Plant Geography Botany 422, 2011 Greenhouse/Outdoor/Fossil Tour No

Total Page:16

File Type:pdf, Size:1020Kb

Plant Geography Botany 422, 2011 Greenhouse/Outdoor/Fossil Tour No Plant Geography Botany 422, 2011 Greenhouse/Outdoor/Fossil Tour No. 3 This tour has both indoor and outdoor components. For the greenhouse portion, remember that the greenhouse is open weekdays from 8:00am to 4:00pm, and is located on the B-2 basement level of Birge hall. The greenhouses are numbered 1 to 8. (See the map on the last page of this handout). Please leave any backpacks and bags in the lockers in the hallway so as to avoid knocking plants off tables. To find these plants, look for the number labels with Plant Biogeography. The outdoor portion of the tour begins on the hill south of the Botany greenhouses (10), continues through the Botany garden (11-13), makes a stop in front of Chadbourne Hall (14) and ends on Bascom Hill (15). All fossils for Part 3 of the tour are located in Birge Hall, Room 245 on the benchtop. Part 1: Indoors Greenhouse 2 1. Psilotum nudum — whisk fern (Phylum Pteridiophyta) This genus is one of only two genera in the once-recognized phylum Psilotophyta. It best represents what some of the first vascular land plants in the Devonian would have look like, with green, dichotomously branching stems, no leaves, and naked sporangia (spore producing structures). Recent molecular evidence suggests, however, that Psilotum is not as primitive as most people believed and is simply a reduced fern. 2. Pisonia umbellifera — “para-para”, lettuce trees (Nyctaginaceae) Found on many old world islands including Mauritius, New Zealand, and Bonin Islands. Most species in the genus become quite tree-like with cabbage or lettuce like leaves. The fruits are glandular and represent a LDD mechanism (bird-viscid) to remote islands. Fruits often used to snare or entrap birds. Greenhouse 3 3. Wollemi nobilis — Wollemi pine (Araucariaceae) This monotypic genus (it is not a pine, nor in the pine family) was discovered in 1994 in the rugged Blue Mountains NW of Sydney, Australia. Only 39 adult plants are known from the wild. Pollen analysis shows this species is more closely related to a widespread fossil in Australia than it is to the two other extant genera in the family (Araucaria and Agathis). Since its discovery, unauthorized visits to the secret wild population have introduced a non-native root rot fungus that threatens the survival of this relict and "living fossil" species. 4. Cocos nucifera — coconut (Arecaceae) The coconut palm is the only species in the genus Cocos, and is a large palm, growing to 30 m tall. The coconut has spread across much of the tropics, probably aided in many cases by seafaring people. In the Hawaiian Islands, the coconut is regarded as a Polynesian introduction. Greenhouse 4 5. Dioon, Zamia, Cycas — cycads (Phylum Pinophyta or Cycadophyta) Cycads are a relictual group of gymnosperms once much more prominent in the Earth's flora (Triassic & Jurassic) where they co-existed with dinosaurs. Many species today are very local endemics and critically endangered. The flat leaves of cycads have given rise to false accounts of angiosperm fossils well before the Cretaceous. 6. Polypodium sp. — ferns (Phylum Pteridiophyta) Ferns are notoriously great dispersers to islands due to their small, air-borne spores. Some of the first colonists of Krakatau were ferns. Ferns represent a larger than expected proportion of the Hawaiian flora, although they show considerably less endemism. Greenhouse 5 7. Navia sp. — a bromeliad (Bromeliaceae) A closely related genus to Brocchinia and also found on tepui summits of the Guayana Highlands. This genus is more species rich than Brocchinia, but it has apparently speciated not via “adaptive radiation” but rather through its lack of dispersality (i.e., different populations on tepui summits become isolated and diverge). Greenhouse 6 8. Marchantia polymorpha — liverwort (Phylum Hepaticophyta) An example of what the earliest land plants might have looked like. Fossils from the Ordovician and early Silurian indicate that non-vascular liverworts are the first recognizable land plants. Liverworts are now in their own phylum as DNA indicates that liverworts are the first diverging lineage of extant land plants. Greenhouse 7 (Desert House) 9. Aeonium tabuliforme — (Crassulaceae) This spectacular genus of species primarily