Classification of Arachnoids on Cytherean Surface. V-P

Total Page:16

File Type:pdf, Size:1020Kb

Classification of Arachnoids on Cytherean Surface. V-P Lunar and Planetary Science XXXII (2001) 1093.pdf CLASSIFICATION OF ARACHNOIDS ON CYTHEREAN SURFACE. V-P. Kostama, Astronomy, Univer- sity of Oulu, FIN-90014, Finland (<[email protected]>). Introduction: This group of circular concentric plains, more than half of their total population are as- features with radial lineaments was first seen on the sociated with a deformation zone, usually with a com- Venera 15/16 radar images and later defined in detail pressional one. These Class I arachnoids form about 53 by the Magellan mission [1, 2]. They were given a % of the global Venusian arachnoid population. There morphologically descriptive name after their appear- are somewhat more features in the Subclass Ia, which ance, which does resemble a spider (in Greek, arachne consist of arachnoids which are located on a deforma- = spider, -oid = resemblance) [1]. The origin of these tion zone or as a continuation of a deformation zone. features is still uncertain. We do not know their rela- The Subclass Ib arachnoids are located in the vicinity tion to the other circular or elongate structures, such as of a deformation zone, which has probably affected to coronae or calderas [3]. The arachnoids and coronae do the formation of these surrounding features. One other have many similarities and this is why arachnoids have deviation between the subclasses is the topography of been thought to be corona-like features [2], a sub-class the arachnoids. Arachnoids with dome-like topography of coronae [4] or possibly a part of the corona forma- are frequent within the Subclass Ia, while in the Sub- tion process itself, presenting an earlier phase of class Ib the arachnoids usually have topographic an- coronae evolution [3]. The term is sometimes consid- nulus. The dome-like arachnoids are generally quite ered as an archaic way to present a concentric corona small. The most important characteristic for the Class I with radial lineaments around the annulus [5]. How- arachnoids is their tendency to exist in groups. These ever, the term “corona” is a more broader morphologi- groups are very original and form large scale features. cal term, indicating any circular or elongate structure Class II. The Class II is composed of arachnoids defined primarily by an annulus of concentric fractures that are located on plains and do not have any clear and ridges [1, 6, 7]. The use of the term “arachnoid” association to any surrounding geological formation or does not rule out the possibility that the arachnoids structure. The arachnoids in this class do generally may be subtypes of coronae. The term “arachnoid” is form groups, but the groups do not have such close based on the morphology and it is convenient to use connected structures as in the case of Class I arach- and readily characterizes the specified features [8]. noids. The topography of all the plains arachnoids is Arachnoids, as a separate group of morphological fea- usually similar. The depressed center is surrounded by tures, do have a clear basis for their own classification. elevated rim. In a few cases the topography is dome- like. This class includes 21 % of the arachnoid popula- Arachnoid classification based on the geological tion. environment: Arachnoids do not have any prior speci- Class III. The arachnoids near the tessera strips or fied classifications. All such features were earlier in- islands belong to the Class III. The tessera terrain is cluded to the class of radial-concentric corona-like thought to be remnant of the older Venusian surface, features [7] in the corona classification by Pronin and and the crust may be thicker in those areas. The Class Stofan [6]. In addition to that, we have only several III arachnoids are never located directly on the tessera lists of volcanic formations, which feature the global surface. Their main characteristic is that they are single population of arachnoids on Venus [2, 3, 4, 9]. features, without