16Th Meeting of the Venus Exploration and Analysis Group (VEXAG)

Total Page:16

File Type:pdf, Size:1020Kb

16Th Meeting of the Venus Exploration and Analysis Group (VEXAG) Program 16th Meeting of the Venus Exploration and Analysis Group (VEXAG) November 6–8, 2018 Applied Physics Laboratory, Johns Hopkins University Laurel, Maryland Sponsors Lunar and Planetary Institute Universities Space Research Association Venus Exploration Analysis Group Program Committee Martha Gilmore, Wesleyan University Robert Grimm, Southwest Research Institute Candace Gray, New Mexico State University Patrick McGovern, Lunar and Planetary Institute Emilie Royer, University of Colorado Noam Izenberg, Applied Physics Laboratory Abstracts for this conference are available via the conference website at https://www.hou.usra.edu/meetings/vexag2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In 16th Meeting of the Venus Exploration and Analysis Group (VEXAG), Abstract #XXXX. LPI Contribution No. 2137, Lunar and Planetary Institute, Houston Lunar and Planetary Institute • 3600 Bay Area Boulevard • Houston, Texas 77058-1113 GUIDE TO SESSIONS 16th Meeting of the Venus Exploration and Analysis Group (VEXAG) November 6–8, 2018 Applied Physics Laboratory, Johns Hopkins University Laurel, Maryland Tuesday, November 6, 2018 8:30 a.m. Bldg. 200, Room 100 VEXAG Overview and International Venus Exploration 1:30 p.m. Bldg. 200, Room 100 Guidance Document Revisions, Mission Studies, Planning for Decadal Survey Wednesday, November 7, 2018 8:30 a.m. Bldg. 200, Room 100 Venus Surface and Interior Science 10:45 a.m. Bldg. 200, Room 100 Venus Astrobiology and Exoplanets 1:30 p.m. Bldg. 200, Room 100 Venus Atmosphere Science 4:00 p.m. Bldg. 200, Room 100 Poster Session: Venus Surface and Atmosphere Science 4:00 p.m. Bldg. 200, Room 100 Poster Session: Venus Technology and Instrument Studies Thursday, November 8, 2018 8:30 a.m. Bldg. 200, Room 100 Venus Technology and Instrument Studies PROGRAM Tuesday, November 6, 2018 VEXAG OVERVIEW AND INTERNATIONAL VENUS EXPLORATION 8:30 a.m. Bldg. 200, Room 100 Chairs: Robert Grimm and Martha Gilmore Times Authors (* Denotes Speaker) Abstract Title and Summary 8:30 a.m. Grimm R. E. * Welcome, Review of VEXAG Activities and Meeting 9:00 a.m. Ocampo A. * NASA Status, Responses to Prior VEXAG Findings 9:45 a.m. C. Mercer * High Operating Temperature Technology (HOTTech) Program Overview 10:00 a.m. Simons R. * PICASSO/MatISSE Instrument Development Programs 10:15 a.m. Break 10:30 a.m. Satoh T. * Akatsuki at Venus: Extended Mission 10:45 a.m. Gregg T. K. P. * Zasova L. Venera-D: A Potential Mission to Explore Venus’ Economou T. Eismont N. Surface, Atmosphere and Gerasimov M. Gorinov D. Ignatiev N. Plasma Environment [#8045] Ivanov M. Khatuntsev I. Korablev O. This presentation will summarize the current Kremic T. Jessup K. Limaye S. accomplishments of the Venera-D Joint Science Lomakin I. Martynov A. Ocampo A. Definition Team as we work to define a mission to explore Venus in the post-2025 timeframe. 11:00 a.m. Ghail R. C. * EnVision Team EnVision: Phase 0 Developments [#8028] EnVision was selected for Phase 0/A study in the ESA M5 round of medium-class missions. We will report on its conclusions as far as possible and detail opportunities for community involvement and collaboration. 11:15 a.m. Harikrishnan G. * Indian Space Research Organisation’s Plans for Venus Exploration 11:30 a.m. Lunch Tuesday, November 6, 2018 GUIDANCE DOCUMENT REVISIONS, MISSION STUDIES, PLANNING FOR DECADAL SURVEY 1:30 p.m. Bldg. 200, Room 100 Chairs: Robert Grimm and Martha Gilmore Times Authors (* Denotes Speaker) Abstract Title and Summary 1:30 p.m. Grimm R. E. * Intro to Current Studies 1:40 p.m. Treiman A. H. * VEXAG GOI Document 1:55 p.m. Hunter G. W. * VEXAG Technology Document 2:10 p.m. Cutts J. A. * VEXAG Roadmap Document 2:25 p.m. Gilmore M. S. * Venus Flagship Study 2:40 p.m. Jessup K. L. * Gilmore M. S. Venus’ Unique Role in Solar System History: The Grinspoon D. Limaye S. Luhmann J. Five Big Questions [#8050] Many questions remain regarding Venus’ atmospheric, interior and habitability evolution. It is imperative that the critical investigation goals in each of these areas is adequately communicated to the public, and in the upcoming Decadal Survey. 