from the Canary Islands (Macaronesia) is a good example of island plants that become woody. It is also succulent and possesses crassulacean acid metabolism (CAM), a type of photosynthetic adaptation to high light and low moisture environments. Part 2: Outdoors University Ave. side of Birge Hall and outdoor Botany Garden 10. Metasequoia glyptostroboides — dawn redwood (Taxodiaceae) This tree is a bona fide living fossil in the sense that fossils of the genus had been collected (though misinterpreted as Sequoia or Taxodium) long before the living plant was discovered in China in 1941. Though presently narrowly endemic to a small area of central China, fossils are known from the Tertiary of Europe, Greenland and the United States as well as Asia. Compare this plant to Sequoia, which has a similar paleo-distribution but is now confined to the Pacific Northwest. Although its leaves resemble those of an evergreen tree (like Sequoia) it is actually deciduous, dropping whole "twigs" of leaves in the fall. 11. Liriodendron tulipifera -- tulip tree (Magnoliaceae) This species and L. chinense, the only other species in the genus, form one of the most famous Eastern Asia - Eastern North American disjunctions. Unmistakable Tertiary fossils of the genus are known from the western U.S., Greenland, Iceland, and continental Europe. Although these species must have been out of genetic contact for well over 10 million years, artificial hybrids between the two species have been made. The tulip tree is characteristic of the mixed mesophytic forest to the south and east of Wisconsin (SW Michigan for example), but our winter low temperatures are too extreme to allow the tulip tree (as well as redbud and flowering dogwood) to survive in the wild in the state. 12. Ginkgo biloba — ginkgo (Ginkgoaceae) Ginkgo has an extensive fossil record first known from the Jurassic (180mya) and still extant in the western United States into the Miocene and in Europe as late as the Pliocene. Long thought to be extinct in the wild, apparently natural populations of this tree have recently been discovered in eastern China. A recent phylogeographic study suggests two areas of Pleistocene refuge in China. The Botany Garden has a pair of Ginkgo trees, male and female. 13. Magnolia sp. — magnolia (Magnoliaceae) Long thought to be the most primitive of flowering plants (angiosperms), recent molecular studies have identified other, more ancient groups of angiosperms. However, the fossil record for the genus Magnolia still stretches back almost 100 million years. During the middle of the tertiary (30-40 mya), when the large epicontinental sea covered large portions of what is now Midwest North America, magnolia fossils are found as far north as Wyoming. Magnolias are classic examples of the Arcto-Tertiary disjunct pattern, being currently found in eastern North America and eastern Asia, but with a fossil record demonstrating a continuous north temperate distribution during the Tertiary. Magnolias are characteristic of the southeastern U.S. deciduous and semi-evergreen forests, but do not occur natively in Wisconsin. 14. Cercidiphyllum japonicum — Katsura tree (Cercidiphyllaceae) Although this plant would appear to have female floral parts composed of several free carpels (apocarpous), anatomical studies have shown that each female flower consists of a single ovary, the inflorescences being so contracted that they resemble a single flower. Though now endemic to China and Japan, Cercidiphyllum is known from Tertiary deposits of the western United States, Greenland, Spitsbergen and elsewhere. 15. Ulmus americana — American Elm (Ulmaceae) The genus Ulmus (elms) currently occurs in north temperate regions (Asia, Europe, and North America). As are most deciduous trees, elms are wind pollinated. Elm seeds are also wind dispersed, as is evidenced by the wings surrounding the seed (there should be some on the ground beneath the tree). The distinctive leaves and fruit of this genus are well represented in the fossil record and were an important part of the Arcto-Tertiary flora. The architecture of this tree has made it a very popular tree for lining streets and long promenades (see Bascom Hill). Unfortunately, dutch elm disease, a fungus which attacks and ultimately kills the tree was introduced into North America during the mid-1900’s from eastern Asia. Elms were a very significant element of