forming any groups. About half of Because arachnoids form a group of morphologi- the arachnoids in this class have some sort of double- cally distinguishable features, it is rather difficult to ring structure, but the rim is usually irregular in shape. classify a single arachnoid according to its morphol- The topography of the arahnoids is generally dome- ogy. The variations in their appearance are quite small like, only two of the features in this class have a clear and reflect probably differences in the geological envi- topographic rim. Nine percent of arachnoids belong to ronment [8]. Variations in arachnoid locations and in this class. their geological environments can be used to classify Class IV. The arachnoids close to volcanoes and the arachnoid population. Differencies in geological those located in highly volcanic areas belong to this environments give us the main variables which can be class. These features are located in areas with high used in classifying arachnoids or any other morphol- concentration of extrusive volcanism. Typical to the ogy-based features. In arachnoid case, we know that arachnoids in this class is the diversity of their charac- they are generally located below the mean planetary teristics. They also differ clearly from the arachnoids surface (3051,84 km) and their global distribution is in other classes. The diversity of the features in this not random [8, 10, 11]. In this study the arachnoids class is reflected in the topographies of the arachnoids have been classified into four main groups, Classes I – as well. About 50 percent has some sort of elevated IV, with Class I having two subclasses, Ia and Ib. topographic rim, which is usually irregular and some- Class I. It is essential to notice that although the what partly depressed. The arachnoids with depressed majority of arachnoids are located on the Venusian topography are usually found in this class too. In these Lunar and Planetary Science XXXII (2001) 1093.pdf CLASSIFICATION OF ARACHNOIDS: V-P. Kostama cases the lava flows have covered the center of the arachnoid, and the lava load has resulted in the depres- sion of the center.Class IV includes 16 % of Venusian arachnoids. The distribution of arachnoid classes reflects cer- tain noticeable facts. All but three of the features in Class I are on the northern hemisphere. These arach- noids usually exist in larger groups. The arachnoids in Subclass Ia have the same distribution as the other northern arachnoids, in general. In contrast to the Class I arachnoids, the arachnoids of Class IV seem to con- centrate on the southern hemisphere. Three features part from this trend. Two of these are located next to Sif and Gula Mons volcanoes close to the equator. Conclusion: Arachnoids are morphological fea- tures. The characteristics are unique to this group of Cytherean structures. They have a distribution that probably reflects certain qualities of the Venusian geological development. Their distribution can be used to classify the features into four major classes accord- ing to the geological environment. The different geo- logical surroundings give each class several unique characteristics with clear deviations in tectonics, vol- canism and topography. References: [1] Barsukov et al. (1986), JGR 91, pp. 378 - 398. [2] Head, J.W., C.S. Crumpler and J.C. Aubele (1992), JGR 97, pp. 13153 - 13197. [3] Ham- ilton, V.E. and E.R. Stofan (1996), LPSC XXVII, pp. 483 - 484. [4] Price, M. and J. Suppe (1995) Earth Moon and Planets 71, pp. 99 - 145. [5] Chapman, M.G. and J.R. Zimbelman (1998), Icarus 132, pp. 344 - 361. [6] Pronin and Stofan (1990), Icarus Vol. 87, pp. 452 - 474. [7] Stofan, E.R., V.L. Sharpton, G. Schubert, G. Baer, D.L. Bindschadler, D.M. Janes and S.W. Squyres (1992), JGR 97, pp. 13347 - 13378. [8] Aittola, M. and V-P. Kostama (2000), PSS 48, pp. 1479 – 1489. [9] Crumpler, C.S. et al. (1996). Venus Volcanic Feature Catalogue. http://porter.geo. brown.edu/planetary /databases.html. [10] Kostama, V-P. and M. Aittola, this conference. [11] Aittola, M. and V-P. Kostama, this conference..