2:55 p.m. Gilmore M. S. * Decadal Survey Discussion 3:15 p.m. Break 3:30 p.m. Grimm R. E. * Venus Bridge Introduction 3:35 p.m. Hunter G. W. * Venus Bridge Study at Glenn Research Center 3:50 p.m. Cutts J. A. * Venus Bridge Study at Jet Proplusion Laboratory 4:05 p.m. Grimm R. E. * Venus Bridge Summary 4:15 p.m. Cutts J. A. * Matthies L. H. Hall J. L. Venus Aerial Platform Study [#8009] Thompson T. W. The Venus Aerial Platform Study assessed the Venus Aerial Platform Study Team science that can be accomplished for exploring Venus with aerial vehicles and the required technologies. 4:30 p.m. Izenberg N. R. * Venus Surface Platforms Wednesday, November 7, 2018 VENUS SURFACE AND INTERIOR SCIENCE 8:30 a.m. Bldg. 200, Room 100 Chairs: Jennifer Whitten and Richard Ghail Times Authors (* Denotes Speaker) Abstract Title and Summary 8:30 a.m. Treiman A. H. * Wroblewski F. B. Ovda Fluctus, the Festoon Lava Flow on Ovda Bhiravarasu S. Regio, Venus: Most Likely Basalt [#8014] We have mapped the lava flow Ovda Fluctus, on Ovda Regio, in detail. Ovda Fluctus has been interpreted as a silicic (rhyolite) lava flow. However, the preponderance of data suggests that it is composed of basaltic, not silicic, lava. 8:45 a.m. Whitten J. L. * Campbell B. A. Radar Backscatter Variations in Tessera Across Venus [#8018] Tessera radar brightness values vary across Venus. Some of these variations are spatially correlated with crater ejecta. Other brightness variations may be due to other fine grained materials and inherent differences in the tesserae source materials. 9:00 a.m. Campbell B. A. * Whitten J. L. New Insights on Maxwell Montes Surface Properties from Multi-Year Earth-Based Observations [#8030] We present initial results of Venus surface studies using Earth-based radar observations collected in 1988, 2012, 2015, and 2017. The new maps reveal unexpected variations in surface properties across Maxwell Montes. 9:15 a.m. Dyar M. D. * Helbert J. Boucher T. Venus Surface Oxidation and Weatehring as Maturilli A. Walter I. Widemann T. Viewed from Orbit with Six-Window Marcq E. Ferrari S. D’Amore M. VNIR Spectroscopy [#8015] Muller N. Smrekar S. Iron oxidation and changes in mineralogy due to surface/atmosphere interactions can be detected from orbit using a six-window orbital spectrometer. 9:30 a.m. Knicely J. J. * Herrick R. R. Atmospheric Windows to Image the Surface from Beneath the Cloud Deck on the Night Side of Venus [#8019] We explore possible atmospheric windows beneath the cloud deck to study the surface of the night side Venus. Numerous possible windows were found with the potential to elucidate questions about the composition and redox state of the surface of Venus. 9:45 a.m. Ghail R. C. * Byrne P. K. Mason P. J. Towards a New Understanding of Venus [#8013] In recent years there has been a convergence of ideas and observations that show Venus to be both more complex and active than previously thought. Here we review how a range of different processes contribute to the present-day appearance of Venus. 10:00 a.m. Byrne P. K. * Ghail R. C. A Globally Fragmented and Mobile Lithosphere Sengör A. M. C. James P. B. on Venus [#8008] Klimczak C. Solomon S. C. We report observations in support of a continuum of lithospheric mobility, with Earth’s “mobile lid” tectonics at one end, the “stagnant lid” tectonics of Mercury, Mars, and the Moon at the other, and Venus somewhere in between. 