the eastern deciduous forest (ranking in the top 5 most important species) prior to the introduction of the disease. Since that time, the majority of American Elms have been affected by the invasion of this fungus. Part 3: Fossils Room 256, Birge Hall 16. Lepidodendron — a giant lycopod (related to extant “clubmosses” of Lycopodiophyta) of the equatorial coal swamps. [Carboniferous] 17. Calamites — a tree-like horsetail (or “sphenopsid” of the once recognized Equisetophyta, and now in Pteridiophyta or ferns) of the equatorial coal swamps. [Carboniferous] 18. Delnortea (seed fern) — An example of the once diverse and now extinct lineage of woody plants with fern-like leaves but producing seeds like gymnosperms and angiosperms. This fossil genus is restricted to the north-central shales of Texas. [Permian] 19. Metasequoia (dawn redwood) — see #10 above. Compare this to the adjacent Sequoia fossil. 6 4 1 7 3 2 8 5 9 15 10 14 11 13 12.
Recommended publications
  • Recommended Trees for Winnetka
    RECOMMENDED TREES FOR WINNETKA SHADE TREES Common_Name Scientific_Name Ohio Buckeye Acer galbra Miyabe Maple Acer miyabei Black Maple Acer nigrum Norway Maple Acer plantanoides v. ___ Sugar Maple (many cultivars) Acer saccharum Shangtung Maple Acer truncatum Autumn Blaze or Marmo Maple Acer x freemanii Red Horsechestnut Aesculus x carnea 'Briotii' Horsechestnut Aesulus hippocastanum Alder Alnus glutinosa Yellowwood Caldrastis lutea Upright European Hornbeam Carpinus betulus “Fastigata” American Hornbeam Carpinus carolinians Hickory Carya ovata Catalpa Catalpa speciosa Hackberry Celtis occidentalis Katsuratree Cercidiphyllum japonicum Turkish Filbert Corylus colurna American Beech Fagus grandifolia Green Beech Fagus sylvatica European Beech Fagus sylvatica Ginkgo Ginkgo biloba Thornless Honeylocust Gleditsia triacanthos inermis Kentucky Coffeetree Gymnocladus dioica Goldenraintree Koelreuteria paniculata Sweetgum Liquidambar styraciflua Tulip Tree Liriodendron tulipfera Black gum, Tupelo Liriodendron tulipfera Hophornbeam Ostrya virginiana Corktree Phellodendron amurense Exclamation Plantree Plantanus x aceerifolia Quaking Aspen Populus tremuloides Swamp White Oak Quercus bicolor Shingle Oak Quercus imbricaria Bur Oak Quercus macrocarpa Chinkapin Oak Quercus muehlenbergii English Oak Quercus robur Red Oak Quercus rubra Schumard Oak Quercus shumardii Black Oak Quercus velutina May 2015 SHADE TREES Common_Name Scientific_Name Sassafras Sassafras albidum American Linden Tilia Americana Littleleaf Linden (many cultivars) Tilia cordata Silver
    [Show full text]
  • Beyond the Fringe
    Beyond the Fringe By Margaret Klein Wilson, Fairfax Master Gardener Intern The final flourish of native spring flowering trees belongs to fringe trees (Chionanthus virginicus). The measured parade of seasonal color — dogwoods and redbuds, flowering cherry and plum — is neatly capped by the fluttering grace of abundant white blossoms that engulf this small, often edge habitat tree beginning in mid-May. Encountering a fringe tree on a breezy spring day is to see masses of white corollas of petals casting their light perfume across the landscape. Is it any wonder Linnaeus named Yale ©2021 Copyright and noted this genus Chionanthus (chion = University snow; anthos = flower) as he compiled the photo: Genera Plantarum (1753)? Less poetically, fringe tree’s common names include Old Man’s Beard, Grancy graybeard, flowering ash and white fringe tree. Genus Chionanthus is a member of the Olive Family, the Olaceae, which includes 29 genera and over 600 species of trees and shrubs common in southeastern Asia and Australasia. Trees in this genus have uses both practical and ornamental: olive for food, ash for its lumber, and forsythia, gardenia and privets for sheer domestic beauty. In North America, ash trees in the genus Fraxinus, devilwood (Osmantus americanus) and Forestiera (swampprivet) are fringe tree’s near relatives. Only two species of fringe tree exist: C. virginicus in eastern North America and C. retusus, native to China. In his citation naming fringe tree the Virginia Native Plant Society 1997 Wildflower of the Year, C. F. Saachi explains this geographic disconnect: “This unusual biogeographic pattern, with different species within a genus … separated by several thousand miles, is a product of major geologic events including mountain building and the effects of glaciation.
