Preparation and Microstructural Analysis of High-Performance Ceramics

Total Page:16

File Type:pdf, Size:1020Kb

Preparation and Microstructural Analysis of High-Performance Ceramics © 2004 ASM International. All Rights Reserved. www.asminternational.org ASM Handbook Volume 9: Metallography and Microstructures (#06044G) Preparation and Microstructural Analysis of High-Performance Ceramics Ulrike Ta¨ffner, Veronika Carle, and Ute Scha¨fer, Max-Planck-Institut fu¨r Metallforschung, Stuttgart, Germany Michael J. Hoffmann, Institut fu¨r Keramik im Maschinenbau, Universita¨t Karlsruhe, Germany IN CONTRAST TO METALS, high-perfor- and impurities. These microstructural variables cubic ZrO2 lattice). Cubic stabilized zirconia is mance ceramics have higher hardness, lower have a strong influence on the method selected also used in as k-sensors for automobile catalytic ductility, and a basically brittle nature. Other for preparation. An example for two different converters and for p(O2) measurement in liquid general properties to note are: excellent high- ZrO2 ceramic materials is illustrated in Fig. 1 and metals. temperature performance, good wear resistance 2. Figure 1 shows the microstructure of tetrag- Because of these differences in mechanical and thermal insulation (low thermal conductiv- onal ZrO2 (TZP, or tetragonal zirconia polycrys- properties and microstructure, the ceramo- ity), as well as high resistance to corrosion and tals). This is a high-strength structural ceramic graphic preparation of TZP and CSZ is quite dif- oxidation. However, the full advantage that these used for room-temperature applications (e.g., ferent. The tough, fine-grained TZP requires materials can provide is strongly dependent on knives and scissors). Tetragonal zirconia poly- longer polishing times for the fine-polishing step composition and microstructure. crystals have a grain size less than 1 lm, an ex- with 1 and 0.25 lm diamond, while CSZ needs Most high-performance ceramics are based on tremely high bending strength ranging from 800 longer polishing times for the coarser polishing high-purity oxides, nitrides, carbides, and bo- to 2400 MPa (115 to 350 ksi), and fracture with 6 and 3 lm diamond compounds. rides with carefully controlled compositions. Ce- toughness (KIc) between 6 and 15 MPaΊm (5.5 Depending on the type of ceramic or ceramic ramic engineering components are usually pro- and 15.5 ksiΊin .), which renders this material component, the mechanical properties (e.g., frac- duced by powder metallurgical methods. The resistant to pullout during preparation. ture toughness and strength) may vary consid- required properties of a specific part are opti- The microstructure of cubic ZrO2 (CSZ, or cu- erably, and therefore the ceramographic prepa- mized by selecting parameters associated with bic stabilized zirconia) is shown in Fig. 2. The ration procedures have to be adjusted the powder mixture and the pressing and sinter- mechanical properties of this material are con- accordingly. ing operations to obtain the desired microstruc- siderably poorer than TZP, with a bending ture. strength of 200 MPa (29 ksi) and a fracture High-performance ceramics can be divided toughness of 2 to 3 MPaΊΊmin (1.8 to 2.7 ksi ). Specimen Preparation into two main categories; structural and func- The microstructure is characterized by a high in- tional ceramics. While optimization of structural tragranular porosity and a grain size of approx- Similarly to metallographic preparation, se- ceramics is directed toward improved mechani- imately 30 to 50 lm. These materials are very quential steps have to be performed to prepare cal properties, the performance of components sensitive to mechanical shock. Applications of ceramics for microstructural investigations (Ref produced from functional ceramics is controlled TZP and CSZ are focused on their high ion con- 1–3). Careful selection of sectioning, mounting, by electrical, magnetic, dielectric, or optical ductivity (e.g., mobility of O2 ions across the grinding, polishing, and etching procedures is re- properties. Therefore, restrictions with respect to mechanical properties can be tolerated. Typical structural ceramics are aluminum oxide (Al2O3), zirconium dioxide (ZrO2), silicon nitride (Si3N4), and silicon carbide (SiC). However, Al2O3-, ZrO2- and SiC-based ceramics are also often used as functional ceramics. Other func- tional ceramics of technological interest are bar- ium titanate (BaTiO3) and lead zirconate titanate (Pb(Ti,Zr)O3). Due to the large variations in microstructure, different ceramographic preparation techniques are applied to achieve the surface quality desired so structural details are revealed under the mi- croscope. For ceramographic preparation, it is not sufficient to know that a sample is Al2O3. The manufacturing conditions must also be Fig. 1 Tetragonal zirconia polycrystals (TZP) with 2 Fig. 2 Light micrograph