10:15 a.m. Goossens S. * Mazarico E. Venus Gravity Field Determination Using Rosenblatt P. Lebonnois S. Lemoine F. Magellan and Venus Express Tracking Data [#8029] We present an updated gravity field model for Venus from Magellan and Venus Express data. We focus on extending the temporal baseline to determine Venus’ Love number and rotational parameters, and the effects of the atmosphere on these parameters. 10:30 a.m. Break Wednesday, November 7, 2018 VENUS ASTROBIOLOGY AND EXOPLANETS 10:45 a.m. Bldg. 200, Room 100 Chair: Giada Arney Times Authors (* Denotes Speaker) Abstract Title and Summary 10:45 a.m. Limaye S. S. * Mogul R. Jessup K. L. An Astrobiology Aspect for Exploring Gregg T. Pertzborn R. Ocampo A. Venus Clouds [#8051] Lee Y. J. Bullock M. A. Grinspoon D. Possibility of life in the habitable zone in the cloud layer on Venus cannot be excluded from available measurements. It has been suggested that microorganisms may contribute to contrasts and albedo of Venus, making this an exploration objective. 11:00 a.m. Arney G. N. * Venus: The Exoplanet Laboratory Next Door [#8005] We review what present and past Venus teaches us context of comparative planetology and processes that shape habitability and biosignature “false positives” in exoplanet atmospheres. Venus plays a vital role in helping us understand exoplanets. 11:15 a.m. Kane S. R. * Arney G. Crisp D. Venus: The Nearby Domagal-Goldman S. Glaze L. S. Exoplanetary Laboratory [#8047] Goldblatt C. Grinspoon D. Head J. W. In this talk I will present the current state of Lenardic A. Unterborn C. Way M. J. detecting potential Venus analogs, expected yield from current exoplanet missions, and summarize the primary exoplanet science questions that would be addressed by a return surface mission to Venus. 11:30 a.m. Smrekar S. E. * Davaille A. Venus Geodynamics, Habitability, and Initiation of Subduction [#8036] Earth’s plate tectonics drives volcanism, tectonism, outgassing and recycling of volatiles, surface weathering, and potentially a core dynamo, all of which strongly influence long term habitability.
Recommended publications
  • Planetary Geologic Mappers Annual Meeting
    Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m.
    [Show full text]
  • The Vast Venus Conspiracy, Part III
    The Vast Venus Conspiracy, Part III By Dr. Raymond A. Keller, a.k.a. the “Cosmic Ray,” author of the international awards-winning Venus Rising trilogy (Headline Books, Terra Alta, West Virginia, 2015-2017) Why is Lady Gaga depicted with a scorpion in her “Venus” single’s cover art? To find out the amazing answer, go to the end of this article. See also http://gagadaily.com/forums/topic/188509-why-is-there-a-scorpion-on-the-venus- single-cover-art/. Many Surprises The photographs of the Venusian surface transmitted back to the Earth by the Soviet Union’s Venera 13 and Venera 14 landing probes provided many surprises. Planetary geologists were expecting to see a sandy desert under a very dim and distorted light. But what turned up in the photographs was a brightly-lit, orange-tinted landscape with jagged rocks strewn all about. In accordance with the findings of American space probes previously sent to our sister planet, as announced by spokespersons of the National Aeronautics and Space Administration (NASA) in the United States, scientists from around the globe were not anticipating such clear, bright pictures. It was even noted that the distant Venusian horizon was plainly visible in the corner imagery from the Venera photographs. If what the NASA specialists had been telling us all along, that Venus had such an extremely high atmospheric density approaching one hundred times that of the Earth’s, then the Venusian atmosphere would have been found to be as dense as water at a depth of 2,000 feet below sea level.
