Tower Hamlets Cemetery Park Diptera Survey Report 2007 OS Grid Ref TQ367824
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
900 _____________Mun. Ent. Zool. Vol. 5, Suppl., October 2010________ A NEW RECORD FOR IRAN FLOWERFLY FAUNA, BACCHA ELONGATA (FABRICIUS, 1775) (DIPTERA: SYRPHIDAE) Samad Khaghaninia*, Suleyman Sarıbıyık** and Nader Gol Mohammad Zade Khiaban* * Dept. of Plant Protection, Faculty of Agriculture, University of Tabriz, 51664, Tabriz, IRAN. E-mail: [email protected] ** Education Faculty, Kastamonu University, Kastamonu, TURKEY. [Khaghaninia, S., Sarıbıyık, S. & Khiaban, N. G. M. Z. 2010. A new record for Iran flowerfly fauna, Baccha elongata (Fabricius, 1775) (Diptera: Syrphidae). Munis Entomology & Zoology, 5, suppl.: 900-903] ABSTRACT: Baccha elongata (Fabricius), 1775 is recorded for the first time from Iran. Three specimens were collected from Aynali forests. The related key, diagnosis characters and photos are presented. KEY WORDS: Diptera, Syrphidae, New record, Fauna, Aynali forests, Iran. The genus Baccha was described by Fabricius (1805) with Syrphus elongatus Fabricius, 1775 designated as the type species (Peck, 1988). This genus belonged to Syrphinae subfamily and Bacchini tribe. All species of the subfamily Syrphinae with an entirely blak scutellum are likely to belong to this tribe of four genera. The only exceptions are Paragus which is very distinctive, and some specimens of Melangyna arctica wich is included in the next trible, the Syrphini. There is generally a pattern on the abdomen consisting of pairs of colored spots of grey, yellow or orange (Stubbs and Fulk, 2002). They are, however, easily overlooked because of their frequent habit of hovering low down among vegetation or, even if above vegetation, they are inconspicuous in dappled shade. Baccha is a small genus including two species in palearctic region, B. -
Bonner Zoologische Beiträge
© Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at Bonn. zool. Beitr. Bd. 45 H. 2 S. 137—146 Bonn, Oktober 1994 Cheilosia bracusU a new hoverfly from the mountains of Central and Southern Europe (Díptera: Syrphidae) Ante Vujic & Claus Claussen Abstract. Cheilosia bracusi sp. n. is described and figured, based on material from the mountains of the Balkan and Apennine peninsulas, the Alps, and from the Pyrenees. The new species is closely related to Cheilosia chloris Meigen and Cheilosia melanura Becker. Keys to separate C. bracusi from similar Palaearctic species are given. Records of C. bracusi are presented for Greece, Bulgaria, former Yugoslavia, Italy, France and Spain. Available biological information on the new species is summarised. Key words. Diptera, Syrphidae, Cheilosia bracusi, new species, Balkan peninsula, Apen- nine peninsula, Alps, Pyrenees. Introduction The genus Cheilosia Meigen, 1822 with over 400 species, is one of the largest genera of the family Syrphidae. It is predominantly Holarctic in its distribution (Hull & Fluke 1950), the greatest number of species (nearly 300) occurring in the Palaearctic region (Peck 1988). Detailed faunistical research on the hoverflies of the Balkan peninsula has established the presence there of 81 species of Cheilosia (Vujic, doctoral dissertation 1992). One undescribed species has been recorded at many localities on the highest Balkan mountains and also from some localities of the Apennine peninsula, the Alps, and the Pyrenees. In the present text this new species is described. Results Cheilosia bracusi sp. n. Type material: Holotype: Kopaonik: Samokovska river 1100 m (Serbia), DN-89 (UTM-Grid) 21. -
The Effects of Burial of a Body on the Growth of Blowfly Larvae and Pupate
