Ceramic Tribology: Methodology and Mechanisms of Alumina Wear

Total Page:16

File Type:pdf, Size:1020Kb

Ceramic Tribology: Methodology and Mechanisms of Alumina Wear NIST rPUBLfCATIONS ERCE /-II Nation 1 IVJ^C700D<£I and Technology Richard S/Ceramic triboloqy QC100 .U57 N0.758 1988 V1988 £ 2 NIST-PU (formerly tandards) NIST Special Publication 758 Ceramic Tribology: Methodology and Mechanisms of Alumina Wear Richard S. Gates, Stephen M. Hsu, and E, Erwin Klaus will f ? T T T NIST Special Publication 758 Ceramic Tribology: Methodology and Mechanisms of Alumina Wear Richard S. Gates and Stephen M. Hsu Ceramics Division Institute for Materials Science and Engineering National Institute of Standards and Technology (formerly National Bureau of Standards) Gaithersburg, MD 20899 E. Erwin Klaus Department of Chemical Engineering The Pennsylvania State University University Park, PA 16802 NOTE: As of 23 August 1988, the National Bureau of Standards (NBS) became the National Institute of Standards and Technology (NIST) when President Reagan signed into law the Omnibus Trade and Competitiveness Act September 1988 U.S. Department of Commerce C. William Verity, Secretary National Institute of Standards and Technology (formerly National Bureau of Standards) Ernest Ambler, Director Library of Congress U.S. Government Printing Office For sale by the Superintendent Catalog Card Number: 88-600582 Washington: 1988 of Documents, National Institute of Standards U.S. Government Printing Office, and Technology Washington, DC 20402 Special Publication 758 229 pages (Sept. 1988) CODEN: XNBSAV For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 FOREWORD This report is born out of a cooperative effort between the Chemical Engineering Department, at the Pennsylvania State University (PSU) , the Tribology Group of the National Bureau of Standards, and the partial support of the DOE ECUT Tribology Program. For years, the NBS has encouraged and sponsored graduate cooperative programs in which promising young scientists (some of them NBS staff members) come to NBS to conduct research, part of which often becomes the graduate's thesis. While it is not the objective of NBS to teach and train graduate students, such a program often furthers NBS programmatic goals by attracting high caliber scientists working on areas where NBS mission lies. Many excellent research papers have resulted and many students, upon graduation, have chosen to stay at NBS to continue their research careers. Such programs also draw many first rate university professors to NBS through the participation of these students in NBS research programs and projects, thus fostering NBS -university interactions and enhancing the scientific caliber of the work and reputation at NBS and the participating university. At the same time, through the frequent contacts that NBS has with industries, a natural university/government lab/industry relationship evolves, bringing a team focus on many research projects of significant economic and technological impact. In 1984, primarily through the interactions of Dr. Stephen M. Hsu of NBS and Professors Elmer Klaus and Larry Duda of PSU, a cooperative program in Tribology was started. Three graduate students: Mr. Richard Gates ( a NBS staff member), Mr. Jeffrey Yellets, and Mr. Douglas Deckman were enrolled at the Chemical Engineering Department at PSU. Three reports have been prepared to describe the fruit of their relentless efforts in the last three years. These studies were conducted at NBS under the guidance of Dr. Stephen Hsu with the close participation of Prof. Elmer Klaus who visited NBS frequently. Dr. James Eberhardt, Mrs. Terry Levinson, and Mr. David Mello of the DOE ECUT Tribology Program have at the same time sponsored a major Tribology program at NBS. That program also benefited from the studies conducted by Mr. Gates, Mr. Yellets, and Mr. Deckman. These students, while not working on sponsored projects directly, enabled NBS to explore some high risk, high pay off projects parallel to ECUT projects. When appropriate, the students were supported by ECUT for some time. To this, we gratefully acknowledge the generous support of DOE ECUT, without whose support many ideas would not be explored. Stephen M. Hsu Chief, Ceramics Division iii . ABSTRACT This report describes a systematic study that has been conducted to develop methods for measuring the tribological properties of ceramic materials under concentrated contacts. Step- loading four-ball and