Christian Feuillet & Laurence E. Skog Denis Barabé
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Independent Evolution of Pouched Flowers in the Amazon Is Supported by the Discovery of a New Species of Lesia (Gesneriaceae) from Serra Do Aracá Tepui in Brazil
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303976644 Independent evolution of pouched flowers in the Amazon is supported by the discovery of a new species of Lesia (Gesneriaceae) from Serra do Aracá tepui in Brazil Article in Plant Systematics and Evolution · June 2016 Impact Factor: 1.42 · DOI: 10.1007/s00606-016-1320-8 READS 32 4 authors, including: Gabriel Emiliano Ferreira Alain Chautems Instituto Nacional de Pesquisas da Amazônia Conservatoire et Jardin botaniques de la Vi… 16 PUBLICATIONS 9 CITATIONS 41 PUBLICATIONS 372 CITATIONS SEE PROFILE SEE PROFILE Mathieu Perret Conservatoire et Jardin botaniques de la Vi… 16 PUBLICATIONS 344 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Mathieu Perret letting you access and read them immediately. Retrieved on: 17 June 2016 Plant Syst Evol DOI 10.1007/s00606-016-1320-8 ORIGINAL ARTICLE Independent evolution of pouched flowers in the Amazon is supported by the discovery of a new species of Lesia (Gesneriaceae) from Serra do Araca´ tepui in Brazil 1 2 1 Gabriel E. Ferreira • Alain Chautems • Michael J. G. Hopkins • Mathieu Perret2 Received: 26 September 2015 / Accepted: 26 May 2016 Ó Springer-Verlag Wien 2016 Abstract We describe and illustrate Lesia tepuiensis,a Keywords Amazonas Á Columneinae Á Convergence Á new species of subshrub from rock outcrops of the Serra do Endemism Á Pouched corolla Á Taxonomy Araca´ tepui in Amazonas, Brazil. Phylogenetic analyses based on 7219-aligned base pairs of the plastid and nuclear DNA sequences recovered the new species as sister to Introduction Lesia savannarum, the type species of Lesia, a genus recently described as monotypic. -
Temporal and Spatial Origin of Gesneriaceae in the New World Inferred from Plastid DNA Sequences
bs_bs_banner Botanical Journal of the Linnean Society, 2013, 171, 61–79. With 3 figures Temporal and spatial origin of Gesneriaceae in the New World inferred from plastid DNA sequences MATHIEU PERRET1*, ALAIN CHAUTEMS1, ANDRÉA ONOFRE DE ARAUJO2 and NICOLAS SALAMIN3,4 1Conservatoire et Jardin botaniques de la Ville de Genève, Ch. de l’Impératrice 1, CH-1292 Chambésy, Switzerland 2Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Bairro Bangu, Santo André, Brazil 3Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland 4Swiss Institute of Bioinformatics, Quartier Sorge, CH-1015 Lausanne, Switzerland Received 15 December 2011; revised 3 July 2012; accepted for publication 18 August 2012 Gesneriaceae are represented in the New World (NW) by a major clade (c. 1000 species) currently recognized as subfamily Gesnerioideae. Radiation of this group occurred in all biomes of tropical America and was accompanied by extensive phenotypic and ecological diversification. Here we performed phylogenetic analyses using DNA sequences from three plastid loci to reconstruct the evolutionary history of Gesnerioideae and to investigate its relationship with other lineages of Gesneriaceae and Lamiales. Our molecular data confirm the inclusion of the South Pacific Coronanthereae and the Old World (OW) monotypic genus Titanotrichum in Gesnerioideae and the sister-group relationship of this subfamily to the rest of the OW Gesneriaceae. Calceolariaceae and the NW genera Peltanthera and Sanango appeared successively sister to Gesneriaceae, whereas Cubitanthus, which has been previously assigned to Gesneriaceae, is shown to be related to Linderniaceae. Based on molecular dating and biogeographical reconstruction analyses, we suggest that ancestors of Gesneriaceae originated in South America during the Late Cretaceous. -
Ornamental Garden Plants of the Guianas Pt. 2
Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so. -
Smithsonian Plant Collections, Guyana: 1989- 1991, Lynn J.Gillespie
SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 44: 1-104 Smithsonian Plant Collections, Guyana: 1989- 1991, Lynn J.Gillespie by Tom Hollowell Lynn J. Gillespie V.A. Funk and Carol L. Kelloff -^THSO/V^- MAR 1 9 2003 Department of Systematic Biology - Botany, National Museum of Natural History Washington, DC 2003 ABSTRACT Hollowell, Tom, Lynn J. Gillespie, V.A. Funk, and Carol L. Kelloff. Smithsonian Plant Collections, Guyana: 1989 - 1991, Lynn J. Gillespie. Contributions from the United States National Herbarium, volume 44; 104 pages (including 8 plates).- Part 1 provides the collector's notes on trips in chronological order. Part II lists collection localities, with collection number ranges, habitat descriptions, geographic coordinates, and assisting collectors. Part 111 consists of maps of Guyana showing collecting loealites. Part IV lists collections in numerical order with identifications and authors. Part V lists collections ordered by determined name. The appendix is a personal account by the collector describing some of her experiences while collecting plants in Guyana. KEY WORDS: Guyana, botanical Collecting, Nomenclature DATE OF PUBLICATION: January 2003 Cover Design and Illustrations by Alice Tangerini. Front; Tragia tabulaemontana L.J. Gillespie (Euphorbiaceae), from Gillespie, L.J. 1994. Novon 4: 330-338; back: Plukenclia supraglandulosa LJ. Gillespie (Euphoribiaceae), from Gillespie, L.J. 1993. Systematic Botany 18: 575-5<J2. Both illustrations also appeared in Gillespie, L.J. <£ W.S. Armbruster. 1997. Smithsonian Contributions to Botany: 86. All photographs Copyright, Lynn J. Gillespie, except as noted. Contributions from the United States National Herbarium (ISSN 0097-1618) Department of Systematic Biology - Botany MRC 166, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA. -
Description and Phylogenetic Position of a New Species of Nematanthus (Gesneriaceae) from Bahia, Brazil
Description and phylogenetic position of a new species of Nematanthus (Gesneriaceae) from Bahia, Brazil Alain Chautems & Mathieu Perret Abstract CHAUTEMS, A. & M. PERRET (2017). Description and phylogenetic position of a new species of Nematanthus (Gesneriaceae) from Bahia, Brazil. Candollea 72 : 351-359. In English, English abstract. DOI: http://dx.doi.org/10.15553/c2017v722a13 Nematanthus exsertus Chautems, a new species of Gesneriaceae from the state of Bahia in Brazil, is described. It is easily distinguished from other Nematanthus Schrad. species by its pendent resupinate flowers with funnel-shaped and laterally compressed corolla combined with striking exserted stamens and style. According to the phylogenetic analyses based on nuclear and plastid DNA sequences, this species belongs to a clade including the morphologically distinct Nematanthus monanthos (Vell.) Chautems and four other species with a similar flower morphology but lacking exserted stamen and style. Field photographs accompany the description. The new species is known from one locality in the municipality of Wenceslau Guimarães in the southern part of Bahia state within the “região cacaueira” [cocoa producing area]. The new species is assigned a preliminary assessment of “Vulnerable” using the IUCN Red List Categories and Criteria. Keywords GESNERIACEAE – Nematanthus – Brazil – Atlantic Forest – Endemism – Taxonomy – Phylogeny Addresses of the authors : AC, MP : Conservatoire et Jardin botaniques de la Ville de Genève, C.P. 60, 1292 Chambésy, Switzerland. E-mail : [email protected] -
Collections Policy
Chicago Botanic Garden COLLECTIONS POLICY 1 Collections Policy July 2018 2 COLLECTIONS POLICY TABLE OF CONTENTS Mission Statement ................................................................................................................... 1 Intent of Collections Policy Document ..................................................................................... 1 Purpose of Collections .............................................................................................................. 1 Scope of Collections ................................................................................................................. 1 1) Display Plant Collections .......................................................................................... 