of a cubic stabilized zirconia mol% Y2O3, thermally etched in air at 1300 C (CSZ) with 12 mol% Y2O3, thermally etched in known because they provide important infor- (2730 ЊF). The scanning electron micrograph shows a fine- air at 1300 ЊC (2730 ЊF). The large cubic grains show inter- mation regarding expected porosity, grain size, grained microstructure. Pores appear black. and intragranular porosity. © 2004 ASM International. All Rights Reserved. www.asminternational.org ASM Handbook Volume 9: Metallography and Microstructures (#06044G) 1058 / Metallography and Microstructures of Ceramics, Composite-Metal Forms, and Special-Purpose Alloys quired, and each step must be optimized for each Mechanical Preparation (Grinding and Microscopic Examination type of ceramic. However, due to the brittleness, Polishing). It is preferable to perform the grind- porosity, and chemical resistance of ceramics it ing and polishing procedures with an automatic For the investigation of ceramic microstruc- is quite often difficult to polish them in the same or semiautomatic machine. The structure of each tures and the identification of flaws and defects, and every ceramic product has been specifically way as metals. Automated sample preparation is the use of light optical microscopy (LOM) or adjusted to exhibit required properties, and thus recommended. The capability to adjust polishing scanning electron microscopy (SEM) are most each material will exhibit a unique behavior dur- pressure and the use of special grinding disks common. Since most of the ceramics are electri- ing preparation. Table 1 contains preparation with diamond as the abrasive material is also cal insulators, samples for SEM investigations standards for structural ceramics (e.g., Si N and preferred. With this equipment, a flat surface that 3 4 have to be coated by an electrical conductive Al O ) as well as AlN, and Table 2 provides the displays an undistorted “true” microstructure 2 3 layer such as carbon, gold, or gold-palladium al- preparation standards for functional ceramics may be prepared in a reasonable time. loys. Metals are used for simple microstructural (e.g., BaTiO and PZT). These tables should be Sectioning. Generally, ceramics are cut with 3 analysis, while carbon is used for simultaneous used as a rough guide only; the parameters will a lubricated (water or a special cutting fluid), ro- chemical analysis, for example, energy-disper- need to be adjusted according to the preparation tating diamond cutting wheel on a bench-type sive x-ray (EDX) analysis. Standard scanning requirements of specific ceramics. lab machine or on a precision cutting machine. electron microscopes are normally equipped The cutting speed (low-speed cutting machine: In general, resin-bonded diamond disks are employed for grinding. In individual cases, sili- with different detectors. The backscatter detector 25 to 500 rpm; high-speed cutting machine: 500 is useful for multiphase materials, when the dif- to 5000 rpm) and the cutting pressure should be con carbide paper is used. For example, this type of paper would be selected for the functional ce- ferent phases reveal a strong mass contrast. In optimized for the properties of a given material. this case, no etching is required. Secondary elec- A slow cutting speed and low pressure produce ramics. The surface damage generated during section- tron detectors are sensitive to small differences less cutting and surface damage for most ceram- in height of a polished and etched surface. The ics, although some ceramic materials require the ing and grinding has to be removed during fine grinding, or lapping and polishing. Fine grinding microscopic examination of ceramic specimens opposite (e.g., TZP-ZrO2). Diamond cutting in the as-polished state has proved useful. An wheels are either metal bonded or resin bonded, and/or lapping retains the plane of the specimen surface, and no further damage is introduced. evaluation of the number of pores, their distri- and normally metal-bonded cutting wheels are bution, and possible pullouts can only be as- selected. However, for very brittle and sensitive Complete removal of the damaged surface must therefore be achieved by subsequent polishing sessed in this state. Evaluation of inclusions, ceramics, resin-bonded cutting wheels are rec- contamination, and cracks should also be made ommended. These wheels are softer and will steps. Polishing should be performed on hard cloths. The highest removal rates will occur dur- before etching. generally produce a better cut-surface finish than In order to reveal grain boundaries, phases, a metal-bonded diamond wheel, but their weaker ing steps with the application of 6 and 3 lm di- amond grain size. Polishing with 1 lm diamond and other microstructural details, ceramic spec- bond shortens service life. Additional criteria
Recommended publications
  • Memoirs Faculty of Engineering