ball-on- three-flat wear tests were developed to provide friction and wear characteristics of ceramic/lubricant combinations under various lubrication conditions. These measurement techniques now enable one to study the effect of different materials processing parameters, material microstructures , and different lubricants on the friction and wear performance of ceramics. Water was found to react with alumina in a wearing contact to produce lubricous products. A combination of x-ray diffraction and thermogravimetric analysis techniques were used to investigate the kinetics of alumina-water reactions. These experiments determined that transition (gamma) alumina reacts with water at =200°C to form aluminum oxide hydroxide (boehmite - AlO(OH)), while reactions at -100°C produce aluminum trihydroxide (bayerite - Al(0H)3). A mechanism for lubrication of alumina with water is proposed whereby stresses in the contact junction cause a phase transformation from alpha to gamma alumina. The gamma alumina subsequently reacts with water to form a lubricous, layer lattice, hydroxide V CONTENTS Page FOREWORD iii ABSTRACT v LIST OF TABLES xi LIST OF FIGURES xiii Chapter I. INTRODUCTION AND SCOPE 1 II. CERAMIC WEAR TEST METHODOLOGIES: BACKGROUND AND LITERATURE SURVEY A. Basic Types of Tribological Studies .... 5 B. Current Efforts in Fundamental Ceramic Tribological Studies 8 C. Key Differences Between Ceramics and Metals 12 D. Approach to Evaluation of Ceramic Wear Used in This Report 18 III. EXPERIMENTAL APPARATUS AND OPERATING PROCEDURES A. Wear Tester Selection 19 B. Specimen Material Selection 25 C. Lubricant Selection 25 D. Specimen Characterization Methods 27 E. Friction and Wear Measurement 38 F. Specimen Preparation 40 G. Operating Procedure Descriptions 42 IV. RESULTS AND DISCUSSION A. Constant Condition Four-Ball Wear Testing Study 1. Base Conditions 45 2. Explanation of Severity Differences Between Steel and Ceramic Tests Conducted at the Same Operating Conditions 46 3. Four-Ball Constant Condition Test: Effect of Test Duration 50 4. Four-Ball Constant Condition Test: Effect of Load 55 B. Wear Test Severity Overlay 61 C. Analysis of Wear Scars 64 D. Four-Ball Constant Condition Test: Effect of Batch to Batch Variations in Specimen Material 78 vii E. Step-Loading Four-Ball Wear Testing Study 1 . Base Conditions 81 2. Step-Loading Test: Effect of Speed 86 3. Step-Loading Test: Effect of Specimen Material 86 F. Ball-on-Three-Flat Testing 89 1. Comparison of Results to Four-Ball Tests .... 89 2. Ball-on-Three-Flat Test: Interpretation of Friction Data 93 3. Ball-on-Three-Flat Test: Effect of Specimen Material 96 G. Summary 99 V. ALUMINA/WATER TRIBOSYSTEM: INTRODUCTION AND LITERATURE SURVEY A. Preliminary Explanation of Lubrication Mechanisms for Alumina With Water 100 B. Structures and Nomenclature of Aluminum Oxides and Hydroxides 103 C. Approach 112 VI. ALUMINA/WATER TRIBOSYSTEM: EXPERIMENTAL APPARATUS AND OPERATING PROCEDURES A. Test Approaches 113 1. Static Kinetic Tests 114 2. Powder Friction Tests 119 3. Dynamic Wear Tests 119 B. Reference Powders 120 C. Analytical Techniques 129 1. The rmogravime trie Analysis (TGA) 131 2. Differential Scanning Calorimetry (DSC) 141 3. X-Ray Powder Diffraction (XRPD) 141 4. Fourier Transform Infrared (FTIR) Analysis . 144 5. Scanning Electron Microscopy (SEM) 145 VII. ALUMINA/WATER TRIBOSYSTEM: RESULTS AND DISCUSSION A. Kinetic Experiments on Powders 146 B. Powder Friction Tests 158 C. Wear Debris Analysis 162 VIII. SUMMARY AND CONCLUSIONS 175 IX. RECOMMENDATIONS FOR FUTURE WORK 179 REFERENCES 180 APPENDIX A - Selected Bulk Properties of Cer 006 and Cer 021 Alumina 184 viii APPENDIX B - Coefficient of Friction Calculation for the Four-Ball Apparatus 185 APPENDIX C - Equivalent Wear Scar Diameter Concept 187 APPENDIX D - Specimen Cleaning Procedure 190 APPENDIX E - Pressure-Temperature Relationship for the Alumina/Water Bomb Reactor 192 APPENDIX F - X-Ray Powder Diffraction Patterns for Reference Powders ALl through AL6 195 APPENDIX G - Interplaner Spacings, 2 Thetas, and Relative Line Intensities for X-Ray Powder Diffraction Patterns of Alumina's, Alixminum Oxide Hydroxides and Aluminum Trihydroxides 201 APPENDIX H - An Estimate of the Hertzian Contact Diameter, Mean Pressure, and Maximum Pressure for 52100 Steel, and Alumina Specimens, in the Four-Ball Apparatus 205 APPENDIX I - Derivation of a Pseudo First Order Dependence for the Gamma Alumina/Water Reaction at 194°C . 210 APPENDIX J - Mean Pressure Test Severity Plot for Wear Scar Diameter vs Load (psi) 213 APPENDIX K - Mean Pressure Test Severity Plot for Wear Scar Diameter vs Load (MPa) 214 NOTE: Certain commercial equipment, instruments, or materials are identified in this report to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. ix LIST OF TABLES Table Title Page 1 Wear Test Design Philosophies 6 2 ASTM Wear Test Methods Applicable to Ceramic Materials 11 3 Comparison of Physical and Mechanical Properties of Selected
