Voltage/ 33O Current Source U.S

Total Page:16

File Type:pdf, Size:1020Kb

Voltage/ 33O Current Source U.S US007 18301 OB2 (12) United States Patent (10) Patent No.: US 7,183,010 B2 Jarikov (45) Date of Patent: Feb. 27, 2007 (54) ORGANIC LIGHT-EMITTING DIODE (58) Field of Classification Search ................ 428/690, DEVICES WITH IMPROVED OPERATIONAL 428/917; 313/504,506 STABILITY See application file for complete search history. (75) Inventor: Viktor V. Jarikov, Rochester, NY (US) (56) References Cited (73) Assignee: Eastman Kodak Corporation, U.S. PATENT DOCUMENTS Rochester, NY (US) 5,281,489 A * 1/1994 Mori et al. .... ... 428,690 5,294.870 A * 3/1994 Tang et al. ....... ... 313,504 (*) Notice: Subject to any disclaimer, the term of this 5,405,709 A * 4/1995 Littman et al. ... ... 428,690 patent is extended or adjusted under 35 6,740,429 B2 * 5/2004 Aziz et al. ........ ... 428,690 U.S.C. 154(b) by 58 days. 2004/0021415 A1* 2/2004 Vong et al. ................. 313,509 (21) Appl. No.: 10/634,324 * cited by examiner Primary Examiner Dawn Garrett (22) Filed: Aug. 5, 2003 (74) Attorney, Agent, or Firm—Raymond L. Owens (65) Prior Publication Data (57) ABSTRACT US 2004/0076853 A1 Apr. 22, 2004 An organic light-emitting device includes a Substrate, an Related U.S. Application Data anode and a cathode disposed over the Substrate, and a (63) Continuation-in-part of application No. 10/131,801, luminescent layer disposed between the anode and the filed on Apr. 24, 2002, now abandoned. cathode wherein the luminescent layer includes a host and at least one dopant. The host of the luminescent layer is (51) Int. Cl. selected to include a solid organic material comprising a H05B 33/14 (2006.01) mixture of at least two components, one of which is capable HOIL 5L/50 (2006.01) of forming both monomer State and an aggregate state. (52) U.S. Cl. ...................... 428/690: 428/917; 313/504; 313/506 108 Claims, 8 Drawing Sheets VOLTAGE/ 33O CURRENT SOURCE U.S. Patent Feb. 27, 2007 Sheet 1 of 8 US 7,183,010 B2 VOLTAGE/ CURRENT SOURCE VOLTAGE/ CURRENT SOURCE VOLTAGE/ CURRENT 33O SOURCE U.S. Patent Feb. 27, 2007 Sheet 4 of 8 US 7,183,010 B2 X O. O25 S 9 O.O2O 3.3% SS &N OO15 GS 17% O. O1O SSS (/) (f) () r O 4OO 45O 5OO 55O 6OO 650 7OO WAVELENGTH, nrn w s 4OO 450 500 550 6OO 650 700 WAVELENGTH, nnn FIG 9 U.S. Patent Feb. 27, 2007 Sheet 5 of 8 US 7,183,010 B2 4OO 450 5OO 55O 6OO 65O 7OO WAVELENGTH, nrn FIG 10 4OO 45O 5OO 55O 6OO 65O 7OO WAVELENGTH, nrn FIG. I. I U.S. Patent Feb. 27, 2007 Sheet 6 of 8 US 7,183,010 B2 4OO 45O 5OO 55O 6OO 65O 7OO WAVELENGTH, nrn FIG. I2 O. O14 X O. O12 O. O1 O O2 O. OO3 s 132 O. OO6 O. OO4 3O2 O. OO2 4OO 45O 5OO 550 6OO 65O 7OO WAVELENGTH, nrn FIG. I.3 U.S. Patent Feb. 27, 2007 Sheet 7 of 8 US 7,183,010 B2 O O1 5 4OO 45O 5OO 55O 6OO 65O 7OO WAVELENGTH,nrn FIG. 14 4OO 45O 5OO 55O 6OO 65O 7OO WAVELENGTH, nrn FIG 15 U.S. Patent Feb. 27, 2007 Sheet 8 of 8 US 7,183,010 B2 O2 O. O15 2.3% O. Of O (/ 4OO 45O 5OO 55O 6OO 65O 7OO WAVELENGTH, nr. FIG 16 US 7,183,010 B2 1. 2 ORGANIC LIGHT-EMITTING DODE emitting host. They showed that a blue emitting OLED DEVICES WITH IMPROVED OPERATIONAL device with an improved operational stability was obtained. STABILITY In both disclosures, the incorporation of selected fluorescent dopants in the luminescent layer is found to improve Sub CROSS REFERENCE TO RELATED stantially the overall OLED device performance parameters. APPLICATIONS Co-doping of luminescent layer with anthracene derivatives results in devices with better stability as shown in JP This is a continuation-in-part of application Ser. No. 99273861 and JP 284.050. Doping the hole-transport layer 10/131,801, filed Apr. 24, 2002 now abandoned entitled with materials that impede hole-transport and co-doping “Organic Light-emitting Diode Devices With Improved 10 hole-transport materials into electron-transporting AlQ Operational Stability” by Viktor V. Jarikov. leads to the improved device lifetimes, Popovic et al. Thin Solid Films 2000, 363, 6: SPIE 1998, 3476, 68. FIELD OF THE INVENTION The most common formulation of the doped luminescent layer includes only a single dopant in a host matrix. How The present invention relates to