köln, D-50923 Köln, Germany Email: [email protected] 2Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg, Germany 3Space, Telecommunication and Radio Science Laboratory, Dept. of Electrical Engineering, Stanford University, Stanford, CA 95305, USA 4Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91009, USA 5Max-Planck-Instuitut für Aeronomie, D-37189 Katlenburg-Lindau, Germany 6Observatoire Midi Pyrenees, F-31401 Toulouse, France 7Centre d’etude des Environnements Terrestre et Planetaires (CETP), F-94107 Saint-Maur, France 8Institute of Space & Astronautical Science (ISAS), Sagamihara, Japan 9Institut für Geowissenschaften, Abteilung Geophysik, Universität zu Kiel, D-24118 Kiel, Germany 10Institut für Meteorologie und Geophysik, Karl-Franzens-Universität Graz, A-8010 Graz, Austria 11Observatoire Royal de Belgique, B-1180 Bruxelles, Belgium The Mars Express Orbiter Radio Science (MaRS) experiment will employ radio occultation to (i) sound the neutral martian atmosphere to derive vertical density, pressure and temperature profiles as functions of height to resolutions better than 100 m, (ii) sound -
JUICE Red Book
ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat. -
Project Selene: AIAA Lunar Base Camp
Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location . -
An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
An Impacting Descent Probe for Europa and the other Galilean Moons of Jupiter P. Wurz1,*, D. Lasi1, N. Thomas1, D. Piazza1, A. Galli1, M. Jutzi1, S. Barabash2, M. Wieser2, W. Magnes3, H. Lammer3, U. Auster4, L.I. Gurvits5,6, and W. Hajdas7 1) Physikalisches Institut, University of Bern, Bern, Switzerland, 2) Swedish Institute of Space Physics, Kiruna, Sweden, 3) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 4) Institut f. Geophysik u. Extraterrestrische Physik, Technische Universität, Braunschweig, Germany, 5) Joint Institute for VLBI ERIC, Dwingelo, The Netherlands, 6) Department of Astrodynamics and Space Missions, Delft University of Technology, The Netherlands 7) Paul Scherrer Institute, Villigen, Switzerland. *) Corresponding author, [email protected], Tel.: +41 31 631 44 26, FAX: +41 31 631 44 05 1 Abstract We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data. -
Juno Spacecraft Description
Juno Spacecraft Description By Bill Kurth 2012-06-01 Juno Spacecraft (ID=JNO) Description The majority of the text in this file was extracted from the Juno Mission Plan Document, S. Stephens, 29 March 2012. [JPL D-35556] Overview For most Juno experiments, data were collected by instruments on the spacecraft then relayed via the orbiter telemetry system to stations of the NASA Deep Space Network (DSN). Radio Science required the DSN for its data acquisition on the ground. The following sections provide an overview, first of the orbiter, then the science instruments, and finally the DSN ground system. Juno launched on 5 August 2011. The spacecraft uses a deltaV-EGA trajectory consisting of a two-part deep space maneuver on 30 August and 14 September 2012 followed by an Earth gravity assist on 9 October 2013 at an altitude of 559 km. Jupiter arrival is on 5 July 2016 using two 53.5-day capture orbits prior to commencing operations for a 1.3-(Earth) year-long prime mission comprising 32 high inclination, high eccentricity orbits of Jupiter. The orbit is polar (90 degree inclination) with a periapsis altitude of 4200-8000 km and a semi-major axis of 23.4 RJ (Jovian radius) giving an orbital period of 13.965 days. The primary science is acquired for approximately 6 hours centered on each periapsis although fields and particles data are acquired at low rates for the remaining apoapsis portion of each orbit. Juno is a spin-stabilized spacecraft equipped for 8 diverse science investigations plus a camera included for education and public outreach. -
The Europa Clipper Mission: Investigating an Ocean World's Habitability