    ISSN 0078-6659 MEMOIRS OF THE FACULTY OF ENG THE FACULTY MEMOIRS OF MEMOIRS OF THE FACULTY OF ENGINEERING OSAKA CITY UNIVERSITY INEERING OSAKA CITY UNIVERSITY VOL. 60 DECEMBER 2019 VOL. 60. 2019 PUBLISHED BY THE GRADUATE SCHOOL OF ENGINEERING OSAKA CITY UNIVERSITY 1911-0402大阪市立大学 工学部 工学部英文紀要VOL.60(2019) 1-4 見本 スミ 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 㻌 This series of Memoirs is issued annually. Selected original works of the members 㻌 of the Faculty of Engineering are compiled in the first part of the volume. Abstracts of 㻌 㻌 papers presented elsewhere during the current year are compiled in the second part. List 㻌 of conference presentations delivered during the same period is appended in the last part. 㻌 All communications with respect to Memoirs should be addressed to: 㻌 Dean of the Graduate School of Engineering 㻌 Osaka City University 㻌 3-3-138, Sugimoto, Sumiyoshi-ku 㻌 Osaka 558-8585, Japan 㻌 㻌 Editors 㻌 㻌 㻌 Akira TERAI Hayato NAKATANI This is the final print issue of “Memoirs of the Faculty of Engineering, Osaka City Masafumi MURAJI University.” This series of Memoirs has been published for the last decade in print edition as Daisuke MIYAZAKI well as in electronic edition. From the next issue, the Memoirs will be published only Hideki AZUMA electronically. The forthcoming issues will be available at the internet address: Tetsu TOKUONO https://www.eng.osaka-cu.ac.jp/en/about/publication.html. The past and present editors take Toru ENDO this opportunity to express gratitude to the subscribers for all their support and hope them to keep interested in the Memoirs.
    [Show full text]
  • Water Etching... a Well Kept Secret
    Water-Etching : A Well-Kept Secret. This was the original draft of a submission to “Pottery Making Illustrated” sometime in 2007, eventually published under the title “Adding by Subtracting”. Some of the included photographs were omitted in the printed version for reasons of space, but they’re still included here to help make the explanations clearer. Roger Graham Pottery at Old Toolijooa School Some time last year, on a visit interstate, I bought a delightful porcelain pot with a delicate raised pattern on the outside. Carved with infinite patience, or so I thought. Not at all, the potter told me. It’s water-etching... and I was given a one-sentence outline of how it’s done. Use wax emulsion to paint a design on the unfired pot, then spray with water. Back home in the workshop, I’ve had time to follow up this idea, and it has opened up a whole new field of possibilities. Nothing found on the internet. Nothing known by various other experienced potters of my acquaintance. How could this wonderful technique have remained a secret for so long? So, what do you do? This photo shows what you can expect, once you know the secret, and it’s so simple really. • Throw a suitable pot, using a smooth fine- grained clay. Let it dry. • Use wax emulsion and a fine brush, to paint a design on the pot. Food dye in the wax makes it easier to see where you’ve been. • Invert the pot and suspend it on some kind of pedestal, then apply a fine spray of water.
    [Show full text]
  • Palo Duro Etching
    MEDIA SETTING RECOMMENDATIONS PAPER HANDLING GUIDE Download the Full Handling Guide www.redriverpaper.com/guides ® Palo Duro Etching Using a printer profile? Product Stats Use the instructions that came with the profile for setting recommendations. Recommended Printer Driver Settings Packed Print Side Up Epson - Cold Press Natural or Velvet Fine Art Paper Canon Desktop - Matte Photo Paper Weight: Canon PRO (Prograf) - Heavyweight Fine Art Paper 315gsm Thick Paper Handling Tips Thickness: 21mil Epson Desktop – Activate the thick paper (envelope) setting Epson Pro Models - Paper thickness = 4 and platen gap to wide Media Type: 100% Cotton Rag Canon - Activate “Prevent Paper Abrasion” setting Coating: Print Quality Setting Recommendations Micro-porous Epson Choose Best Photo or 1440dpi quality. Choose Photo if Best Photo is Surface: not available. We recommend avoiding Photo RPM as print quality Matte textured is only marginally better, while slowing your print time significantly. Printable: Canon One-sided Choose the High-Quality setting. On the sliding scale, you will choose 2 or 1 depending on which is the highest available. OBA: No OBAs present HP Print Quality Choose Best in the print quality drop down. Avoid Maximum DPI - Reverse Side: print quality is only marginally better while slowing your print time significantly. Light inkjet coating High Speed Printing We recommend leaving High Speed turned OFF for best possible print quality. Available Sizes: Printer Color Profiles and Color Management See website Red River Paper offers free printer color profiles for our products and many different inkjet printers. Profiles are small data files, used by software like Photoshop, that help you get better and more consistent print quality.