Recommended publications
  • Lubrication Chemistry Viewed from DFT-Based Concepts and Electronic Structural Principles
    Int. J. Mol. Sci. 2004, 5, 13-34 International Journal of Molecular Sciences ISSN 1422-0067 © 2004 by MDPI www.mdpi.org/ijms/ Lubrication Chemistry Viewed from DFT-Based Concepts and Electronic Structural Principles Li Shenghua*, Yang He and Jin Yuansheng State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P.R. China Tel.: +86 (10) 62772509, Fax: +86 (10) 62784691, E-mail: [email protected] URL: http://www.pim.tsinghua.edu.cn/sklt/sklt.html *Author to whom correspondence should be addressed. Received: 16 April 2003 / Accepted: 16 October 2003 / Published: 26 December 2003 Abstract: Fundamental molecular issues in lubrication chemistry were reviewed under categories of solution chemistry, contact chemistry and tribochemistry. By introducing the Density Functional Theory(DFT)-derived chemical reactivity parameters (chemical potential, electronegativity, hardness, softness and Fukui function) and related electronic structural principles (electronegativity equalization principle, hard-soft acid-base principle, and maximum hardness principle), their relevancy to lubrication chemistry was explored. It was suggested that DFT, theoretical, conceptual and computational, represents a useful enabling tool to understand lubrication chemistry issues prior to experimentation and the approach may form a key step in the rational design of lubrication chemistry via computational methods. It can also be optimistically anticipated that these considerations will gestate unique DFT-based strategies to understand sophisticated tribology themes, such as origin of friction, essence of wear, adhesion in MEMS/NEMS, chemical mechanical polishing in wafer manufacturing, stress corrosion, chemical control of friction and wear, and construction of designer tribochemical systems. Keywords: Lubrication chemistry, DFT, chemical reactivity indices, electronic structural principle, tribochemistry, mechanochemistry.
    [Show full text]
  • The Use of Artificial Intelligence in Tribology—A Perspective
    lubricants Perspective The Use of Artificial Intelligence in Tribology—A Perspective Andreas Rosenkranz 1,*, Max Marian 2,* , Francisco J. Profito 3, Nathan Aragon 4 and Raj Shah 4 1 Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago 7820436, Chile 2 Engineering Design, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), 91058 Erlangen, Germany 3 Department of Mechanical Engineering, Polytechnic School, University of São Paulo, São Paulo 17033360, Brazil; fprofi[email protected] 4 Koehler Instrument Company, Holtsville, NY 11742, USA; [email protected] (N.A.); [email protected] (R.S.) * Correspondence: [email protected] (A.R.); [email protected] (M.M.) Abstract: Artificial intelligence and, in particular, machine learning methods have gained notable attention in the tribological community due to their ability to predict tribologically relevant pa- rameters such as, for instance, the coefficient of friction or the oil film thickness. This perspective aims at highlighting some of the recent advances achieved by implementing artificial intelligence, specifically artificial neutral networks, towards tribological research. The presentation and discussion of successful case studies using these approaches in a tribological context clearly demonstrates their ability to accurately and efficiently predict these tribological characteristics. Regarding future research directions and trends, we emphasis on the extended use of artificial intelligence and machine learning concepts in the field of tribology including the characterization of the resulting surface topography and the design of lubricated systems. Keywords: artificial intelligence; machine learning; artificial neural networks; tribology 1. Introduction and Background Citation: Rosenkranz, A.; Marian, M.; There have been very recent advances in applying methods of deep or machine Profito, F.J.; Aragon, N.; Shah, R.