PPS01-15 JpGU-AGU Joint Meeting 2020 The Europa Clipper Mission: Investigating an Ocean World's Habitability *Steven Douglas Vance1, Robert T Pappalardo1, David A Senske1, Haje Korth2, Kate Craft2, Sam Howell1, Rachel L Klima2, Erin J Leonard1, Cynthia B Phillips1, Christina Richey1 1. NASA Jet Propulsion Laboratory, California Institute of Technology, 2. The Johns Hopkins University Applied Physics Laboratory Europa is believed to have a liquid ocean beneath its icy shell, abundant physical energy, and drivers for chemical disequilibrium. The Europa Clipper mission will conduct multiple fly-bys of Europa while orbiting Jupiter, with the overarching goal to explore this moon to investigate its habitability. This goal encompasses three Mission Objectives: I. Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; II. Understand the habitability of Europa's ocean through composition and chemistry; and III. Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The Europa Clipper addresses these with a capable payload of scientific instruments, plus gravity/radio and radiation science investigations. NASA selected a payload consisting of both remote-sensing and in-situ-observing instruments. The remote-sensing instruments observe the wavelength range from ultraviolet through radar, which are the Europa Ultraviolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS), the Mapping Imaging Spectrometer for Europa (MISE), the Europa Thermal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The in-situ-measuring particle instruments comprise the Plasma Instrument for Magnetic Sounding (PIMS), the MAss Spectrometer for Planetary Exploration (MASPEX), and the SUrface Dust Analyzer (SUDA). -
+ New Horizons
Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16 -
Node Report for PDS MC Face-To-Face Meeting
InSight and Mars 2020 Archive Status Ed Guinness, Ray Arvidson and Susie Slavney PDS Geosciences Node PDS Management Council St. Louis, Missouri April 22, 2015 InSight Archives Instrument Team Rep PDS Curator HP3 / RAD Heat Flow and Physical Matthias Grott, Troy Geosciences Properties Package / Hudson, Nils Mueller (DLR) (lead node) Radiometer SEIS Seismic Experiment for Philippe Lognonné (IPGP), Geosciences Investigating the Subsurface Renee Weber (MSFC) IDA Instrument Deployment Arm Ashitey Trebi-Ollennu, Geosciences Julie Costillo (JPL) IDC, ICC Instrument Deployment Justin Maki, Payam Imaging Camera, Instrument Context Zamani (JPL) Camera APSS / Auxiliary Payload Sensor Don Banfield (Cornell), Atmospheres TWINS Subsystem / Temperature Luis Mora (CAB) and Wind for InSight MAG Magnetometer Chris Russell (UCLA) PPI RISE Rotation and Interior Sami Asmar (JPL) Geosciences Structure Experiment SPICE NAIF NAIF The InSight DAWG is led by Sue Smrekar, Project Scientist, and Susie Slavney. It meets monthly. April 22, 2015 PDS Geosciences Node 2 InSight Archive Development Schedule Start End Task 7/23/2014 1/30/2015 Teams prepare first drafts of SISs, PDS labels 2/1/2015 3/31/2015 Teams prepare review-ready EDR SISs, sample products, PDS labels 5/1/2015 6/30/2015 PDS conducts EDR peer reviews 8/1/2015 EDR peer reviews are complete 8/18/2015 GDS 4.0 freeze 3/8/2016 Launch 9/20/2016 Landing • Camera archive schedule is different due to delay in instrument delivery. Peer reviews probably to occur in fall 2015. • The RDR schedule is TBD; some teams may do RDRs at the same time as EDRs. April 22, 2015 PDS Geosciences Node 3 InSight Archive Development Status Heat Flow and Physical Properties Package / Radiometer (HP3/RAD) • SIS nearly complete; describes raw, calibrated and derived data products; includes detailed instrument descriptions. -
Magnetometer Power Supplies