    [Show full text]
  • Diy Lettering on Glass
    Diy Lettering On Glass How paralytic is Tremayne when sappiest and discountable Willy throw-aways some leaseback? Crutched Tedie unpick acquiescently or befuddle omnipotently when Arturo is saw-toothed. Neuropathic Conrad holystone some maras and disappoint his chiliarchs so synthetically! Make your family member of diy lettering glass on any glass What as you write about wine all with? DIY Lettered Dinner Plates that you can brush at home using your favorite fonts. What Cricut Vinyl to visible on relief The Country Chic Cottage. Flea-market finds and dollar-a-glass specials can be transformed with monograms stripes and whimsical polka dots. Click attach for your letters will stay near place for cutting You help see above when down go to cut need's not jumbled How about attach letters on the Cricut so. Theme are easy DIY gifts and these DIY Monogrammed Wine Glasses. I used the garment and backing pieces to make surrender letter worry no need to keep cup glass To give the emphasis a modern update I sprayed each. Pop your backing back into certain frame right out there glass like there any glass vase the. Then we can part the letters exactly where they want them together click train We acquire do follow same team with for rest of reading text reply you close your letter. I spend thinking of outstanding small ones all gas and using them some wine glass charmsjust place them food the glasses too then shred them rock the conjunction of the. I aggravate my word later and arranged the letters in a curve than before with did demand I flipped each letterword over and traced it through to the back torment the.
    [Show full text]
  • Paycheck Protection Program Loans
    Paycheck Protection Program Loans Loan Amount Business Name Headquarters City a $5-10 million ABO LEASING CORPORATION PLYMOUTH a $5-10 million ACMS GROUP INC CROWN POINT a $5-10 million ALBANESE CONFECTIONERY GROUP, INC. MERRILLVILLE a $5-10 million AMERICAN LICORICE COMPANY LA PORTE a $5-10 million AMERICAN STRUCTUREPOINT, INC. INDIANAPOLIS a $5-10 million ASH BROKERAGE, LLC FORT WAYNE a $5-10 million ASHLEY INDUSTRIAL MOLDING, INC. ASHLEY a $5-10 million BEST CHAIRS INCORPARATED FERDINAND a $5-10 million BIOANALYTICAL SYSTEMS, INC. WEST LAFAYETTE a $5-10 million BLUE & CO LLC CARMEL a $5-10 million BLUE HORSESHOE SOLUTIONS INC. CARMEL a $5-10 million BRAVOTAMPA, LLC MISHAWAKA a $5-10 million BRC RUBBER & PLASTICS INC FORT WAYNE a $5-10 million BTD MANUFACTURING INC BATESVILLE a $5-10 million BUCKINGHAM MANAGEMENT, L.L.C. INDIANAPOLIS a $5-10 million BYRIDER SALES OF INDIANA S LLC CARMEL a $5-10 million C.A. ADVANCED INC WAKARUSA a $5-10 million CFA INC. BATESVILLE a $5-10 million CINTEMP INC. BATESVILLE a $5-10 million CONSOLIDATED FABRICATION AND CONSTRUCTORS INC GARY a $5-10 million COUNTRYMARK REFINING & LOGISTICS LLC MOUNT VERNON a $5-10 million CROWN CORR, INC. GARY a $5-10 million CUNNINGHAM RESTAURANT GROUP LLC INDIANAPOLIS a $5-10 million DECATUR COUNTY MEMORIAL HOSPITAL GREENSBURG a $5-10 million DIVERSE STAFFING SERVICES, INC. INDIANAPOLIS a $5-10 million DRAPER, INC. SPICELAND a $5-10 million DUCHARME, MCMILLEN & ASSOCIATES, INC. FORT WAYNE a $5-10 million ELECTRIC PLUS, INC AVON a $5-10 million ENVIGO RMS, LLC INDIANAPOLIS a $5-10 million ENVISTA, LLC CARMEL a $5-10 million FLANDERS ELECTRIC MOTOR SERVICE INC EVANSVILLE a $5-10 million FOX CONTRACTORS CORP FORT WAYNE a $5-10 million FUSION ALLIANCE, LLC CARMEL a $5-10 million G.W.
