NOAA Technical Memorandum NMFS-SEFSC-439 PRELIMINARY
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pacific Plate Biogeography, with Special Reference to Shorefishes
Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
First Report of Priacanthus Prolixus Starnes, 1988 (Perciformes : Priacanthidae) from the West Bengal Coast
Rec. zool. Surv. India: Vol. 119(3)/ 289-291, 2019 ISSN (Online) : 2581-8686 DOI: 10.26515/rzsi/v119/i3/2019/128807 ISSN (Print) : 0375-1511 Short Communication First report of Priacanthus prolixus Starnes, 1988 (Perciformes : Priacanthidae) from the West Bengal Coast Swarup Ranjan Mohanty1, Anil Mohapatra1* and K. K. Bineesh2 1Estuarine Biology Regional Centre, Zoological Survey of India, Gopalpur-on-Sea, Ganjam - 761002, Odisha, India; [email protected] 2Andaman & Nicobar Regional Centre (ANRC), Zoological Survey of India, Haddo, Port Blair - 744 102, Andaman & Nicobar Island, India Abstract Present study reports Priacanthus prolixus Starnes (1988) for the first time from West Bengal coast. The species is reported here on the basis of five specimens were collected from Digha Mohana, West Bengal, and Bay of Bengal. The species is characterized with elongated and laterally compressed body, a unique character of Priacanthidea is head bears large eye, Keywords: scales in lateral line series is about 74-84 and scale rows between dorsal fin origin and lateral line is 10-11. New Record, Priacanthidae, West Bengal Introduction Market and no specific collection site and morphometry has been reported. This paper reports the occurrence The family Priacanthidae (Bigeyes) comprises 5 genera of Priacanthus prolixus Starnes (1988) for first time (Eschmeyer, 2017) and 21 valid species (Eschmeyer and from the West Bengal coast, East coast of India with its Fong, 2017) worldwide. The members of this family are morphometry. characterised by extremely large eye with wide pupils, deep body, rough scales and bright orange red colour (Philip, Material and Methods 1994). The genus Priacanthus represents the maximum numbers of valid species (12 species) in the family Five specimens were collected from Digha Mohana, West (Eschmeyer, 2017). -
Fishes of the Deep Demersal Habitat at Ngazidja (Grand Comoro) Island, Western Indian Ocean
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by South East Academic Libraries System (SEALS) 444 South African Journal of Science 102, September/October 2006 Coelacanth Research Fishes of the deep demersal habitat at Ngazidja (Grand Comoro) Island, Western Indian Ocean Phillip C. Heemstraa*, Karen Hissmannb, Hans Frickeb, Malcolm J. Smalec and Jürgen Schauerb (with hook and line or traps) in the daytime habitat of the coela- canth, we were able to identify 65 species (Table 1). For various Underwater observations of the coelacanth, Latimeria chalumnae reasons, the remaining taxa are identified only to genus or Smith, 1939, from a research submersible provided opportunities family level. Our list of the deep demersal fish at Ngazidja is to study the deep demersal fish fauna at the Comoro Islands. The obviously incomplete, as we made no attempt to collect small demersal habitat in depths of 150–400 m at the volcanic island of cryptic species (e.g. Scorpaenidae, Callionymidae, Draconettidae, Ngazidja is low in fish diversity and biomass, compared with the Percophidae, Epigonidae and Plectranthias). In addition, larger, shallow-water coral reef habitat of Ngazidja or the deep demersal elusive species (e.g. congrid and ophichthid eels and several habitats of other localities in the Indo-Pacific region. The resident species of sharks) that are known to occur at depths of 150–400 m deep demersal fish fauna at Ngazidja is dominated by the coela- in the Western Indian Ocean but have not yet been seen or canth, an ancient predator that is specially adapted for this caught at these depths at Ngazidja are not included in our low-energy environment. -
FISHES (C) Val Kells–November, 2019