bartington.com DS2520/5 Magnetometer Power Supplies The specifications of the products described in this brochure are subject to change without prior notice. Bartington Instruments Ltd 5, 8, 10, 11 & 12 Thorney Leys Business Park Witney, Oxford OX28 4GE. England Telephone: +44 (0)1993 706565 bartington.com Email: [email protected] Magnetometer Power Supplies bartington.com Magnetometer Power Supply Units A wide range of power supply units are available for our range of single and three-axis magnetic field sensors. All units accept analogue inputs from our sensors and output the signal to an analogue-to-digital converter or other separate device. The range includes: • PSU1 • Magmeter-2 Power Supply and Display Unit • DecaPSU Bartington® is a registered trademark of Bartington Holdings Limited, used under licence in the following countries: Australia, Canada, China, European Union, Hong Kong, Israel, Japan, Mexico, New Zealand, Norway, Russian Federation, Singapore, South Korea, Switzerland, Turkey, United Kingdom, United States of America, and Vietnam. Magnetometer Power Supplies bartington.com Product Function PSU1 Power Supply Unit Battery powered portable power supply for a single or three-axis magnetic field sensor and AC filtering of the sensor’s outputs. Magmeter-2 Power Supply and Display Unit A PSU1 with three displays for magnetic field value readings. DecaPSU Power supply unit and low-noise connection for up to 10 magnetometers at the end of long sensor cables. Product Compatibility PSU1 Magmeter-2 DecaPSU Mag-13 • • • Mag-03 • • •† Mag690 • • •† Mag648/649 •* •* •* Mag650 •* •* •* Mag651 •* •* •* Mag612 • • • Mag619 • • • Mag585/592 • • •† Mag670/646 • • •† Mag678/679 •* •* •* * The filtering function will be less effective at removing breakthrough from these sensors † Adaptor cable required Magnetometer Power Supplies bartington.com PSU1 Power Supply Unit The PSU1 is a self-contained, portable power supply for most Bartington Instruments magnetic field sensors, for use in any situation requiring the simple measurement of a magnetic field. -
Mariner to Mercury, Venus and Mars
NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions. -
DSCOVR Magnetometer Observations Adam Szabo, Andriy Koval NASA Goddard Space Flight Center
DSCOVR Magnetometer Observations Adam Szabo, Andriy Koval NASA Goddard Space Flight Center 1 Locations of the Instruments Faraday Cup EPIC Omni Antenna Star Tracker Thruster Modules Digital Sun Sensor Electron Spectrometer +Z +X Magnetometer +Y 2 Goddard Fluxgate Magnetometer The Fluxgate Magnetometer measures the interplanetary vector magnetic field It is located at the tip of a 4.0 m boom to minimize the effect of spacecraft fields Requirement Value Method Performance Magnetometer Range 0.1-100 nT Test 0.004-65,500 nT Accuracy +/- 1 nT Measured +/- 0.2 nT Cadence 1 min Measured 50 vector/sec 3 Pre-flight Calibration • Determined the magnetometer zero levels, scale factors, and magnetometer orthogonalization matrix. • Determined the spacecraft generated magnetic fields – Subsystem level magnetic tests. Reaction wheels, major source of dynamic field, were shielded – Spacecraft unpowered magnetic test in the GSFC 40’ magnetic facility In-Flight Boom Deployment • Nominal deployment on 2/15/15, seen as 4.4 rotations in the magnetometer components Mostly spacecraft Boom deployment Interplanetary magnetic field induced fields 5 Alfven Waves in the Solar Wind • The solar wind contains magnetic field rotations that preserve the magnitude of the field, so called Alfven waves. • Alfven waves are ubiquitous and are possible to identify with automated routines. • Systematic deviations from a constant field magnitude during these waves are an indication of spacecraft induced offsets. • Minimizing the deviations with slowly changing offsets allows in-flight calibrations. 6 In-Flight Magnetometer Calibrations Z Magnetometer Zero Offsets X • X axis Roll and Z axis Slew data is Y consistent with ground calibration estimates X • Independent zero offset determination by rolls, slews and using solar wind Alfvenicity give consistent values Z • Time variation is consistent with yearly orbital change.