Recommended publications
  • THE FOUR ARACHNOID GROUPS of VENUS. Kostama, V-P
    Lunar and Planetary Science XXXIII (2002) 1115.pdf THE FOUR ARACHNOID GROUPS OF VENUS. Kostama, V-P. Astronomy, Department of Physical Sciences, Uni- versity of Oulu, P.O. BOX 3000, FIN-90014, Finland (<[email protected]>). Introduction: A population of 96 arachnoids has some parts of the ridge belt cut the arachnoids. This been found on Venus [1]. These surface structures implies that the arachnoids or the group may have had were first discovered on the Venera 15/16 radar images several evolution phases. and later defined in detail by the Magellan mission [2, 3]. The arachnoids have a peculiar distribution, which is generally different to that of the coronae and particu- larly the novae [4]. The global distribution of arach- noids reflects certain noticeable facts: There is a clear concentration of arachnoid features in the northern hemisphere as 65,6 percent (63 feat.) of the features is located there, while only 34,4 percent (33 feat.) of the population is located in the southern hemisphere [5]. In addition, the arachnoids form four large groups which include roughly 25 % of the total population. The arachnoids of Bereghinya and Ganiki Planitia: The arachnoid group of Bereghinya Planitia is by far the largest arachnoid concentration on Venus. The structural composition of the features of the group are generally distinct and the features are connected by a uniform, chain-like pattern of lineaments. Figure 2. Scetch map of the large arachnoid group on Bereghinya Planitia. Brown lines are ridges, red repre- sents the lava channel within the area. Deformation zones are in grey.
    [Show full text]
  • Geologic Map of the Ganiki Planitia Quadrangle (V–14), Venus Eric B
    Claremont Colleges Scholarship @ Claremont Pomona Faculty Publications and Research Pomona Faculty Scholarship 1-1-2011 Geologic Map of the Ganiki Planitia Quadrangle (V–14), Venus Eric B. Grosfils Pomona College Sylvan M. Long Elizabeth M. Venechuk Debra M. Hurwitz Joseph W. Richards See next page for additional authors Recommended Citation Grosfils, E.B., Long, S.M., Venechuk, E.M., Hurwitz, D.M., Richards, J.W., Kastl, Brian, Drury, D.E., and Hardin, Johanna, 2011, Geologic map of the Ganiki Planitia quadrangle (V-14), Venus: U.S. Geological Survey Scientific nI vestigations Map 3121. This Report is brought to you for free and open access by the Pomona Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in Pomona Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Authors Eric B. Grosfils, Sylvan M. Long, Elizabeth M. Venechuk, Debra M. Hurwitz, Joseph W. Richards, Brian Kastl, Dorothy E. Drury, and Johanna S. Hardin This report is available at Scholarship @ Claremont: http://scholarship.claremont.edu/pomona_fac_pub/303 Prepared for the National Aeronautics and Space Administration Geologic Map of the Ganiki Planitia Quadrangle (V–14), Venus By Eric B. Grosfils, Sylvan M. Long, Elizabeth M. Venechuk, Debra M. Hurwitz, Joseph W. Richards, Brian Kastl, Dorothy E. Drury, and Johanna Hardin Pamphlet to accompany Scientific Investigations Map 3121 75° 75° V–1 V–3 V–6 50° 50° V–4 V–5 V–11 V–16 V–12 V–15 V–13 V–14 25° 25° V–23 V–28 V–24 V–27 V–25 V–26 90° 120° 150° 180° 210° 240° 270° 0° 0° V–37 V–38 V–36 V–39 V–35 V–40 –25° –25° V–49 V–50 V–48 V–51 V–47 V–52 V–58 V–59 –50° –50° V–57 V–60 2011 V–62 –75° –75° U.S.