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by LJMU Research Online 1 The colonisation of remains by the muscid flies Muscina stabulans (Fallén) and Muscina prolapsa (Harris) (Diptera: Muscidae) Alan Gunn* School of Natural Sciences & Psychology, John Moores University, Liverpool, L3 3AF, UK. *Corresponding Author: [email protected] ABSTRACT In the field, the muscid flies Muscina stabulans (Fallén) and Muscina prolapsa (Harris) only colonised buried baits in June, July and August. The two-species co- occurred on baits buried at 5cm but only M. prolapsa colonised baits buried at 10cm. Other species of insect were seldom recovered from buried baits regardless of the presence or absence of Muscina larvae. In the laboratory, both M. stabulans and M. prolapsa preferentially colonised liver baits on the soil surface compared to those buried at 5cm. Baits buried in dry soil were not colonised by either species whilst waterlogged soil severely reduced colonisation but did not prevent it entirely. Dry liver presented on the soil surface was colonised and supported growth to adulthood but if there was no surrounding medium in which the larvae could burrow then they died within 24 hours. M. stabulans showed a consistent preference for ovipositing on decaying liver rather than fresh liver, even when it had decayed for 41 days. The results for M. prolapsa were more variable but it was also capable of developing on both fresh and very decayed remains. Blood-soaked soil and dead slugs and snails stimulated egg-laying by both species and supported larval growth to adulthood. -
Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N. -
Sucesión Estacional De Recursos Florales Alimenticios De Baccha
Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), nº 54 (30/06/2014): 414. NOTAS CIENTÍFICAS Sucesión estacional de recursos florales alimenticios de Baccha elongata (Fabricius, 1775) en las orlas de bosques caducifolios y riparios del Pirineo Central (Lérida, España) (Diptera, Syrphidae) José Lara Ruiz C/ Condes de Bell-lloch, 189, 3º-2ª C, 08014 Barcelona (España) – [email protected] Resumen: Se estudian las plantas visitadas por Baccha elongata (Fabricius) 1775 en las orlas de los bosques caducifolios y ripa- rios del Pirineo Central. Palabras clave: Diptera, Syrphidae, Baccha elongata, plantas visitadas, bosques caducifolio y ripario, Baccha elongata, Pirineos, Península Ibérica. Seasonal succession of food resources used by Baccha elongata (Fabricius, 1775) in the fringes of the deciduous and ri- parian forests of the Central Pyrenees (Lérida, Spain) (Diptera, Syrphidae) Abstract: Plants visited by Baccha elongata (Fabricius, 1775) in deciduous and riparian forest boundaries of the Central Pyrenees (Iberian Peninsula). Key words: Diptera, Syrphidae, Baccha elongata, visited plants, boundaries of deciduous and riparian forests, Pyrenees, Iberian Peninsula. Introducción Los imagos de Baccha elongata (Fabricius, 1775), como todos los de sylvestris y Heracleum sphondylium) de las orlas de bosques riparios la familia Syrphidae, recolectan néctar y polen de las flores de las y a una trepadora (Hedera helix) de las orlas de bosques caducifolios. plantas para su alimentación (Gilbert, 1981) de una amplia variedad También se indican las horas de observación a lo largo de cada mes. de plantas (Speight, 2011) por lo que se considera una especie gene- ralista (Peckkarinen, 1998). Su período de vuelo es amplio: abril- Discusion joctubre (Speight, 2011). -
Superfamilies Tephritoidea and Sciomyzoidea (Dip- Tera: Brachycera) Kaj Winqvist & Jere Kahanpää
20 © Sahlbergia Vol. 12: 20–32, 2007 Checklist of Finnish flies: superfamilies Tephritoidea and Sciomyzoidea (Dip- tera: Brachycera) Kaj Winqvist & Jere Kahanpää Winqvist, K. & Kahanpää, J. 2007: Checklist of Finnish flies: superfamilies Tephritoidea and Sciomyzoidea (Diptera: Brachycera). — Sahlbergia 12:20-32, Helsinki, Finland, ISSN 1237-3273. Another part of the updated checklist of Finnish flies is presented. This part covers the families Lonchaeidae, Pallopteridae, Piophilidae, Platystomatidae, Tephritidae, Ulididae, Coelopidae, Dryomyzidae, Heterocheilidae, Phaeomyii- dae, Sciomyzidae and Sepsidae. Eight species are recorded from Finland for the first time. The following ten species have been erroneously reported from Finland and are here deleted from the Finnish checklist: Chaetolonchaea das- yops (Meigen, 1826), Earomyia crystallophila (Becker, 1895), Lonchaea hirti- ceps Zetterstedt, 1837, Lonchaea laticornis Meigen, 1826, Prochyliza lundbecki (Duda, 1924), Campiglossa achyrophori (Loew, 1869), Campiglossa irrorata (Fallén, 1814), Campiglossa tessellata (Loew, 1844), Dioxyna sororcula (Wie- demann, 1830) and Tephritis nigricauda (Loew, 1856). The Finnish records of Lonchaeidae: Lonchaea bruggeri Morge, Lonchaea contigua Collin, Lonchaea difficilis Hackman and Piophilidae: Allopiophila dudai (Frey) are