    [Show full text]
  • TRIBOLOGY Lecture 3: FRICTION
    Video Course on Tribology Prof. Dr Harish Hirani Department of Mechanical Engineering Indian institute of Technology, Delhi Lecture No. # 03 Friction Welcome to the third lecture of video course on Tribology. Topic of this lecture is friction. It is interesting. We experience friction in day to day life when you walk we experience friction, when we cycle we experience friction, when we drive we experience friction. This is very common mode which we experience every day. TRIBOLOGY Lecture 3: FRICTION And often when you go to mall, we find this kind of signal or warning that slippery when the floor is wet. So, you need to be careful when you walk resending the water place as lubricant layer. Some Typical Values of Coefficient of Friction for Metals sliding on themselves Metals Sliding on themselves µ Aluminum 1.5 Copper 1.5 Copper((oxide film not penetrated) 0.5 Gold 2.5 Iron 1.2 Platinum 3 Silver 1.5 Steel(mild steel) 0.8 Steel(tool steel) 0.4 Observations: 1. μ > 1.0 2. Mild steel vs Tool steel 3. μ depends on environment. And it reduces the friction. So, we need to walk with more force. So, the overall the friction force turn out to be same. I have gone through number of books and found number of variation in coefficient of friction. So, I am just showing on the first slide of this course that typical value of coefficient friction which is often quoted in books. We say these values are static coefficient of friction or this value belongs to static coefficient of friction.
    [Show full text]
  • Static Friction at Fractal Interfaces
    Dorian Hanaor, Yixiang Gan and Itai Einav (2016). Static friction at fractal interfaces. Tribology International, 93, 229-238. DOI: 10.1016/j.triboint.2015.09.016 Static friction at fractal interfaces Dorian A. H. Hanaor, Yixiang Gan, Itai Einav School of Civil Engineering, University of Sydney, NSW 2006, Australia https://doi.org/10.1016/j.triboint.2015.09.016 Abstract: Tribological phenomena are governed by combined effects of material properties, topology and surface- chemistry. We study the interplay of multiscale-surface-structures with molecular-scale interactions towards interpreting static frictional interactions at fractal interfaces. By spline-assisted-discretization we analyse asperity interactions in pairs of contacting fractal surface profiles. For elastically deforming asperities, force analysis reveals greater friction at surfaces exhibiting higher fractality, with increasing molecular-scale friction amplifying this trend. Increasing adhesive strength yields higher overall friction at surfaces of lower fractality owing to greater true-contact-area. In systems where adhesive-type interactions play an important role, such as those where cold-welded junctions form, friction is minimised at an intermediate value of surface profile fractality found here to be in the regime 1.3-1.5. Our results have implications for systems exhibiting evolving surface structures. Keywords: Contact mechanics, friction, fractal, surface structures 1 Dorian Hanaor, Yixiang Gan and Itai Einav (2016). Static friction at fractal interfaces. Tribology
    [Show full text]
  • Tribology of Polymer Blends PBT + PTFE
    materials Article Tribology of Polymer Blends PBT + PTFE Constantin Georgescu 1,* , Lorena Deleanu 1,*, Larisa Chiper Titire 1 and Alina Cantaragiu Ceoromila 2 1 Department of Mechanical Engineering, Faculty of Engineering, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; [email protected] 2 Department of Applied Sciences, Cross-Border Faculty, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; [email protected] * Correspondence: [email protected] (C.G.); [email protected] (L.D.); Tel.: +40-743-105-835 (L.D.) Abstract: This paper presents results on tribological characteristics for polymer blends made of polybutylene terephthalate (PBT) and polytetrafluoroethylene (PTFE). This blend is relatively new in research as PBT has restricted processability because of its processing temperature near the degradation one. Tests were done block-on-ring tribotester, in dry regime, the variables being the PTFE concentration (0%, 5%, 10% and 15% wt) and the sliding regime parameters (load: 1, 2.5 and 5 N, the sliding speed: 0.25, 0.5 and 0.75 m/s, and the sliding distance: 2500, 5000 and 7500 m). Results are encouraging as PBT as neat polymer has very good tribological characteristics in terms of friction coefficient and wear rate. SEM investigation reveals a quite uniform dispersion of PTFE drops in the PBT matrix. Either considered a composite or a blend, the mixture PBT + 15% PTFE exhibits a very good tribological behavior, the resulting material gathering both stable and low friction coefficient and a linear wear rate lower than each component when tested under the same conditions. Keywords: polybutylene terephthalate (PBT); polytetrafluoroethylene (PTFE); blend PBT + PTFE; block-on-ring test; linear wear rate; friction coefficient Citation: Georgescu, C.; Deleanu, L.; Chiper Titire, L.; Ceoromila, A.C.