    [Show full text]
  • Title Spons Agency Bureau No Pub Date Contract Note
    DOCUMENT LIZSUME ED 071' C87 82 015 524 TITLE Project Musics Reader 2,Motion in the Heavens. .INSTITUTION Harvard Univ., Cambridge,Mass. Harvard Project _Physics. SPONS AGENCY Office of Education (DREW), Washington, D.C.,Bureau of Research. BUREAU NO BK-5-1038 PUB DATE 68 CONTRACT 08C-5-10-058 NOTE 233p.; Authorized InterimVersion EDRS PRICE MF -$0.65 HC-89.87 _DESCRIPTORS Astronomy; Instructional Materials;.*Motion; *Physics; Science, Fiction;. Science Materials; _Secondary Grades; *Secondary School Science; *Space; *Supplementary Reading Materials IDENTIFIER'S Harvard Project Physics ABSTRACT As a supplement to.Projpct Physics Unit 2, specially, selected articles are presented in this reader for student browsing. _Eight excerpts are given under headings:,the starry messenger, Newton_. And the principia, an appreciation of the earth, space the unconquerable, Is there intelligent life beyond the earth3,11 the life story of a galaxy, expansion of the universe, and Dyson sphere. Seven book passages. are included under. the, headings of the black cloud, roll call, a night at the observatory, Repler's celestial music, universal gravitation, a table of stars within twenty-two light years that could have habitable planets, and three poetic _fragments about astronomy. The remaining articles includea preface to the books of the ,revolutions, Kepler, Kepler on. Mars, laws of ..motion and proposition one,, garden of Epicurus, a search for life on earth at Kilometer resolution, the. boy who redeemed his father's _name, great comet of 1965, gravity experiments, unidentified flying objects, and negative mass. Illustrations for explanationpurposes . are provided. The work of Harvard. Project Physics has been .financially supported by: the Carnegie Corporation of New York, the Ford.
    [Show full text]
  • 18Th Meeting of the Venus Exploration Analysis Group (Vexag)
    18TH MEETING OF THE VENUS EXPLORATION ANALYSIS GROUP (VEXAG) Program and Abstracts LPI Contribution No. 2356 18th Meeting of the Venus Exploration Analysis Group November 16–17, 2020 Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Noam Izenberg Johns Hopkins Applied Physics Laboratory Darby Dyar Mount Holyoke College Science Organizing Committee Darby Dyar Planetary Science Institute, Mount Holyoke College Noam Izenberg JHU Applied Physics Laboratory Megan Andsell NASA Headquarters Natasha Johnson NASA Goddard Jennifer Jackson California Institute of Technology Jim Cutts Jet Propulsion Laboratory Tommy Thompson Jet Propulsion Laboratory Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Compiled in 2020 by Meeting and Publication Services Lunar and Planetary Institute USRA Houston 3600 Bay Area Boulevard, Houston TX 77058-1113 This material is based upon work supported by NASA under Award No. 80NSSC20M0173. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. ISSN No. 0161-5297 Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/vexag2020/ Abstracts can be cited as Author A.
    [Show full text]
  • 2013 October
    TTSIQ #5 page 1 OCTOBER 2013 Reducing space transportation costs considerably is vital to achievement of mankind’s goals & dreams in space NEWS SECTION pp. 3-70 p. 3 Earth Orbit and Mission to Planet Earth p. 17 Cislunar Space and the Moon p. 26 Mars and the Asteroids p. 45 Other Planets and their moons p. 62 Starbound ARTICLES & ESSAYS pp. 72-95 p. 72 Covering Up Lunar Habitats with Moondust? - Some Precedents Here on Earth - Peter Kokh p. 74 How can we Stimulate Greater Use of the International Space Station? - Peter Kokh p. 75 AS THE WORLD EXPANDS The Epic of Human Expansion Continues - Peter Kokh p. 77 Grytviken, South Georgia Island - Lessons for Moonbase Advocates - Peter Kokh K p. 78 The “Flankscopes” Project: Seeing Around the Edges of the Moon - Peter Kokh p. 81 Integrating Cycling Orbits to Enhance Cislunar Infrastructure - Al Anzaldua p. 83 The Responsibilities of Dual Citizenship for Our economy, Our planet, and the Evolution of a Space Faring Civilization - David Dunlop p. 87 Dueling Space Roadmaps - David Dunlop p. 91 A Campaign for the International Lunar Geophysical Year: Some Beginning Considerations - David Dunlop STUDENTS & TEACHERS pp. 97-100 p. 97 Lithuanian Students Hope for free Launch of 2 Amateur Radio CubeSats p. 98 NASA Selects 7 University Projects For 2014 X-Hab Innovation Challenge Penn State University “Lions” take on the Google Lunar X-Prize Challenge p. 99 Do you experience “Manhattan Henge” in your home town? Advanced Robot with more sophisticated motion capabilities unveiled The Ongoing CubeSat Revolution: what it means for Student Space Science p.