    [Show full text]
  • Indiana's Native Magnolias
    FNR-238 Purdue University Forestry and Natural Resources Know your Trees Series Indiana’s Native Magnolias Sally S. Weeks, Dendrologist Department of Forestry and Natural Resources Purdue University, West Lafayette, IN 47907 This publication is available in color at http://www.ces.purdue.edu/extmedia/fnr.htm Introduction When most Midwesterners think of a magnolia, images of the grand, evergreen southern magnolia (Magnolia grandiflora) (Figure 1) usually come to mind. Even those familiar with magnolias tend to think of them as occurring only in the South, where a more moderate climate prevails. Seven species do indeed thrive, especially in the southern Appalachian Mountains. But how many Hoosiers know that there are two native species Figure 2. Cucumber magnolia when planted will grow well throughout Indiana. In Charles Deam’s Trees of Indiana, the author reports “it doubtless occurred in all or nearly all of the counties in southern Indiana south of a line drawn from Franklin to Knox counties.” It was mainly found as a scattered, woodland tree and considered very local. Today, it is known to occur in only three small native populations and is listed as State Endangered Figure 1. Southern magnolia by the Division of Nature Preserves within Indiana’s Department of Natural Resources. found in Indiana? Very few, I suspect. No native As the common name suggests, the immature magnolias occur further west than eastern Texas, fruits are green and resemble a cucumber so we “easterners” are uniquely blessed with the (Figure 3). Pioneers added the seeds to whisky presence of these beautiful flowering trees. to make bitters, a supposed remedy for many Indiana’s most “abundant” species, cucumber ailments.
    [Show full text]
  • THE Magnoliaceae Liriodendron L. Magnolia L
    THE Magnoliaceae Liriodendron L. Magnolia L. VEGETATIVE KEY TO SPECIES IN CULTIVATION Jan De Langhe (1 October 2014 - 28 May 2015) Vegetative identification key. Introduction: This key is based on vegetative characteristics, and therefore also of use when flowers and fruits are absent. - Use a 10× hand lens to evaluate stipular scars, buds and pubescence in general. - Look at the entire plant. Young specimens, shade, and strong shoots give an atypical view. - Beware of hybridisation, especially with plants raised from seed other than wild origin. Taxa treated in this key: see page 10. Questionable/frequently misapplied names: see page 10. Names referred to synonymy: see page 11. References: - JDL herbarium - living specimens, in various arboreta, botanic gardens and collections - literature: De Meyere, D. - (2001) - Enkele notities omtrent Liriodendron tulipifera, L. chinense en hun hybriden in BDB, p.23-40. Hunt, D. - (1998) - Magnolias and their allies, 304p. Bean, W.J. - (1981) - Magnolia in Trees and Shrubs hardy in the British Isles VOL.2, p.641-675. - or online edition Clarke, D.L. - (1988) - Magnolia in Trees and Shrubs hardy in the British Isles supplement, p.318-332. Grimshaw, J. & Bayton, R. - (2009) - Magnolia in New Trees, p.473-506. RHS - (2014) - Magnolia in The Hillier Manual of Trees & Shrubs, p.206-215. Liu, Y.-H., Zeng, Q.-W., Zhou, R.-Z. & Xing, F.-W. - (2004) - Magnolias of China, 391p. Krüssmann, G. - (1977) - Magnolia in Handbuch der Laubgehölze, VOL.3, p.275-288. Meyer, F.G. - (1977) - Magnoliaceae in Flora of North America, VOL.3: online edition Rehder, A. - (1940) - Magnoliaceae in Manual of cultivated trees and shrubs hardy in North America, p.246-253.