2 Seasonal Display Collections ........................................................................... 2 Permanent Display Gardens ............................................................................ 2 Aquatic Garden ................................................................................... 2 Bonsai Collection ................................................................................. 3 Graham Bulb Garden .......................................................................... 3 Grunsfeld Children’s Growing Garden ................................................. 3 Circle Garden ....................................................................................... 3 Kleinman Family Cove ........................................................................ -
Epilist 1.0: a Global Checklist of Vascular Epiphytes
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong. -
Plant Taxonomy What You’Ve Always Wanted to Know (But Not Badly Enough to Ask) by Betty Ferguson [email protected]
Plant Taxonomy What You’ve Always Wanted to Know (but Not Badly Enough to Ask) by Betty Ferguson [email protected] Plant taxonomy is the science of organizing plants into groups or categories and giving them names, based on agreed upon physical characteristics and m ore rece ntly upon their DNA. In his method of biological classification, Aristotle (384-322 BC), who focused on the animal kingdom, used the term génos to mean a kind, such as birds or snakes with similar characteristics. He used the term eidos to mean a specific form within a kind, such as hawk, parrot, duck. These terms were translated into Latin as "ge nus" and "species", but they do not correspond to the taxonomic meth od we use today. The book of Genesis appears to use a similar method of classifying plants and animals: “God made the beasts of the earth after their kind, and the cattle after their kind, and everything that creeps on the ground after its kind.” (Genesis 1:25 NASB) Our current method of assigning na mes to various plants in a structured manner dates back to the 1700s when the scientist Linnaeus developed the more 6 precise method for identifying and classifying all living beings. In our modern m ethod birds are a class. Cardinals (Cardinalidae) are a fam ily within that class (which also includes grosbeaks, tanagers and buntings), and the Northern cardinal is one of three species within a genus (Cardinalis) . However, due to “shades of gray” among the species,per the Gesneriad Reference W eb, there is still frequent disagreement and even conflict about wherea species should be placed categorically. -
Gesneriads First Quarter 2018
GesThe Journal forn Gesneriade Growersria ds Volume 68 ~ Number 1 First Quarter 2018 Return to Table of Contents RETURN TO TABLE OF CONTENTS The Journal for Gesneriad Growers Volume 68 ~ Number 1 Gesneriads First Quarter 2018 FEATURES DEPARTMENTS 5 Saintpaulia, the NEW Streptocarpus 3 Message from the President Winston Goretsky Julie Mavity-Hudson 9 Style Guide for Writers 4 From The Editor Jeanne Katzenstein Peter Shalit 10 Gesneriads at the Liuzhou Arts Center 18 Gesneriad Registrations Wallace Wells Irina Nicholson 24 Flower Show Awards 42 Changes to Hybrid Seed List 4Q17 Paul Susi Gussie Farrice 25 Gesneriads POP in New England! 46 Coming Events Maureen Pratt Ray Coyle and Karyn Cichocki 28 62nd Annual Convention of The 47 Flower Show Roundup Gesneriad Society 51 Back to Basics: Gesneriad Crafts 37 Convention Speakers Dale Martens Dee Stewart 55 Seed Fund – Species 39 Petrocosmeas in the United Kingdom Carolyn Ripps Razvan Chisu 61 Information about The Gesneriad 43 Gasteranthus herbaceus – A white- Society, Inc. flowered Gasteranthus from the northern Andes Dale Martens with John L. Clark Cover Eucodonia ‘Adele’ grown by Eileen McGrath Back Cover and exhibited at the New York State African Petrocosmea ‘Stone Amethyst’, hybridized, Violet Convention Show, October 2017. grown, and photographed by Andy Kuang. Photo: Bob Clark See New Registrations article, page 18. Editor Business Manager The Gesneriad Society, Inc. Peter Shalit Michael A. Riley The objects of The Gesneriad [email protected] [email protected] Society are to afford -