    [Show full text]
  • A Dictionary of Mythology —
    Ex-libris Ernest Rudge 22500629148 CASSELL’S POCKET REFERENCE LIBRARY A Dictionary of Mythology — Cassell’s Pocket Reference Library The first Six Volumes are : English Dictionary Poetical Quotations Proverbs and Maxims Dictionary of Mythology Gazetteer of the British Isles The Pocket Doctor Others are in active preparation In two Bindings—Cloth and Leather A DICTIONARY MYTHOLOGYOF BEING A CONCISE GUIDE TO THE MYTHS OF GREECE AND ROME, BABYLONIA, EGYPT, AMERICA, SCANDINAVIA, & GREAT BRITAIN BY LEWIS SPENCE, M.A. Author of “ The Mythologies of Ancient Mexico and Peru,” etc. i CASSELL AND COMPANY, LTD. London, New York, Toronto and Melbourne 1910 ca') zz-^y . a k. WELLCOME INS77Tint \ LIBRARY Coll. W^iMOmeo Coll. No. _Zv_^ _ii ALL RIGHTS RESERVED INTRODUCTION Our grandfathers regarded the study of mythology as a necessary adjunct to a polite education, without a knowledge of which neither the classical nor the more modem poets could be read with understanding. But it is now recognised that upon mythology and folklore rests the basis of the new science of Comparative Religion. The evolution of religion from mythology has now been made plain. It is a law of evolution that, though the parent types which precede certain forms are doomed to perish, they yet bequeath to their descendants certain of their characteristics ; and although mythology has perished (in the civilised world, at least), it has left an indelible stamp not only upon modem religions, but also upon local and national custom. The work of Fruger, Lang, Immerwahr, and others has revolutionised mythology, and has evolved from the unexplained mass of tales of forty years ago a definite and systematic science.
    [Show full text]
  • The Lachesis Tessera Quadrangle (V-18), Venus
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2557.pdf THE LACHESIS TESSERA QUADRANGLE (V-18), VENUS. L. A. Fattaruso1, D. L. Buczkowski3, E. M. McGowan1,2, and G. E. McGill1. 1University of Massachusetts, Amherst, MA; 2Johns Hopkins Applied Physics La- boratory, Laurel, MD 20723; 3Mount Holyoke College, South Hadley, MA, [email protected]. Introduction: The Lachesis Tessera V-18 quad- to that of tessera. Exposures are widely scattered, and rangle (25o-50oN, 300o-330oE) includes parts of Sedna too small to determine age relations with tessera. and Guinevere Planitiae; regional plains [1] cover Plains materials: Regional plains, the most exten- ~80% of the quadrangle. The region includes 2 defor- sive materials in the quadrangle, are mapped as two mation belts and embayed fragments of 1-2 possible units, based on radar brightness. While the number of additional belts, 3 large central volcanoes, abundant impact craters superposed on the plains is too small to small shield volcanoes and associated flow materials, measure age differences between the emplacement of 13 impact craters, 3 named coronae, many coronae-like the darker (pr1) and brighter (pr2) regional plains features, arachnoid-like features, and dark spots [2]. units [3], stratigraphic markers imply that pr2 is The quadrangle contains a linear grouping of a promi- younger than pr1. However, clear cut examples of nent NW to SE oriented structural belt, coronae, and wrinkle ridges and fractures superposed on pr1 but coronae-like structures [2]. Important individual struc- truncated by pr2 have not been found, indicating that tural features include radar-bright lineaments, graben, the age difference is very small.