    [Show full text]
  • Hunting Hours Time Zone A
    WHEN AND WHERE TO HUNT WHEN AND WHERE Hunting Hours Time Zone A. Hunting Hours for Bear, Deer, Fall Wild Turkey, Furbearers, Shown is a map of the hunting-hour time zones. Actual legal hunting hours for and Small Game bear, deer, fall wild turkey, furbearer, and small game for Time Zone A are shown One-half hour before sunrise to one-half hour after sunset (adjusted for in the table at right. Hunting hours for migratory game birds are different and are daylight saving time). For hunt dates not listed in the table, please consult your published in the current-year Waterfowl Digest. local newspaper. 2016 Sept. Oct. Nov. Dec. To determine the opening (a.m.) and closing (p.m.) time for any day in another Note: time zone, add the minutes shown below to the times listed in the Time Zone A • Woodcock and teal Date AM PM AM PM AM PM AM PM Hunting Hours Table. hunting hours are 1 6:28 8:35 7:00 7:43 7:36 6:55 7:12 5:31 The hunting hours listed in the table reflect Eastern Standard Time, with an sunrise to sunset. 2 6:29 8:34 7:01 7:41 7:38 6:54 7:14 5:30 adjustment for daylight saving time. If you are hunting in Gogebic, Iron, Dickinson, • Spring turkey hunting 3 6:30 8:32 7:02 7:39 7:39 6:52 7:15 5:30 or Menominee counties (Central Standard Time), you must make an additional hours are one-half 4 6:31 8:30 7:03 7:38 7:40 6:51 7:16 5:30 adjustment to the printed time by subtracting one hour.
    [Show full text]
  • Daylight Saving Time (DST)
    Daylight Saving Time (DST) Updated September 30, 2020 Congressional Research Service https://crsreports.congress.gov R45208 Daylight Saving Time (DST) Summary Daylight Saving Time (DST) is a period of the year between spring and fall when clocks in most parts of the United States are set one hour ahead of standard time. DST begins on the second Sunday in March and ends on the first Sunday in November. The beginning and ending dates are set in statute. Congressional interest in the potential benefits and costs of DST has resulted in changes to DST observance since it was first adopted in the United States in 1918. The United States established standard time zones and DST through the Calder Act, also known as the Standard Time Act of 1918. The issue of consistency in time observance was further clarified by the Uniform Time Act of 1966. These laws as amended allow a state to exempt itself—or parts of the state that lie within a different time zone—from DST observance. These laws as amended also authorize the Department of Transportation (DOT) to regulate standard time zone boundaries and DST. The time period for DST was changed most recently in the Energy Policy Act of 2005 (EPACT 2005; P.L. 109-58). Congress has required several agencies to study the effects of changes in DST observance. In 1974, DOT reported that the potential benefits to energy conservation, traffic safety, and reductions in violent crime were minimal. In 2008, the Department of Energy assessed the effects to national energy consumption of extending DST as changed in EPACT 2005 and found a reduction in total primary energy consumption of 0.02%.
    [Show full text]
  • CRATER MORPHOMETRY on VENUS. C. G. Cochrane, Imperial College, London ([email protected])
    Lunar and Planetary Science XXXIV (2003) 1173.pdf CRATER MORPHOMETRY ON VENUS. C. G. Cochrane, Imperial College, London ([email protected]). Introduction: Most impact craters on Venus are propagating east and north/south. Can be minimised if pristine, and provide probably the best available ana- framelets have good texture on the left-hand side. logs for craters on Earth soon after impact; hence the Prominence extension – features extend down value of measuring their 3-D shape to known accuracy. range into a ridge, eg central peak linked to the rim. The USGS list 967 craters: from the largest, Mead at Probably due to radar shadowing differences, these are 270 km diameter, to the smallest, unnamed at 1.3 km. easily recognised and avoided during analysis. Initially, research focussed on the larger craters. Araration (from Latin: Arare to plough) consists of Schaber et al [1] (11 craters >50 km) and Ivanov et al parallel furrows some 50 pixels apart, oriented north- [2] (31 craters >70 km) took crater depth from Magel- south, and at least tens of metres deep. Fig 2, a lan altimetry. Sharpton [3] (94 craters >18 km) used floor-offsets in Synthetic Aperture Radar (SAR) F- MIDR pairs, as did Herrick & Phillips [4]. They list many parameters but not depth for 891 craters. The LPI database1 now numbers 941. Herrick & Sharpton [5] made Digital Elevation Models (DEMs) of all cra- ters at least partially imaged twice down to 12 km, and 20 smaller craters down to 3.6 km. Using FMAP im- ages and the Magellan Stereo Toolkit (MST) v.1, they automated matches every 900m but then manually ed- ited the resultant data.