Additions to the Flora of Panama, with Comments on Plant Collections and Information Gaps
15 4 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 15 (4): 601–627 https://doi.org/10.15560/15.4.601 Additions to the flora of Panama, with comments on plant collections and information gaps Orlando O. Ortiz1, Rodolfo Flores2, Gordon McPherson3, Juan F. Carrión4, Ernesto Campos-Pineda5, Riccardo M. Baldini6 1 Herbario PMA, Universidad de Panamá, Vía Simón Bolívar, Panama City, Panama Province, Estafeta Universitaria, Panama. 2 Programa de Maestría en Biología Vegetal, Universidad Autónoma de Chiriquí, El Cabrero, David City, Chiriquí Province, Panama. 3 Herbarium, Missouri Botanical Garden, 4500 Shaw Boulevard, St. Louis, Missouri, MO 63166-0299, USA. 4 Programa de Pós-Graduação em Botânica, Universidade Estadual de Feira de Santana, Avenida Transnordestina s/n, Novo Horizonte, 44036-900, Feira de Santana, Bahia, Brazil. 5 Smithsonian Tropical Research Institute, Luis Clement Avenue (Ancón, Tupper 401), Panama City, Panama Province, Panama. 6 Centro Studi Erbario Tropicale (FT herbarium) and Dipartimento di Biologia, Università di Firenze, Via La Pira 4, 50121, Firenze, Italy. Corresponding author: Orlando O. Ortiz, [email protected]. Abstract In the present study, we report 46 new records of vascular plants species from Panama. The species belong to the fol- lowing families: Anacardiaceae, Apocynaceae, Aquifoliaceae, Araceae, Bignoniaceae, Burseraceae, Caryocaraceae, Celastraceae, Chrysobalanaceae, Cucurbitaceae, Erythroxylaceae, Euphorbiaceae, Fabaceae, Gentianaceae, Laciste- mataceae, Lauraceae, Malpighiaceae, Malvaceae, Marattiaceae, Melastomataceae, Moraceae, Myrtaceae, Ochnaceae, Orchidaceae, Passifloraceae, Peraceae, Poaceae, Portulacaceae, Ranunculaceae, Salicaceae, Sapindaceae, Sapotaceae, Solanaceae, and Violaceae. Additionally, the status of plant collections in Panama is discussed; we focused on the areas where we identified significant information gaps regarding real assessments of plant biodiversity in the country. -
Lamiales – Synoptical Classification Vers
Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA. -
High Species Diversity in Fleshy-Fruited Tropical Understory Plants
vol. 157, no. 6 the american naturalist june 2001 High Species Diversity in Fleshy-Fruited Tropical Understory Plants James F. Smith* Department of Biology, Boise State University, Boise, Idaho 83725 increased species diversity is to compare multiple instances in which the trait has evolved. If the trait has resulted in Submitted July 10, 2000; Accepted February 1, 2001 increased species diversity, then clades with the trait should be more diverse than clades lacking the trait. Older clades are more likely to have generated more species; therefore the clades to be compared must be equivalent in age (e.g., abstract: Key innovations may increase the number of taxa in a sister groups). Therefore, accurate phylogenetic assess- clade that possesses the proposed innovation in comparison to its ments are critical in assessing specific characters and their sister group that lacks the trait through either increased speciation effects on species diversity. Recent advancements in phy- or reduced extinction rates. Comparing sister clades across several independent lineages provides statistical support that the trait has logenetic analysis have improved our understanding of increased species diversity. Previous studies have indicated that there evolutionary relationships for many groups, especially may not be a relationship between biotic dispersal and higher species among plants. This improved phylogenetic assessment of diversity, but only a few of these studies specified habit, habitat, or plant relationships has allowed evolutionary biologists to type of disperser. No previous study has specified all of the above examine many traits previously proposed as affecting spe- parameters and used a phylogenetic approach. This article examines cies diversity in a new light.