VAL KELLS Marine Science Illustration 4257 Ballards Mill Road - Free Union - VA - 22940 www.valkellsillustration.com [email protected] STOCK ILLUSTRATION LIST FRESHWATER and SALTWATER FISHES (c) Val Kells–November, 2019 Eastern Atlantic and Gulf of Mexico: brackish and saltwater fishes Subject to change. New illustrations added weekly. Atlantic hagfish, Myxine glutinosa Sea lamprey, Petromyzon marinus Deepwater chimaera, Hydrolagus affinis Atlantic spearnose chimaera, Rhinochimaera atlantica Nurse shark, Ginglymostoma cirratum Whale shark, Rhincodon typus Sand tiger, Carcharias taurus Ragged-tooth shark, Odontaspis ferox Crocodile Shark, Pseudocarcharias kamoharai Thresher shark, Alopias vulpinus Bigeye thresher, Alopias superciliosus Basking shark, Cetorhinus maximus White shark, Carcharodon carcharias Shortfin mako, Isurus oxyrinchus Longfin mako, Isurus paucus Porbeagle, Lamna nasus Freckled Shark, Scyliorhinus haeckelii Marbled catshark, Galeus arae Chain dogfish, Scyliorhinus retifer Smooth dogfish, Mustelus canis Smalleye Smoothhound, Mustelus higmani Dwarf Smoothhound, Mustelus minicanis Florida smoothhound, Mustelus norrisi Gulf Smoothhound, Mustelus sinusmexicanus Blacknose shark, Carcharhinus acronotus Bignose shark, Carcharhinus altimus Narrowtooth Shark, Carcharhinus brachyurus Spinner shark, Carcharhinus brevipinna Silky shark, Carcharhinus faiformis Finetooth shark, Carcharhinus isodon Galapagos Shark, Carcharhinus galapagensis Bull shark, Carcharinus leucus Blacktip shark, Carcharhinus limbatus Oceanic whitetip shark, -
Fish Otoliths from the Pre-Evaporitic Early Messinian of Northern Italy: Their Stratigraphic and Palaeobiogeographic Significance
Facies (2010) 56:399-432 DO1 10.1007/s10347-010-0212-6 Fish otoliths from the pre-evaporitic Early Messinian of northern Italy: their stratigraphic and palaeobiogeographic significance Angela Girone a Dirk Nolf * Oreste Cavallo Received: 13 August 2009 / Accepted: 4 January 2010 / Published online: 9 February 2010 O Springer-Verlag 2010 Abstract The study of otolith assemblages from the pre- affinity of the fossil assemblage with the present-day Medi- evaporitic Messinian deposits allows the reconstruction of a terranean neritic fauna, which was already recorded at the fauna of 79 taxa of which 35 could be identified at the spe- genus level for the Rupelian fauna, persists during the Neo- cific level. Three of these are new: Diaphus rubus, Myctop- gene and continues until the Pleistocene. hum coppa, and Uranoscopus ciabatta. The assemblages reflect mainly a neritic environment influenced by the oce- Kepords Fishes . Teleostei . Otoliths . Messinian anic realm. Analysis of the global present-day geographic Appearance . Extinction distribution of 42 of the recognised Messinian genera indi- cates that 88% of these are still living in the Mediterranean, 98% in the Atlantic and 78% in the Indo-Pacific realm. Introduction These results are in good agreement with the evolutionary trends documented for the Oligocene and Miocene teleost During the Late Miocene (Tortonian and Messinian), the fauna, specifically an increase in percentage of genera Tethyan Ocean was ultimately closed as result of synoro- inhabiting the modern Mediterranean, a very high percent- genic collisional tectonism, and its Mesozoic and Cenozoic age of Atlantic and Indo-Pacific genera, and a slight fall of sedimentary sequences were deformed and uplifted along the importance of present-day Indo-Pacific genera from the the emerging Alpine-Himalayan orogenic system. -
Atoll Research Bulletin No. 548
ATOLL RESEARCH BULLETIN NO. 548 STOMACH CONTENTS AND FEEDING OBSERVATIONS OF SOME EASTER ISLAND FISHES BY LOUIS H. DISALVO, JOHN E. RANDALL, AND ALFREDO CEA ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C. U.S.A. DECEMBER 2007 STOMACH CONTENTS AND FEEDING OBSERVATIONS OF SOME EASTER ISLAND FISHES BY LOUIS H. DISALVO,1 JOHN E. RANDALL,2 AND ALFREDO CEA3 ABSTRACT Stomach contents of 42 species in 25 familes of Easter Island shore fishes were examined in comparative terms to determine prey items and feeding behavior at this isolated island outpost in the southeastern Pacific. The island’s impoverished marine fauna and flora have resulted in considerable dietary overlap among the inshore fishes. Some endemic species appear to feed mainly on endemic invertebrates. Some prey species which were found in the fish stomachs, such as the stomatopodOdontodactylus hawaiiensis, the pandalid shrimp Plesionika edwardsi, and several tiny molluscs were previously unrecorded for the island. INTRODUCTION Easter Island (Rapa Nui) lies 3750 km west of the South American continent and 2250 km. East of the Pitcairn Islands. This island represents the most isolated landfall in the South Pacific Ocean along with its small rocky neighbor Salas y Gómez I. 415 km to the east. Although Easter Island is often regarded as part of the Indo-Pacific region, and most of its fauna consist of tropical species (in the case of shore fishes, 32.5%), it lies outside the 20° isotherm (Wells 1957) where seawater temperature and insolation are below that required for the development of structural coral reefs; water temperature can undergo interannual drops unfavorable to tropical organisms and may produce mass mortalities of corals (Wellington et al., 2001). -