    [Show full text]
  • Phylogenomic Approach
    Toward the ultimate phylogeny of Magnoliaceae: phylogenomic approach Sangtae Kim*1, Suhyeon Park1, and Jongsun Park2 1 Sungshin University, Korea 2 InfoBoss Co., Korea Mr. Carl Ferris Miller Founder of Chollipo Arboretum in Korea Chollipo Arboretum Famous for its magnolia collection 2020. Annual Meeting of Magnolia Society International Cholliop Arboretum in Korea. April 13th~22th, 2020 http://WWW.Chollipo.org Sungshin University, Seoul, Korea Dr. Hans Nooteboom Dr. Liu Yu-Hu Twenty-one years ago... in 1998 The 1st International Symposium on the Family Magnoliaceae, Gwangzhow Dr. Hiroshi Azuma Mr. Richard Figlar Dr. Hans Nooteboom Dr. Qing-wen Zeng Dr. Weibang Sun Handsome young boy Dr. Yong-kang Sima Dr. Yu-wu Law Presented ITS study on Magnoliaceae - never published Ten years ago... in 2009 Presented nine cp genome region study (9.2 kbp) on Magnoliaceae – published in 2013 2015 1st International Sympodium on Neotropical Magnoliaceae Gadalajara, 2019 3rd International Sympodium and Workshop on Neotropical Magnoliaceae Asterales Dipsacales Apiales Why magnolia study is Aquifoliales Campanulids (Euasterids II) Garryales Gentianales Laminales Solanales Lamiids important in botany? Ericales Asterids (Euasterids I) Cornales Sapindales Malvales Brassicales Malvids Fagales (Eurosids II) • As a member of early-diverging Cucurbitales Rosales Fabales Zygophyllales Celestrales Fabids (Eurosid I) angiosperms, reconstruction of the Oxalidales Malpighiales Vitales Geraniales Myrtales Rosids phylogeny of Magnoliaceae will Saxifragales Caryphyllales
    [Show full text]
  • Plethora of Plants - Collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse Succulents
    NAT. CROAT. VOL. 27 No 2 407-420* ZAGREB December 31, 2018 professional paper/stručni članak – museum collections/muzejske zbirke DOI 10.20302/NC.2018.27.28 PLETHORA OF PLANTS - COLLECTIONS OF THE BOTANICAL GARDEN, FACULTY OF SCIENCE, UNIVERSITY OF ZAGREB (2): GLASSHOUSE SUCCULENTS Dubravka Sandev, Darko Mihelj & Sanja Kovačić Botanical Garden, Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10000 Zagreb, Croatia (e-mail: [email protected]) Sandev, D., Mihelj, D. & Kovačić, S.: Plethora of plants – collections of the Botanical Garden, Faculty of Science, University of Zagreb (2): Glasshouse succulents. Nat. Croat. Vol. 27, No. 2, 407- 420*, 2018, Zagreb. In this paper, the plant lists of glasshouse succulents grown in the Botanical Garden from 1895 to 2017 are studied. Synonymy, nomenclature and origin of plant material were sorted. The lists of species grown in the last 122 years are constructed in such a way as to show that throughout that period at least 1423 taxa of succulent plants from 254 genera and 17 families inhabited the Garden’s cold glass- house collection. Key words: Zagreb Botanical Garden, Faculty of Science, historic plant collections, succulent col- lection Sandev, D., Mihelj, D. & Kovačić, S.: Obilje bilja – zbirke Botaničkoga vrta Prirodoslovno- matematičkog fakulteta Sveučilišta u Zagrebu (2): Stakleničke mesnatice. Nat. Croat. Vol. 27, No. 2, 407-420*, 2018, Zagreb. U ovom članku sastavljeni su popisi stakleničkih mesnatica uzgajanih u Botaničkom vrtu zagrebačkog Prirodoslovno-matematičkog fakulteta između 1895. i 2017. Uređena je sinonimka i no- menklatura te istraženo podrijetlo biljnog materijala. Rezultati pokazuju kako je tijekom 122 godine kroz zbirku mesnatica hladnog staklenika prošlo najmanje 1423 svojti iz 254 rodova i 17 porodica.