    [Show full text]
  • Preparation and Microstructural Analysis of High-Performance Ceramics
    © 2004 ASM International. All Rights Reserved. www.asminternational.org ASM Handbook Volume 9: Metallography and Microstructures (#06044G) Preparation and Microstructural Analysis of High-Performance Ceramics Ulrike Ta¨ffner, Veronika Carle, and Ute Scha¨fer, Max-Planck-Institut fu¨r Metallforschung, Stuttgart, Germany Michael J. Hoffmann, Institut fu¨r Keramik im Maschinenbau, Universita¨t Karlsruhe, Germany IN CONTRAST TO METALS, high-perfor- and impurities. These microstructural variables cubic ZrO2 lattice). Cubic stabilized zirconia is mance ceramics have higher hardness, lower have a strong influence on the method selected also used in as k-sensors for automobile catalytic ductility, and a basically brittle nature. Other for preparation. An example for two different converters and for p(O2) measurement in liquid general properties to note are: excellent high- ZrO2 ceramic materials is illustrated in Fig. 1 and metals. temperature performance, good wear resistance 2. Figure 1 shows the microstructure of tetrag- Because of these differences in mechanical and thermal insulation (low thermal conductiv- onal ZrO2 (TZP, or tetragonal zirconia polycrys- properties and microstructure, the ceramo- ity), as well as high resistance to corrosion and tals). This is a high-strength structural ceramic graphic preparation of TZP and CSZ is quite dif- oxidation. However, the full advantage that these used for room-temperature applications (e.g., ferent. The tough, fine-grained TZP requires materials can provide is strongly dependent on knives and scissors). Tetragonal zirconia poly- longer polishing times for the fine-polishing step composition and microstructure. crystals have a grain size less than 1 lm, an ex- with 1 and 0.25 lm diamond, while CSZ needs Most high-performance ceramics are based on tremely high bending strength ranging from 800 longer polishing times for the coarser polishing high-purity oxides, nitrides, carbides, and bo- to 2400 MPa (115 to 350 ksi), and fracture with 6 and 3 lm diamond compounds.
    [Show full text]
  • Metallographic Procedures and Analysis – a Review
    ISSN 2303-4521 PERIODICALS OF ENGINEERING AND NATURAL SCIENCES Vol. 3 No. 2 (2015) Available online at: http://pen.ius.edu.ba Metallographic Procedures and Analysis – A review Enes Akca Erwin Trgo Department of Mechanical Engineering, Faculty of Engineering and Natural Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71210 Sarajevo, Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71210 Sarajevo, Bosnia and Herzegovina Bosnia and Herzegovina [email protected] Abstract The purpose of this research is to give readers general insight in what metallography generally is, what are the metallographic preparation processes, and how to analyse the prepared specimens. Keywords: metallography; metallographic specimens; metallographic structure 1. Introduction depends generally on the type of material, and so you can clearly differentiate abrasive cutting (metals), thin Metallography is the study of the microstructure of sectioning with a microtome (plastics), and diamond various metals. To be more precise, it is a scientific wafer cutting (ceramics). discipline of observing chemical and atomic structure of those materials, and as such is crucial for These processes are mostly used in order to minimize determining product reliability. the damage which could alter the microstructure of the material, and the analysis itself. Not only metals, but polymeric and ceramic materials can also be prepared using metallographic techniques, 2.2. Mounting hence the terms plastography, ceramography, materialography, etc. This process protects the material’s surface, fills voids in damaged (porous) materials, and improves handling Steps for preparing metallographic specimen include a of irregularly shaped samples. There are plenty of ways variety of operations, and some of them are: to conduct this operation, and all of them depend on the documentation, sectioning and cutting, mounting, type of material that is being handled.