considered dubious. The total number of species of Tephritoidea and Sciomyzoidea found from Finland is now 262. Kaj Winqvist, Zoological Museum, University of Turku, FI-20014 Turku, Finland. Email: [email protected] Jere Kahanpää, Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland. Email: kahanpaa@iki.fi Introduction new millennium there was no concentrated The last complete checklist of Finnish Dipte- Finnish effort to study just these particular ra was published in Hackman (1980a, 1980b). groups. Consequently, before our work the Recent checklists of Finnish species have level of knowledge on Finnish fauna in these been published for ‘lower Brachycera’ i.e. -
A Hoverfly Guide to the Bayer Research Farm in Great Chishill
A hoverfly guide to the Bayer Research Farm in Great Chishill 1 Orchard Farm, Great Chishill • Nesting and visiting birds ayer Crop Science’s farm in • Butterflies and moths Encouraging Hoverflies Great Chishill covers some 20 • Bees Bhectares on a gently undulating • Successful fledging of barn owl 1. Food Sources Hoverflies do not have suitable clay plateau to the south west of chicks (as an indicator of small Growing just about any wildflowers will mouthparts to feed from pea-flowers Cambridge, on the Hertfordshire mammal populations) attract at least some hoverflies and a such as clover, lucerne or sainfoin border. It is a working farm set up variety of species selected to flower that favour bees but will feed from to help the company research and Hoverflies continuously throughout the spring mints, both cornmint and watermint understand better, new crop protection Hoverflies are a group of Diptera (flies) and summer would be preferable. and other Labiates such as thyme, products and new seed varieties. As comprising the family Syrphidae with Traditional wildflower meadows are marjoram and so on. Some Crucifers its name implies, the farm used to be many being fairly large and colourful. often good places to look for hoverflies, are good such as the spring flowering an orchard and indeed, there remains Some of them, such as the Marmalade and there are several plants which cuckoo flower and hedge mustard; some apple and pear trees on the Hoverfly are generally common and are favoured. Common bramble is a later on water cress, oil seed rape and site used for testing of novel crop numerous enough to have a common magnet for various hoverflies and other other mustards are good. -
Hoverfly Newsletter 67
Dipterists Forum Hoverfly Newsletter Number 67 Spring 2020 ISSN 1358-5029 . On 21 January 2020 I shall be attending a lecture at the University of Gloucester by Adam Hart entitled “The Insect Apocalypse” the subject of which will of course be one that matters to all of us. Spreading awareness of the jeopardy that insects are now facing can only be a good thing, as is the excellent number of articles that, despite this situation, readers have submitted for inclusion in this newsletter. The editorial of Hoverfly Newsletter No. 66 covered two subjects that are followed up in the current issue. One of these was the diminishing UK participation in the international Syrphidae symposia in recent years, but I am pleased to say that Jon Heal, who attended the most recent one, has addressed this matter below. Also the publication of two new illustrated hoverfly guides, from the Netherlands and Canada, were announced. Both are reviewed by Roger Morris in this newsletter. The Dutch book has already proved its value in my local area, by providing the confirmation that we now have Xanthogramma stackelbergi in Gloucestershire (taken at Pope’s Hill in June by John Phillips). Copy for Hoverfly Newsletter No. 68 (which is expected to be issued with the Autumn 2020 Dipterists Forum Bulletin) should be sent to me: David Iliff, Green Willows, Station Road, Woodmancote, Cheltenham, Glos, GL52 9HN, (telephone 01242 674398), email:[email protected], to reach me by 20 June 2020. The hoverfly illustrated at the top right of this page is a male Leucozona laternaria. -
ROBBER-FLIES and EMPIDS ROBBER-FLIES Asilidae. Very