    [Show full text]
  • Effective Heat Transport During Miocene Cooling
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Open Access Biogeosciences Discuss., 10, 13563–13601, 2013 Open Access www.biogeosciences-discuss.net/10/13563/2013/ Biogeosciences Biogeosciences BGD doi:10.5194/bgd-10-13563-2013 Discussions © Author(s) 2013. CC Attribution 3.0 License. 10, 13563–13601, 2013 Open Access Open Access This discussion paper is/has been under review for the journal BiogeosciencesClimate (BG). Climate Effective heat Please refer to the correspondingof finalthe Past paper in BG if available. of the Past Discussions transport during Miocene cooling Open Access Open Access Earth System Earth System T. Denk et al. Effective heat transportDynamics of Gulf StreamDynamics to Discussions subarctic North Atlantic during Miocene Title Page Open Access Geoscientific Geoscientific Open Access cooling: evidenceInstrumentation from “KöppenInstrumentation Abstract Introduction Methods and Methods and signatures” ofData fossil Systems plant assemblagesData Systems Conclusions References Discussions Open Access Open Access Tables Figures 1 1 2 2 Geoscientific T. Denk , G. W. Grimm , F.Geoscientific Grímsson , and R. Zetter Model Development 1 Model Development J I Swedish Museum of Natural History, Department of Palaeobotany, Box 50007,Discussions 10405 Stockholm, Sweden 2 J I Open Access University of Vienna, Department of Palaeontology,Open Access Althanstrasse 14, 1090 Vienna, Austria Hydrology and Hydrology and Back Close Received: 8 July 2013 – Accepted:Earth System 31 July 2013 – Published: 15 AugustEarth 2013 System Correspondence to: T.
    [Show full text]
  • ALFABETISCHE TERMENLIJST Pagina 2 a a Z
    ALFABETISCHE TERMENLIJST Pagina 2 A a z. alpha. A = afk. adenine: toegepast in schematische weergave vd. bouw van DNA en RNA. a. = afk. Lat. anno: in het jaar. a-, an- = voorvoegsel met de betekenis: niet, zonder. Å = ångstrom: verouderde lengteeenheid; 1 millimeter is gelijk aan 10 miljoen ångstrom; v. nm, afk. van nanometer. Aalwijn, Aalwee N. ZAfr. = Aloe spp. (Asphodelaceae), ook enkele aloë-achtige verwante soorten. Aaron's Beard N. = Opuntia leucotricha (Cactaceae). Aaron's Rod N. = Koningskaars: Verbascum thapsus (Scrophulariaceae). ABA z. abscisic acid. abaxial ADJ. = aan de vd. as verwijderde zijde, aan de onderzijde (ve. blad); syn. dorsal; ant. adaxial, ventral. abbreviate ADJ. = afgekort. ABC Islands N. = Aruba, Bonaire & Curaçao: de voormalig Ned. eilanden die, tov. de andere Kleine Antillen ver naar het Westen, voor de kust van Venezulela liggen; v. Leeward Islands, Windward Islands. aberrant ADJ. = afwijkend, niet normaal, ongewoon, iets verschilled vh. type; syn. abnormal. abiogenesis N. = veronderstelde ontwikkeling van levende organismen uit dood anorganisch materiaal. abiotic ADJ. = abiotisch: btr. factoren uit de niet-levende omgeving die het leven van planten en dieren beïnvloeden; bv. beschikbaar water, pH vd. bodem, kooldioxidegehalte vd. lucht en licht; v. biotic. abnormal ADJ. = ongewoon, abnormaal, afwijkend; v. aberrant. aboriginal ADJ. = oorspronkelijk, inheems; btr. plant die van nature in een gebied thuis hoort; syn. native, indigeneous; ant. exotic. aborted ADJ. = defect, onvruchtbaar, onvolledig ontwikkeld. abortion N. = het feit dat een orgaan of deel vd. plant zich niet ontwikkelt of in de volwassen plant niet meer aanwezig is. abortive ADJ. = al in een vroeg stadium onvolledig ontwikkeld. Abrojo Sp. N. = 1) Opuntia tunicata (Cactaceae) 2) ook O.