    [Show full text]
  • 3Rd Edition A.R
    WEAR – MATERIALS, MECHANISMS AND PRACTICE Editors: M.J. Neale, T.A. Polak and M. Priest Guide to Wear Problems and Testing for Industry M.J. Neale and M. Gee Handbook of Surface Treatment and Coatings M. Neale, T.A. Polak, and M. Priest (Eds) Lubrication and Lubricant Selection – A Practical Guide, 3rd Edition A.R. Lansdown Rolling Contacts T.A. Stolarski and S. Tobe Total Tribology – Towards an integrated approach I. Sherrington, B. Rowe and R. Wood (Eds) Tribology – Lubrication, Friction and Wear I.V. Kragelsky, V.V. Alisin, N.K. Myshkin and M.I. Petrokovets Wear – Materials, Mechanisms and Practice G. Stachowiak (Ed.) WEAR – MATERIALS, MECHANISMS AND PRACTICE Edited by Gwidon W. Stachowiak Copyright © 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Chapter 1 Copyright © I.M. Hutchings Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wiley.com Reprinted with corrections May 2006 All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620.
    [Show full text]
  • Tribology Module3: Wear
    Tribology Module3: Wear Q.1. Why subsurface cracks are formed due to cyclic load? Ans: Cyclic loading often causes repetitive reversal of stresses, such as compressive stress to tensile stress. Due to such change in stresses, material experiences tiredness. Microstructure in-homogeneity, under tiring load condition, helps the formation of subsurface cracks. Q.2. What is zero wear limits? Ans: “Zero wear” means wear of material surfaces remains within the order of the surface finish. In other words “Zero wear limit” is the initial surface roughness of the material. Q.3. If indium has so high affinity that causes adhesive wear then why do we use it? Can indium be used as lubricant between two steel surfaces? Ans: Because of high affinity of indium, it is used to bond certain non-metallic such as glass, glazed, xeramics, mica, quartz, various metallic oxides, etc. It can be used as solid lubricant between two steel surfaces. Q.4. In adhesion wear taking place between similar materials, which surface is likely to get more damage? Won’t the chuck of particles be with the lower surface in case of similar surface? Ans: The outcome of adhesive wear is growing roughness and creation of lumps above the original surface. Lose of material from the surface depends on the softness of material. Softer material loses more material compared to harder material. In other words nothing can be said about which surface (lower/upper) will lose more material. Lose of material will depend on local hardness of the material. Q.5. What is “back transfer”? Ans: In adhesive wear, material is transferred from one material to other.
    [Show full text]
  • Microstructural Measurements on Ceramics and Hardmetals
    A NATIONAL MEASUREMENT A NATIONAL MEASUREMENT GOOD PRACTICE GUIDE GOOD PRACTICE GUIDE No. 21 No. 21 Microstructural Microstructural Measurements on Measurements on Ceramics and Ceramics and Hardmetals Hardmetals Measurement Good Practice Guide No. 21 Measurement Good Practice Guide No. 21 Microstructural Measurements on Ceramics and Hardmetals Eric Bennett, Lewis Lay, Roger Morrell, Bryan Roebuck Centre for Materials Measurement and Technology National Physical Laboratory Abstract: This guide is intended to review the importance of microstructure in determining the properties and performance of technical ceramics and hardmetals. It also promotes good practice in characterising those microstructural features which are relevant to materials performance in order that more informed choices of material can be made for specific applications. Microstructural parameters are described. They are typically characterised in several ways, including measures of grain size, crystallite texture, porosity, and phase volume fractions, as well as the detection of occasional features such as cracks, abnormal grains and inclusions. The importance of microstructural characterisation of these classes of material is reviewed, and possible measurement methods and methods of preparation of test-pieces for making the measurements are described. Based on information taken from the technical literature as well as data generated during NPL research programmes, correlations between microstructural parameters and properties are discussed. Measurement Good Practice Guide No. 21 © Crown Copyright 1997 Reproduced with the permission of the Controller of HMSO and Queen’s Printer for Scotland ISSN 1386–6550 September 1997 Updated, November 2007 National Physical Laboratory Teddington, Middlesex, UK, TW11 0LW Acknowledgements This guide has been produced in a Characterisation of Advanced Materials project, part of the Materials Measurement programme sponsored by the EAM Division of the Department of Trade and Industry.