ROBBER-FLIES and EMPIDS Asilus ROBBER-FLIES Asilidae. Very bristly predatory flies that head from front generally chase and catch other insects in mid-air. Most species sit in wait and dart out when likely prey appears. The prey is then sucked dry with the stout proboscis, which projects horizontally or obliquely forward. There is a deep groove between the eyes in both sexes, the eyes never touching even in males. A 'beard' on the face protects eyes from struggling prey. Legs are sturdy and have 2 pads at most. Wings folded flat over body at rest. Larvae eat some dead vegetable matter, but most are at least partly predatory and some feed mainly on beetle and fly grubs in the soil. Asilus with prey As Asi/us crabroniformis. An unmistakable fly - one of the largest in B - inhabiting open country 7-10. A very strong flier. Breeds in cow pats and other dung. Dasypogon diadema. First 2 long veins both reach wing margin: wing membrane ribbed. Front tibia has curved spine at tip. Male more uniformly black, with dark wings. 6-8 in scrubby places, especially coastal dunes. S. ;., Leptogaster cylindrica. Feet without pads. Hind femur yellow. 3rd antennal segment ends in bristle. One of the slimmest robber-flies, it resembles a crane-fly in flight. It hunts in grassy places, flying slowly and plucking aphids from the grasses. 5-8. A L. guttiventris is similar but has reddish hind femur. 85 Dioctria atricapi/la. First 2 long veins reach margin. Beard rather sparse and, as in all Oioctria species, the antennae spring from a prominence high on the head. -
Flesh Flies (Diptera: Sarcophagidae) of Sandy and Marshy Habitats of the Polish Baltic Coast
© Entomologica Fennica. 30 March 2009 Flesh flies (Diptera: Sarcophagidae) of sandy and marshy habitats of the Polish Baltic coast Elibieta Kaczorowska Kaczorowska, E. 2009: Flesh flies (Diptera: Sarcophagidae) of sandy and marshy habitats of the Polish Baltic coast. — Entomol. Fennica 20: 61—64. The results ofa seven-year study on flesh flies (Diptera: Sarcophagidae) in sandy and marshy habitats ofthe Polish Baltic coast are presented. During this research, carried out in 20 localities, 25 species of Sarcophagidae were collected, ofwhich 24 were new for the study areas. Based on these results, flesh fly abundance and trophic groups are described. E. Kaczorowska, Department ofInvertebrate Zoology, University ofGdansk, Al. Marszalka Pilsadskiego 46, 81—3 78 Gdynia, Poland; E—mail.‘ saline@ocean. aniv.gda.pl, telephone: 0048 58 5236642 Received 1 1 December 200 7, accepted 19 March 2008 1. Introduction menoptera, while others are predators or para- sitoids on insects and snails (Povolny & Verves Sarcophagidae is a species-rich family, distri- 1997). Therefore, flesh flies occur in various buted worldwide and comprising over 2500 de- kinds of biotopes, including coastal marshy and scribed species. At present more than 150 species sandy habitats. On the Polish Baltic coast, species of flesh flies are known from central Europe of Sarcophagidae have been found in low abun- (Povolny & Verves 1997) and 129 from Poland. dance, and only one species, Sarcophaga (Myo— The Polish fauna of Sarcophagidae is relatively rlzina) nigriventris Meigen, has so far been re- well known, but the state of knowledge about corded (Draber—Monko 1973). Szadziewski these flies is uneven for particular regions of the (1983), carrying out research on Diptera ofthe sa- country. -
Insecta Diptera) in Freshwater (Excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Rüdiger Wagner University of Kassel
Entomology Publications Entomology 2008 Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Rüdiger Wagner University of Kassel Miroslav Barták Czech University of Agriculture Art Borkent Salmon Arm Gregory W. Courtney Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs BoudewPart ofijn the GoBddeeiodivrisersity Commons, Biology Commons, Entomology Commons, and the TRoyerarle Bestrlgiialan a Indnstit Aquaute of Nticat uErcaol Scienlogyce Cs ommons TheSee nex tompc page forle addte bitioniblaiol agruthorapshic information for this item can be found at http://lib.dr.iastate.edu/ ent_pubs/41. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Abstract Today’s knowledge of worldwide species diversity of 19 families of aquatic Diptera in Continental Waters is presented. Nevertheless, we have to face for certain in most groups a restricted knowledge about distribution, ecology and systematic, -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).