    [Show full text]
  • Pignut Hickory
    Carya glabra (Mill.) Sweet Pignut Hickory Juglandaceae Walnut family Glendon W. Smalley Pignut hickory (Curya glabru) is a common but not -22” F) have been recorded within the range. The abundant species in the oak-hickory forest associa- growing season varies by latitude and elevation from tion in Eastern United States. Other common names 140 to 300 days. are pignut, sweet pignut, coast pignut hickory, Mean annual relative humidity ranges from 70 to smoothbark hickory, swamp hickory, and broom hick- 80 percent with small monthly differences; daytime ory. The pear-shaped nut ripens in September and relative humidity often falls below 50 percent while October and is an important part of the diet of many nighttime humidity approaches 100 percent. wild animals. The wood is used for a variety of Mean annual hours of sunshine range from 2,200 products, including fuel for home heating. to 3,000. Average January sunshine varies from 100 to 200 hours, and July sunshine from 260 to 340 Habitat hours. Mean daily solar radiation ranges from 12.57 to 18.86 million J mf (300 to 450 langleys). In Native Range January daily radiation varies from 6.28 to 12.57 million J m+ (150 to 300 langleys), and in July from The range of pignut hickory (fig. 1) covers nearly 20.95 to 23.04 million J ti (500 to 550 langleys). all of eastern United States (11). It extends from According to one classification of climate (20), the Massachusetts and the southwest corner of New range of pignut hickory south of the Ohio River, ex- Hampshire westward through southern Vermont and cept for a small area in Florida, is designated as extreme southern Ontario to central Lower Michigan humid, mesothermal.
    [Show full text]
  • Assessing the Population Genetic Structure of the Endangered Cucumber Tree (Magnolia Acuminata) in Southwestern Ontario Using Nuclear and Chloroplast Genetic Markers
    ASSESSING THE POPULATION GENETIC STRUCTURE OF THE ENDANGERED CUCUMBER TREE (MAGNOLIA ACUMINATA) IN SOUTHWESTERN ONTARIO USING NUCLEAR AND CHLOROPLAST GENETIC MARKERS. A Thesis Submitted to the Committee on Graduate Studies in Partial Fulfillment to the Requirements for the Degree of Master of Science in the Faculty of Arts and Science Trent University Peterborough, Ontario, Canada © Copyright by Cara E. Budd 2014 Environmental and Life Sciences M.Sc. Graduate Program September 2014 Assessing the population genetic structure of the endangered Cucumber tree (Magnolia acuminata) in southwestern Ontario using nuclear and chloroplast genetic markers. Cara E. Budd ABSTRACT Magnolia acuminata (Cucumber tree) is the only native Magnolia in Canada, where it is both federally and provincially listed as endangered. Magnolia acuminata in Canada can be found inhabiting pockets of Carolinian forest within Norfolk and Niagara regions of southwestern Ontario. Using a combination of nuclear and chloroplast markers, this study assessed the genetic diversity and differentiation of M. acuminata in Canada, compared to samples from the core distribution of this species across the United States. Analyses revealed evidence of barriers to dispersal and gene flow among Ontario populations, although genetic diversity remains high and is in fact comparable to levels of diversity estimated across the much broader range of M. acuminata in the USA. When examining temporal differences in genetic diversity, our study found that seedlings were far fewer than mature trees in Ontario, and in one site in particular, diversity was lower in seedlings than that of the adult trees. This study raises concern regarding the future viability of M. acuminata in Ontario, and conservation managers should factor in the need to maintain genetic diversity in young trees for the long-term sustainability of M.