    [Show full text]
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • Impact of Extended Daylight Saving Time on National Energy Consumption
    Impact of Extended Daylight Saving Time on National Energy Consumption TECHNICAL DOCUMENTATION FOR REPORT TO CONGRESS Energy Policy Act of 2005, Section 110 Prepared for U.S. Department of Energy Office of Energy Efficiency and Renewable Energy By David B. Belzer (Pacific Northwest National Laboratory), Stanton W. Hadley (Oak Ridge National Laboratory), and Shih-Miao Chin (Oak Ridge National Laboratory) October 2008 U.S. Department of Energy Energy Efficiency and Renewable Energy Page Intentionally Left Blank Acknowledgements The Department of Energy (DOE) acknowledges the important contributions made to this study by the principal investigators and primary authors—David B. Belzer, Ph.D (Pacific Northwest National Laboratory), Stanton W. Hadley (Oak Ridge National Laboratory), and Shih-Miao Chin, Ph.D (Oak Ridge National Laboratory). Jeff Dowd (DOE Office of Energy Efficiency and Renewable Energy) was the DOE project manager, and Margaret Mann (National Renewable Energy Laboratory) provided technical and project management assistance. Two expert panels provided review comments on the study methodologies and made important and generous contributions. 1. Electricity and Daylight Saving Time Panel – technical review of electricity econometric modeling: • Randy Barcus (Avista Corp) • Adrienne Kandel, Ph.D (California Energy Commission) • Hendrik Wolff, Ph.D (University of Washington) 2. Transportation Sector Panel – technical review of analytical methods: • Harshad Desai (Federal Highway Administration) • Paul Leiby, Ph.D (Oak Ridge National Laboratory) • John Maples (DOE Energy Information Administration) • Art Rypinski (Department of Transportation) • Tom White (DOE Office of Policy and International Affairs) The project team also thanks Darrell Beschen (DOE Office of Energy Efficiency and Renewable Energy), Doug Arent, Ph.D (National Renewable Energy Laboratory), and Bill Babiuch, Ph.D (National Renewable Energy Laboratory) for their helpful management review.
    [Show full text]
  • Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 Μm Images
    atmosphere Article Winds in the Lower Cloud Level on the Nightside of Venus from VIRTIS-M (Venus Express) 1.74 µm Images Dmitry A. Gorinov * , Ludmila V. Zasova, Igor V. Khatuntsev, Marina V. Patsaeva and Alexander V. Turin Space Research Institute, Russian Academy of Sciences, 117997 Moscow, Russia; [email protected] (L.V.Z.); [email protected] (I.V.K.); [email protected] (M.V.P.); [email protected] (A.V.T.) * Correspondence: [email protected] Abstract: The horizontal wind velocity vectors at the lower cloud layer were retrieved by tracking the displacement of cloud features using the 1.74 µm images of the full Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M) dataset. This layer was found to be in a superrotation mode with a westward mean speed of 60–63 m s−1 in the latitude range of 0–60◦ S, with a 1–5 m s−1 westward deceleration across the nightside. Meridional motion is significantly weaker, at 0–2 m s−1; it is equatorward at latitudes higher than 20◦ S, and changes its direction to poleward in the equatorial region with a simultaneous increase of wind speed. It was assumed that higher levels of the atmosphere are traced in the equatorial region and a fragment of the poleward branch of the direct lower cloud Hadley cell is observed. The fragment of the equatorward branch reveals itself in the middle latitudes. A diurnal variation of the meridional wind speed was found, as east of 21 h local time, the direction changes from equatorward to poleward in latitudes lower than 20◦ S.