    [Show full text]
  • Metallographic Procedures and Analysis – a Review
    ISSN 2303-4521 PERIODICALS OF ENGINEERING AND NATURAL SCIENCES Vol. 3 No. 2 (2015) Available online at: http://pen.ius.edu.ba Metallographic Procedures and Analysis – A review Enes Akca Erwin Trgo Department of Mechanical Engineering, Faculty of Engineering and Natural Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71210 Sarajevo, Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71210 Sarajevo, Bosnia and Herzegovina Bosnia and Herzegovina [email protected] Abstract The purpose of this research is to give readers general insight in what metallography generally is, what are the metallographic preparation processes, and how to analyse the prepared specimens. Keywords: metallography; metallographic specimens; metallographic structure 1. Introduction depends generally on the type of material, and so you can clearly differentiate abrasive cutting (metals), thin Metallography is the study of the microstructure of sectioning with a microtome (plastics), and diamond various metals. To be more precise, it is a scientific wafer cutting (ceramics). discipline of observing chemical and atomic structure of those materials, and as such is crucial for These processes are mostly used in order to minimize determining product reliability. the damage which could alter the microstructure of the material, and the analysis itself. Not only metals, but polymeric and ceramic materials can also be prepared using metallographic techniques, 2.2. Mounting hence the terms plastography, ceramography, materialography, etc. This process protects the material’s surface, fills voids in damaged (porous) materials, and improves handling Steps for preparing metallographic specimen include a of irregularly shaped samples. There are plenty of ways variety of operations, and some of them are: to conduct this operation, and all of them depend on the documentation, sectioning and cutting, mounting, type of material that is being handled.
    [Show full text]
  • Glass Shards • Page 2
    GlassNEWSLETTER OF THE NATIONAL Shards AMERICAN GLASS CLUB www.glassclub.org Founded 1933 A Non-Profit Organization Autumn 2019 New Bedford Museum of Glass on the Move! After 3 months of heroic effort last Mt. Washington Glass Company, will relocation possible: Aaron Barr, Mary spring by a team of dedicated volun­ provide a perfect home for the muse­ Jo Baryza, Jeff Costa, David DeMello, teers, the New Bedford Museum of um, and we expect to open our new Brian Gunnison, Peggy Hooper, Maria Glass is happy to report that it has fully glass galleries there later this year. Martell, Luis Marquez, Charlie Moss, vacated its former premises and is now Heart-felt thanks to the following Andrea Natsios, Betsy Nelson, Eric making steady progress toward set­ volunteers (many NAGC members Nelson, Ross Nelson, Karen Petraglia, ting up its new gallery, library, office, among them!) who helped make our and Clint Sowle. and shop spaces in downtown New Bedford’s magnificent James Arnold Mansion! Literally thousands of ex­ amples of beautiful glass, including art glass, paperweights, early Ameri­ can glass, and studio glass by contem­ porary artists, have been carefully packed and moved to the new location, along with more than 50 massive dis­ play cases, a library of 15,000 glass reference books, and countless fasci­ nating odds and ends that help tell the story of approximately 2,500 years of glassmaking history. The mansion, which served as the residence in the 1870s and ’80s of William J. Rotch, the president of New Bedford’s famous The new home of the New Bedford Glass Museum.