    [Show full text]
  • Liriodendron Tulipifera Tuliptree1 Edward F
    Fact Sheet ST-363 November 1993 Liriodendron tulipifera Tuliptree1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Tuliptree grows 80 to 100 feet tall and maintains a fairly narrow oval crown, even as it grows older (Fig. 1). Trunks become massive in old age, becoming deeply furrowed with thick bark. The tree maintains a straight trunk and generally does not form double or multiple leaders. Older trees have several large- diameter major limbs in the top half of the crown. Tuliptree has a moderate to rapid (on good sites) growth rate at first but slows down with age. The soft wood reportedly is subject to storm damage but the trees held up remarkably well in the south during hurricane ‘Hugo’. It is probably stronger than given credit for. The largest trees in the east are in the Joyce Kilmer Forest in NC, some reaching more than 150 feet with seven-foot diameter trunks. The fall color is gold to yellow being more pronounced in the northern part of its range. The scented, tulip-like, greenish-yellow flowers appear in mid-spring but are not as ornamental as those of other flowering trees because they are far from view. GENERAL INFORMATION Scientific name: Liriodendron tulipifera Pronunciation: leer-ee-oh-DEN-drawn too-lih-PIFF-er-uh Common name(s): Tuliptree, Tulip-Poplar, Figure 1. Middle-aged Tuliptree. Yellow-Poplar Family: Magnoliaceae Availability: generally available in many areas within USDA hardiness zones: 5 through 9A (Fig. 2) its hardiness range Origin: native to North America Uses: shade tree; no proven urban tolerance 1.
    [Show full text]
  • Liriodendron Tulipifera (Tulip Poplar) Magnolia Family (Magnoliaceae)
    Liriodendron tulipifera (Tulip Poplar) Magnolia Family (Magnoliaceae) Introduction: Tulip poplar is one of the tallest of the native American hardwoods. Kentucky was home to some of the most magnificent of these stately trees. Kentucky, Tennessee and Indiana have named tulip poplar as the state tree. The tree has winter features including duck's bill-shaped buds and furrowed bark. It also offers striking flowers in May and June. Leaves emerge folded and yellow and become green with age. They turn a clear yellow in autumn. Culture: Tulip poplar thrives in deep, rich, well-drained but moist soil and full sun. It is pH adaptable but performs best in soil that is slightly acidic. This tree is sensitive to drought and may require summer irrigation to prevent early leaf abscission. It should be transplanted balled-and-burlapped in spring. Tulip poplar is susceptible to Verticillium wilt, and may be bothered by tulip tree leaf miner (sassafras weevil). Aphids may feed on the foliage and the insects’ sticky exudate (and the black sooty mold that grows on the exudate) drops on whatever is under the tree. Because some trees may be particularly weak- wooded, ice storms and wind may cause significant damage. Selected cultivars: ‘Ardis’ - A dwarf tree, one-third the size of the species. Botanical Characteristics: ‘Aureomarginatum’ - One of the few cultivars commercially Native habitat - Eastern U.S. in deciduous woods. available. Variegated, with a yellow leaf edge and green center; Growth habit - In the wild, this tree is slower-growing than the species. known for its straight trunk and high ‘Fastigiatum’ - Narrow form, with upright branches nearly canopy.
    [Show full text]