    [Show full text]
  • Investigating Mineral Stability Under Venus Conditions: a Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2016 Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies Erika Kohler University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Geochemistry Commons, Mineral Physics Commons, and the The unS and the Solar System Commons Recommended Citation Kohler, Erika, "Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies" (2016). Theses and Dissertations. 1473. http://scholarworks.uark.edu/etd/1473 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Investigating Mineral Stability under Venus Conditions: A Focus on the Venus Radar Anomalies A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Space and Planetary Sciences by Erika Kohler University of Oklahoma Bachelors of Science in Meteorology, 2010 May 2016 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ____________________________ Dr. Claud H. Sandberg Lacy Dissertation Director Committee Co-Chair ____________________________ ___________________________ Dr. Vincent Chevrier Dr. Larry Roe Committee Co-chair Committee Member ____________________________ ___________________________ Dr. John Dixon Dr. Richard Ulrich Committee Member Committee Member Abstract Radar studies of the surface of Venus have identified regions with high radar reflectivity concentrated in the Venusian highlands: between 2.5 and 4.75 km above a planetary radius of 6051 km, though it varies with latitude.
    [Show full text]
  • Baltic-Show-2020» Cacib-Fci Интернациональная Выставка Собак «Балтик-Шоу-2020» Каталог
    FÉDÉRATION CYNOLOGIQUE INTERNATIONALE RUSSIAN KINOLOGICAL FEDERATION МЕЖДУНАРОДНАЯ КИНОЛОГИЧЕСКАЯ ФЕДЕРАЦИЯ РОССИЙСКАЯ КИНОЛОГИЧЕСКАЯ ФЕДЕРАЦИЯ INTERNATIONAL DOG SHOW «BALTIC-SHOW-2020» CACIB-FCI ИНТЕРНАЦИОНАЛЬНАЯ ВЫСТАВКА СОБАК «БАЛТИК-ШОУ-2020» КАТАЛОГ 26.09.2020 Россия, Санкт-Петербург / Russia, Saint-Petersburg Организатор - КЦ «Северная Венеция», СПб, ул. Шаврова, 9-64 Место проведения - СПб, Петербургское ш., 64/1, ЭКСПОФОРУМ Organizer – CC «Severnaya Venetsiya», SPb,Shavrova st., 9-64 Location – SPb, Peterburgskoe sh., 64/1, EXPOFORUM 26.09.2020, КЦ «Северная Венеция», СПб, Интернациональная выставка собак «Балтик-Шоу-2020» (САСIB-FCI) 1 УВАЖАЕМЫЕ ГОСТИ И УЧАСТНИКИ ВЫСТАВКИ! Мы рады видеть на нашей выставке Мы желаем Вам успехов в рингах и хорошего настроения! МЕСТО ПРОВЕДЕНИЯ: СПб, Петербургское ш., 64/1, ЭКСПОФОРУМ ДАТА ПРОВЕДЕНИЯ: 26 сентября 2020 г. ОРГАНИЗАТОР: Санкт-Петербургская Регионгальная Общественная Организация Кинологический Центр «Северная Венеция» СПб, ул. Шаврова, 9-64, тел. 8-905-215-15-35, E-mail: sony-boni@mailru ОРГКОМИТЕТ: Коврова И. (Председатель оргкомитета) Ларина Е., Иванова Н., Кирина А., Симакова М., Хвостина В. СУДЬИ: Ринг 1. Реваз Хомасуридзе (Россия) / Revaz Khomasuridze (Russia) Ринг 2. Лариса Галиаскарова (Россия) / Larisa Galiaskarova (Russia) Ринг 3. Олег Васильев (Россия) / Oleg Vasiliev (Russia) Ринг 4. Душан Паунович (Cербия) / Dusan Paunovic (Serbia) Ринг 5. Виктор Лобакин (Азербайджан) / Victor Lobakin (Azerbaijan) Ринг 6. Дмитрий Прозоров (Россия) / Dmitry Prozorov (Russia) Ринг 7. Марина Коваленко (Россия) / Marina Kovalenko (Russia) СТАЖЕРЫ: Егорова О., Тёниг М. Начало регистрации участников выставки в 8:00 Начало конкурса ЮНЫЙ ХЕНДЛЕР в 16:30 на главном ринге Эксперт / Judge : Дмитрий Прозоров (Россия) / Dmitry Prozorov (Russia) 1. Андреева Таисия, 13 лет, вельш корги кардиган 2. Баранова Александра, 13 лет, сибирский хаски 3.