    [Show full text]
  • Étude De L'atmosphère De Vénus À L'aide D'un Modèle De Réfraction Lors
    Étude de l’atmosphère de Vénus à l’aide d’un modèle de réfraction lors du passage devant le Soleil des 5-6 Juin 2012 Christophe Pere To cite this version: Christophe Pere. Étude de l’atmosphère de Vénus à l’aide d’un modèle de réfraction lors du pas- sage devant le Soleil des 5-6 Juin 2012. Autre. Université Côte d’Azur, 2016. Français. NNT : 2016AZUR4063. tel-01477867 HAL Id: tel-01477867 https://tel.archives-ouvertes.fr/tel-01477867 Submitted on 27 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE´ NICE SOPHIA ANTIPOLIS - UFR Sciences E´cole doctorale no 364 : Sciences Fondamentales et Appliqu´e es THE`SE pour obtenir le titre de Docteur en Sciences de l’UNIVERSITE´ Nice Sophia Antipolis Sp´ecialit´e: “SCIENCES DE LA PLANETE` ET DE L’UNIVERS” pr´esent´eeet soutenue publiquement par Christophe PERE Etude´ de l’atmosph`ere de V´enus `al’aide d’un mod`ele de r´efraction lors du passage devant le Soleil du 5-6 Juin 2012 Directeur de th`ese : Paolo TANGA Co-directeur de th`ese : Thomas WIDEMANN le 23 septembre 2016 Jury M.
    [Show full text]
  • Fama and Fiction in Vergil's Aeneid
    Fama and Fiction in Vergil’s Aeneid For my sister, Lydia Fama and Fiction in Vergil’s Aeneid Antonia Syson The Ohio State University Press • Columbus Copyright © 2013 by The Ohio State University. All rights reserved. Library of Congress Cataloging-in-Publication Data Syson, Antonia Jane Reobone, 1973– Fama and fiction in Vergil’s Aeneid / Antonia Syson. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8142-1234-9 (cloth : alk. paper) ISBN-10: 0-8142-1234-4 (cloth : alk. paper) ISBN-13: 978-0-8142-9336-2 (cd-rom) ISBN-10: 0-8142-9336-0 (cd-rom) 1. Virgil. Aeneis—Criticism and interpretation. 2. Epic poetry, Latin—History and criticism. 3. Rhetoric, Ancient. I. Title. PA6932.S97 2013 873'.01—dc23 2013014967 Cover design by Mia Risberg Text design by Juliet Williams Type set in Adobe Garamond Pro Printed by Thomson-Shore, Inc. Cover image: Master of the Aeneid (fl. ca. 1530–1540). Juno, Seated on a Golden Throne, Asks Alecto to Confuse the Trojans. France, Limoges, ca. 1530–35. Painted enamel plaque on copper, partly gilt, H. 9 in. (22.9 em) ; W. 8 in. (20.3 em.). Fletcher Fund, 1945 (45.60.6). The Metropolitan Museum of Art, New York, NY, U.S.A. Image copyright © The Metropolitan Museum of Art. Image source: Art Resource, NY The paper used in this publication meets the minimum requirements of the American Na- tional Standard for Information Sciences—Permanence of Paper for Printed Library Materials. ANSI Z39.48–1992. 9 8 7 6 5 4 3 2 1 Contents Acknowledgments vii Chapter 1 • Introduction 1 1.1 The seams of fiction in
    [Show full text]
  • Starf*Cker 1 “Mythology, Like the Severed Head of Orpheus, Goes On
    Starfcker “Mythology, like the severed head of Orpheus, goes on singing even in death and from afar.”1 In the pages to follow we will endeavor to shed some light on the celebrated love affair between Mars and Venus. Far from being an old wives’ tale lampooning the differences between the respective sexes, the “marriage” of the two planets signaled nothing less than Creation itself. Why should anyone care about ancient traditions recounting the sexual escapades between Venus and Mars? Ancient myth represents, as it were, a narrative or mnemonic “fossil” reflecting the intellectual history of mankind. For untold millennia the narration and memorization of such stories remained the primary means of transmitting important information about the history of the world and the most treasured beliefs of early man. If we are to gain a better understanding of the origins of religion, philosophy, and natural science, it stands to reason that we would do well to study the content and message of ancient myth wherein such matters form an overriding concern. Especially significant from the standpoint of modern science is the information encoded in ancient myth regarding the recent history of the solar system. Indeed, it is our contention that the eyewitness testimony of ancient man—as recorded in sacred traditions and rock art the world over—offers a surprisingly detailed and trustworthy guide for reconstructing that history. Starf*cker is an exercise in mythological exegesis and, as such, builds upon and extends our previous findings. The first volume in this series of monographs investigating the fascinating and multifaceted mythology surrounding the various planets—Martian Metamorphoses—offered an overview of Mars’ role in ancient myth and religion.