Training Manual Series No.15/2018
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”. -
Investigation of the Relative Habitat Value of Oil/Gas Platforms and Natural Banks in Enhancing Stock Building of Reef Fish in the Western Gulf of Mexico
Investigation of the relative habitat value of oil/gas platforms and natural banks in enhancing stock building of reef fish in the western Gulf of Mexico Gregory W. Stunz, Matthew J. Ajemian, Matthew K. Streich, Rachel Brewton, Charles Downey, and Quentin Hall SEDAR52-RD-02 July 2017 INVESTIGATION OF THE RELATIVE HABITAT VALUE OF OIL/GAS PLATFORMS AND NATURAL BANKS IN ENHANCING STOCK BUILDING OF REEF FISH IN THE WESTERN GULF OF MEXICO GRANT NA14NMF4330219 FINAL REPORT Submitted To: National Marine Fisheries Service Southeast Regional Office State/Federal Liaison Office 9721 Executive Center Drive North St. Petersburg, Florida 33702 Submitted By: Gregory W. Stunz, Ph.D. Matthew J. Ajemian, Ph.D. Matthew K. Streich Rachel Brewton Charles Downey Quentin Hall Harte Research Institute for Gulf of Mexico Studies Texas A&M University-Corpus Christi 6300 Ocean Drive Corpus Christi, TX 78412 November 2016 2 Stunz and Ajemian Final Report to MARFIN November 2016 ACKNOWLEDGEMENTS We are appreciative of the National Marine Fisheries Service (NMFS), Marine Fisheries Initiative for funding this study (GRANT #NA14NMF4330219). Special thanks to Bob Sadler with NFMS for helping us with business administration and facilitating other programmatic matters for the grant as well as Gregg Gitschlag for the technical monitoring and advice. We would like to thank the many people that contributed to the execution of this study and made it a success, including members of the Fisheries and Ocean Health Lab at the Harte Research Institute: M. Robillard, J. Wetz, J. Williams, T. Topping, Q. Hall, A. Tompkins, K. Gibson, A. Ferguson, D. Norris, and M. -
Priacanthidae
click for previous page PRIAC 1983 FAO SPECIES IDENTIFICATION SHEETS FISHING AREA 51 (W. Indian Ocean) PRIACANTHIDAE Small to moderate-sized fishes with relatively deep, compressed bodies. Eyes very large, near dorsal profile of head; mouth large, strongly oblique, the lower jaw projecting; small conical teeth in a narrow band in jaws. A continuous dorsal fin of 10 spines and 10 to 15 soft rays, without a notch or only slightly notched between spinous and soft portions; anal fin with 3 spines and 9 t3 16 soft rays; pelvic fins large, with 1 spine and 5 rays, inserted anterior to pectoral fins, and broadly joined to the body by a membrane; caudal fin with 16 principal rays (14 branched) varying from slightly emarginated to rounded. Scales small, ctenoid (rough to touch), completely covering head (including maxilla). Colour: generally bright red, but some species can vary from pinkish silver through mottled red to solid red. Bigeyes are bottom-dwelling carnivorous fishes, primarily nocturnal but may feed by day. They eat mainly the large elements of the zooplankton such as small fishes, crustaceans and polychaete worms. They are excellent foodf ishes. SIMILAR FAMILIES OCCURRING IN THE AREA: Holocentridae: also red in colour and with large eyes, but readily distinguished from the Pria- canthidae by their more coarsely ctenoid scales, their spinous head bones and deeply forked caudal fin; also, pelvic fins with 1 spine and 7 rays (1 spine and 5 rays in Priacanthidae) and anal fin with 4 spines (3 in Priacanthidae). 1 spine 4 spines 5 rays Holocentridae - 2 - FAO Sheets PRIACANTHIDAE Fishing Area 51 Pempheridae: moderately compressed fishes 5 with large eyes and coppery in colour, but dorsal fin spines short, with 4 or 5 spines and 8 or 9 soft rays (10 spines and 10 to 15 soft rays in Priacanthidae) and anal fins very long, with 3 spines and 22 to 35 soft rays (9 to 16 soft rays in Priacanthidae). -
Reef Fishes of the Bird's Head Peninsula, West Papua, Indonesia
Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT). -
Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.