    [Show full text]
  • Molecular Tribology
    R.M. Overney Molecular Tribology Friction, wear and adhesion, the three major aspects of Tribology play an important role in mankind’s efforts to conserve energy. Friction and drag alone account for about one third of the energy needed to run our machines in the industrialized World. This does not account for energy losses due to consequential wear and failure of equipment. It is argued that about 1-2 percent of the GDP could be recovered with appropriate tribological solutions that entail besides liquid phase lubrication also effective solid phase solutions. The challenge is still to connect rational molecular designs to the phenomenological process parameters that attempt to describe the energy dissipation during frictional sliding. Historical Developments The Laws of Friction The Science of Tribology (Greek tribos : rubbing ) encompasses the study of adhesion , friction , lubrication and wear . All of these rate dependent processes are dissipative in nature. They involve interfaces that are transient. While adhesion studies are concerned with the formation and destruction of interfaces involving motions normal to the interface, friction studies concentrate on lateral motions of adjacent surfaces in contact. One very important aspect of friction studies has been the behavior of the third medium, referred to as lubricant. In contrast to lubrication that typically concentrates on fluid media (the exception are solid lubricants), wear is the visual manifestation of plastic deformations in solid material that occur in the course of dynamic contact. Leonardo da Vinci (1452-1519)) can be named as the father of modern Tribology . He studied a wide variety of subtopics form friction, lubrication and wear, to bearing materials and geometries, gears, screw-jacks, and rolling-element bearings.
    [Show full text]
  • A High-Temperature, Self-Lubricating, Powder Metallurgy Composite
    NASA Technical Memorandum 102355 Tribological Properties of PM212: A High-Temperature, Self-Lubricating, Powder Metallurgy Composite Christopher DellaCorte and Harold E. Sliney Lewis Research Center Cleveland, Ohio Prepared for the 1990 Annual Meeting of the Society of Tribologists and Lubrication Engineers Denver, Colorado, May 7-11, 1990 (_ASA-T,A-I02)55) TRI_UtOGICAL PRqP_RTIES OF N90-12o_9 PM212: A HIGh-TEMPERATURE, SLLF-LUBRICATING, P_W_ER M_TALLU_Y C_MPuSITE (NASA) 22 p CSCL OTA UnC|dS GSIZ] 0243Z48 NASA Technical Memorandum 102355 Tribological Properties of PM212: A High-Temperature, Self-Lubricating, Powder Metallurgy Composite Christopher DellaCorte and Harold E. Sliney Lewis Research Center Cleveland, Ohio Prepared for the 1990 Annual Meeting of the Society of Tribologists and Lubrication Engineers Denver, Colorado, May 7-11, 1990 (NASA-T'_-IO2355) TRI_ULOGICAL PRQPERTIES OF Ngo-12059 P_212: _ HIGo-TfMO_RATURE, SCLF-LU6_ICATING, P_N_ER METALLIJK_Y C_M_OS[TE (NASA) ZZ p CSCL _TA G._/Z] TRIBOLOGICAL PROPERTIES OF PM212: A HIGH-TEMPERATURE, SELF-LUBRICATING, PONDER METALLURGY COMPOSITE Christopher DellaCorte and Harold E. Sliney National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 ABSTRACT This paper describes a research program to develop and evaluate a new high temperature, self-lubricating powder metallurgy composite, PM212. PM212 has the same composition as the plasma-sprayed coating, PS212, which contains 70 wt % metal-bonded chromium carbide, 15 wt % silver and 15 wt % barium fluoride/calcium fluoride eutectic. The carbide acts as a wear resistant matrix and the silver and fluorides act as low and high temperature lubricants, respectively. The material is prepared by sequential cold press, cold isostatic pressing and sintering techniques.
    [Show full text]