    [Show full text]
  • Styles of Deformation in Ishtar Terra and Their Implications
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. El0, PAGES 16,085-16,120, OCTOBER 25, 1992 Stylesof Deformationin IshtarTerra and Their Implications Wn.T.TAMM. KAU•A,• DOAN•L. BINDSCHAD•-R,l ROBERT E. GPaM•,2'3 VICKIL. HANSEN,2KARl M. ROBERTS,4AND SUZANNE E. SMREr,AR s IshtarTerra, the highest region on Venus, appears to havecharacteristics of both plume uplifts and convergent belts.Magellan imagery over longitudes 330ø-30øE indicates a great variety of tectonicand volcanic activity, with largevariations within distances of onlya few 100km. Themost prominent terrain types are the volcanic plains of Lakshmiand the mountain belts of Maxwell,Freyja, and Danu. Thebelts appear to havemarked variations in age. Thereare also extensive regions of tesserain boththe upland and outboard plateaus, some rather featureless smoothscarps, flanking basins of complexextensional tectonics, and regions of gravitationalor impactmodifica- tion.Parts of Ishtarare the locations of contemporaryvigorous tectonics and past extensive volcanism. Ishtar appearsto be the consequence of a history of several100 m.y., in whichthere have been marked changes in kinematic patternsand in whichactivity at any stage has been strongly influenced by the past. Ishtar demonstrates three general propertiesof Venus:(1) erosionaldegradation is absent,leading to preservationof patternsresulting from past activity;(2) manysurface features are the responses ofa competentlayer less than 10 km thick to flowsof 100km orbroaderscale; and (3) thesebroader scale flows are controlled mainly by heterogeneities inthe mantle. Ishtar Terra doesnot appear to bethe result of a compressionconveyed by anEarthlike lithosphere. But there is stilldoubt as to whetherIshtar is predominantlythe consequence of a mantleupflow or downflow.Upflow is favoredby the extensivevolcanic plain of Lakshmiand the high geoid: topography ratio; downflow is favoredby the intense deformationof themountain belts and the absence of majorrifts.
    [Show full text]
  • Title Spons Agency Bureau No Pub Date Contract Note
    DOCUMENT LIZSUME ED 071' C87 82 015 524 TITLE Project Musics Reader 2,Motion in the Heavens. .INSTITUTION Harvard Univ., Cambridge,Mass. Harvard Project _Physics. SPONS AGENCY Office of Education (DREW), Washington, D.C.,Bureau of Research. BUREAU NO BK-5-1038 PUB DATE 68 CONTRACT 08C-5-10-058 NOTE 233p.; Authorized InterimVersion EDRS PRICE MF -$0.65 HC-89.87 _DESCRIPTORS Astronomy; Instructional Materials;.*Motion; *Physics; Science, Fiction;. Science Materials; _Secondary Grades; *Secondary School Science; *Space; *Supplementary Reading Materials IDENTIFIER'S Harvard Project Physics ABSTRACT As a supplement to.Projpct Physics Unit 2, specially, selected articles are presented in this reader for student browsing. _Eight excerpts are given under headings:,the starry messenger, Newton_. And the principia, an appreciation of the earth, space the unconquerable, Is there intelligent life beyond the earth3,11 the life story of a galaxy, expansion of the universe, and Dyson sphere. Seven book passages. are included under. the, headings of the black cloud, roll call, a night at the observatory, Repler's celestial music, universal gravitation, a table of stars within twenty-two light years that could have habitable planets, and three poetic _fragments about astronomy. The remaining articles includea preface to the books of the ,revolutions, Kepler, Kepler on. Mars, laws of ..motion and proposition one,, garden of Epicurus, a search for life on earth at Kilometer resolution, the. boy who redeemed his father's _name, great comet of 1965, gravity experiments, unidentified flying objects, and negative mass. Illustrations for explanationpurposes . are provided. The work of Harvard. Project Physics has been .financially supported by: the Carnegie Corporation of New York, the Ford.
    [Show full text]