    [Show full text]
  • Microstructural Measurements on Ceramics and Hardmetals
    A NATIONAL MEASUREMENT A NATIONAL MEASUREMENT GOOD PRACTICE GUIDE GOOD PRACTICE GUIDE No. 21 No. 21 Microstructural Microstructural Measurements on Measurements on Ceramics and Ceramics and Hardmetals Hardmetals Measurement Good Practice Guide No. 21 Measurement Good Practice Guide No. 21 Microstructural Measurements on Ceramics and Hardmetals Eric Bennett, Lewis Lay, Roger Morrell, Bryan Roebuck Centre for Materials Measurement and Technology National Physical Laboratory Abstract: This guide is intended to review the importance of microstructure in determining the properties and performance of technical ceramics and hardmetals. It also promotes good practice in characterising those microstructural features which are relevant to materials performance in order that more informed choices of material can be made for specific applications. Microstructural parameters are described. They are typically characterised in several ways, including measures of grain size, crystallite texture, porosity, and phase volume fractions, as well as the detection of occasional features such as cracks, abnormal grains and inclusions. The importance of microstructural characterisation of these classes of material is reviewed, and possible measurement methods and methods of preparation of test-pieces for making the measurements are described. Based on information taken from the technical literature as well as data generated during NPL research programmes, correlations between microstructural parameters and properties are discussed. Measurement Good Practice Guide No. 21 © Crown Copyright 1997 Reproduced with the permission of the Controller of HMSO and Queen’s Printer for Scotland ISSN 1386–6550 September 1997 Updated, November 2007 National Physical Laboratory Teddington, Middlesex, UK, TW11 0LW Acknowledgements This guide has been produced in a Characterisation of Advanced Materials project, part of the Materials Measurement programme sponsored by the EAM Division of the Department of Trade and Industry.
    [Show full text]
  • Effects of Etching Duration on the Surface Roughness
    EFFECTS OF ETCHING DURATION ON THE SURFACE ROUGHNESS, SURFACE LOSS, FLEXURAL STRENGTH, AND SHEAR BOND STRENGTH TO A RESIN CEMENT OF E.MAX CAD GLASS CERAMIC by Hanan Al-Johani Submitted to the Graduate Faculty of the School of Dentistry in partial fulfillment of the requirements for the degree of Master of Science in Dentistry, Indiana University School of Dentistry, July 2017. ii Thesis accepted by the faculty of the Department of Restorative Dentistry, Indiana University School of Dentistry, in partial fulfillment of the requirements for the degree of Master of Science in Dentistry. Jeffrey A. Platt Norman B. Cook Tien-Min Gabriel Chu Chair of the Research Committee Marco C. Bottino Program Director ________________________ Date iii DEDICATION iv I dedicate this thesis to my beloved parents, Dr. Aouda Al-Johani and Dr.Hessa Almusaad; my supportive husband, Mohanad, my sweet son, Saleh; and my siblings, Wafa, Abdulaziz, Mohammad, Hala and Abeer. You were the wind beneath my wings that made all of this possible. v ACKNOWLEDGMENTS vi First and foremost, I owe my sincerest gratitude to Allah the Almighty for his endless blessings in my life. Second, I would like to express my deepest appreciation to my mentor, Dr. Tien- Min G. Chu for his guidance and expertise throughout my program years. I would also like to thank the members of my research committee, Dr. Jeffrey A. Platt and Dr. Norman B. Cook, for their support in my research project. Special thanks go to Dr. Afnan Alzain for her assistance in the lab procedures and to the statisticians, George Eckert and Qing Tang for all their help.
    [Show full text]
  • Metal Etching 101 #68-007-16 Etching Is a Method of Using Chemicals to Cut a Design Or Pattern Into Types of Resists a Metal Surface
    Metal Etching 101 #68-007-16 Etching is a method of using chemicals to cut a design or pattern into Types of Resists a metal surface. Etching your own designs into metal is easier than it A resist is what you use to protect certain parts of your metal from the may sound, and it can be a fun and rewarding way to make your own etchant. Resists are typically inks (and tapes). You will apply a design jewelry! Learn the basics of how to choose your metals, choose your or pattern to the metal with your resist. Then, when you dip your etchants, create or transfer your images with resists, and complete the metal into the chemical bath, the covered areas will “resist” being eaten etching process. Discover how to make a float boat for suspending away. Those covered areas will be the high points of your design once your designs in etchant — plus find basic etching safety precautions, the etching process is complete. design considerations, and project ideas. Different artisans use different resists, and different resists work better with different aesthetic styles and methods — for example using rubber stamps, making a photo transfer, drawing by hand, etc. With practice and experimentation you’ll figure out which mediums and methods you prefer, too. Resists that work on copper, brass, and nickel silver include: • StazOn® & Perfect Medium™ Ink Pads work great to add rubber Rubber-stamp designs etched into sheet metal. stamp designs to metal. StazOn Cleaner allows you to removed What Metals can be Etched? smudged immpressions and start over till the image comes out to Because chemical etching actually cuts into the surface of the metal, StazOn® & Perfect your satisfaction.