    [Show full text]
  • Planets Solar System Paper Contents
    Planets Solar system paper Contents 1 Jupiter 1 1.1 Structure ............................................... 1 1.1.1 Composition ......................................... 1 1.1.2 Mass and size ......................................... 2 1.1.3 Internal structure ....................................... 2 1.2 Atmosphere .............................................. 3 1.2.1 Cloud layers ......................................... 3 1.2.2 Great Red Spot and other vortices .............................. 4 1.3 Planetary rings ............................................ 4 1.4 Magnetosphere ............................................ 5 1.5 Orbit and rotation ........................................... 5 1.6 Observation .............................................. 6 1.7 Research and exploration ....................................... 6 1.7.1 Pre-telescopic research .................................... 6 1.7.2 Ground-based telescope research ............................... 7 1.7.3 Radiotelescope research ................................... 8 1.7.4 Exploration with space probes ................................ 8 1.8 Moons ................................................. 9 1.8.1 Galilean moons ........................................ 10 1.8.2 Classification of moons .................................... 10 1.9 Interaction with the Solar System ................................... 10 1.9.1 Impacts ............................................ 11 1.10 Possibility of life ........................................... 12 1.11 Mythology .............................................
    [Show full text]
  • “CYTHEREAN SEP MISSION: VENUS EXPLORATION” a Novel Concept for High Altitude Planetary Atmospheric Exploration
    18th VEXAG Meeting 2020 (LPI Contrib. No. 2356) 8041.pdf “CYTHEREAN SEP MISSION: VENUS EXPLORATION” A Novel Concept for High Altitude Planetary Atmospheric Exploration. Mentor: Ing. Carlos Alberto Galeano Hoyos; Made by: Ing. Paula Andrea Duque Barón; Ing. Juan Felipe Casadiego Molina; Ing. Santiago Rincón Martínez; Ing. Mateo Aldana Hernández; Ing. Andrés Felipe Alvarado Mejia; Ing. Juan Diego Acevedo Mena Introduction: Cytherean Sep, aims to provide new According to recent studies by a team of Russian and science data, complementing the studies carried out on prior American-scientists [2], including Limaye, who is a member exploration missions, highlighting a research approach on of the Venera-D scientific team; it was detected in the astrobiological field and enhancing the understanding of ultraviolet spectrum certain spots in the clouds of the high evolution led to a hostile environment. Applying, the proposed atmosphere of Venus, which by the way, has pressure and exploration platforms to complete in-situ research of temperature conditions similar to the Earth at a height between physicochemical processes in Venus' upper atmosphere, 50 to 60 km, and possibly it is a formation of organic which could catalyze the organic compound formation compounds that despite the presence of carbon dioxide, processes. Landing for a long duration mission and descent sulfuric acid among other compounds, could develop and safely on the region require a significant advance in survive, considering the existence of complex organic engineering development and it’s estimated that this kind compounds that develop and subsist in extreme environments technology will be ready for the next decade or beyond.
    [Show full text]