    [Show full text]
  • A Method for Digital Image Analysis of Ceramic Grains Based on Shape Factor Segmentation
    A METHOD FOR DIGITAL IMAGE ANALYSIS OF CERAMIC GRAINS BASED ON SHAPE FACTOR SEGMENTATION Elson de Campos (1); Émerson F. de Lucena (1); Francisco C.L. de Melo (2); Luis Rogerio de O. Hein (1) 1Laboratório de Análise de Imagens de Materiais (LAIMat), Departamento de Materiais e Tecnologia (DMT), Faculdade de Engenharia do Campus de Guaratinguetá (FEG), Universidade Estadual Paulista (UNESP), 12516-410, Guaratinguetá, SP, Brazil, [email protected] 2 Divisão de Materiais (AMR), Instituto de Aeronáutica e Espaço (IAE), Centro Técnico Aeroespacial (CTA), São José dos Campos, SP, Brazil ABSTRACT A very simple and robust method for ceramics grains quantitative image analysis is presented. Based on the use of optimal imaging conditions for reflective light microscopy of bulk samples, a digital image processing routine was developed for shading correction, noise suppressing and contours enhancement. Image analysis was done for grains selected according to their concavities, evaluated by the perimeter ratio shape factor, to avoid consider the effects of breakouts and ghost boundaries due to ceramographic preparation limitations. As an example, the method was applied for two ceramics, to compare grain size and morphology distributions. In this case, most of artifacts introduced by ceramographic preparation could be discarded due to the use of the perimeter ratio exclusion range. Keywords: digital image analysis, perimeter ratio, ceramography, reflective light microscopy 1.Introduction: Ceramics have been used in many engineering applications, which have resulted in extensive research. Most morphological characterization of ceramic grains are performed by qualitative microstructural observations by scanning electron microscope (SEM) [1-5] or few quantitative information [6,7].
    [Show full text]
  • Effect of Etching with Different Hydrofluoric Acid Concentrations On
    Ciência Odontológica Brasileira UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” Instituto de Ciência e Tecnologia Campus de São José dos Campos ORIGINAL ARTICLE doi: 10.14295/bds.2016.v19i1.1193 Effect of etching with different hydrofluoric acid concentrations on bond strength between glazed feldspathic ceramic and metal brackets Efeito de diferentes concentrações de ácido fluorídrico na resistência adesiva entre uma cerâmica feldspatica glazeada e bráquetes metálicos Cristiane Frantz AREND1, André GÜNDEL2, Renésio Armindo GREHS1, Vilmar Antônio FERRAZZO1, Luiz Felipe VALANDRO3 1 – Graduate Program in Oral Science (Orthodontic Unit) – Federal University of Santa Maria – Santa Maria – RS – Brazil. 2 – Physic School – Federal University of Pampa –Bagé – RS – Brazil. 3 – Graduate Program in Oral Science (Prosthodontic Unit) – Federal University of Santa Maria – Santa Maria – RS – Brazil. ABSTRACT RESUMO Objective: The aim of this study was evaluate the Objetivo: O objetivo deste estudo foi avaliar o efeito effect of etching with different hydrofluoric acid do condicionamento com diferentes concentrações (HF) concentrations on the shear bond strength de ácido fluorídrico (AF) na resistência de união ao between glazed feldspathic ceramic and metal cisalhamento entre cerâmica feldspática glazeada e brackets. Material and Methods: –Seventy- bráquetes metálicos. Material e Métodos: Setenta five blocks of glazed feldspathic ceramic were e cinco blocos de cerâmica feldspática glazeada produced and randomly allocated to 5 groups: foram produzidos e distribuídos aleatoriamente em 5 Ctrl- silane application only; HF1- HF1%+silane; grupos: Ctrl- silano; HF1- AF 1% + silano; HF3- AF HF3- HF3%+silane; HF5- HF5%+silane; HF10- 3% + silano; HF5- AF 5% + silano; HF10- AF 10% HF10%+silane (standard procedures: etching for + silano (procedimento padrão: condicionamento 1 min + washing + drying + silanization).
    [Show full text]