organic light-emitting 15 ever, in a few instances, incorporation of more than one diode devices and more particularly to the design of the dopant in the luminescent layer was found to be beneficial composition of the organic layers for improvements in in improving stability. Using a luminescent layer containing operational stability. rubrene, a yellow emitting dopant, and DCJ, 4-(dicyanom ethylene)-2-methyl-6-2-(4-julolidyl)ethenyl]-4H-pyran, a BACKGROUND OF THE INVENTION red emitting dopant, in an AlQ host it is possible to produce a red emitting OLED device with improved operational Organic light-emitting diodes (OLED), also known as stability, Hamada et al. in Applied Phys. Lett. 75, 1682 organic electroluminescent (EL) devices, are a class of (1999); EP1162674. Here rubrene functions as a co-dopant electronic devices that emit light in response to an electrical in mediating energy transfer from the AlQ host to the DCJ current applied to the device. The structure of an OLED 25 emitter. Generally, in dual dopant systems, it has been noted device generally includes an anode, an organic EL medium, that the operational stability tends to increase compared to and a cathode. The term, organic EL medium, herein refers that of the single dopant systems. to organic materials or layers of organic materials disposed Although EL efficiency, color, and stability have been between the anode and the cathode in the OLED device. The improved significantly using doped luminescent layers of organic EL medium can include low molecular weight 30 various compositions, the problem of low operational sta compounds, high molecular weight polymers, oligimers of bility persists. Insufficient stability presents the greatest low molecular weight compounds, or biomaterials, in the obstacle for many desirable practical applications. form of a thin film or a bulk solid. The medium can be amorphous or crystalline. Organic electroluminescent media SUMMARY OF THE INVENTION of various structures have been described in the prior art. 35 Dresner, in RCA Review, 30, 322 (1969), described a It is an object of the present invention to provide OLED medium comprising a single layer of anthracene film. Tang devices with improved operational stability. et al., in Applied Physics Letters, 51,913 (1987), Journal of It is another object of the present invention to provide Applied Physics, 65, 3610 (1989), and commonly assigned OLED devices with improved luminance efficiency. U.S. Pat. No. 4,769,292, reported an EL medium with a 40 It is another object of the present invention to provide a multi-layer structure of organic thin films, and demonstrated color OLED device with improved color chromaticity. highly efficient OLED devices using such a medium. In It is a further object of the present invention to provide some OLED device structures the multi-layer EL medium specifically OLED devices with improved operational sta includes a hole-transport layer adjacent to the anode, an bility, luminance efficiency, and chromaticity. electron-transport layer adjacent to the cathode, and dis 45 These objects are achieved in an organic light-emitting posed in between these two layers, a luminescent layer. device comprising a Substrate, an anode and a cathode Furthermore, in some preferred device structures, the lumi disposed over the Substrate, and a luminescent layer dis nescent layer is constructed of a doped organic film com posed between the anode and the cathode wherein the prising an organic material as the host and a small concen luminescent layer includes a host and at least one dopant, the tration of a fluorescent compound as the dopant. 50 host of the luminescent layer is selected to include a solid Improvements in EL efficiency, chromaticity, and Stability organic material comprising a mixture of at least two com have been obtained in these doped OLED devices by select ponents, one of which is capable of forming both monomer ing an appropriate dopant-host composition. The dopant, State and an aggregate state. being the dominant emissive center, is selected to produce These objects are further achieved in an organic light the desirable EL colors. Examples of the doped luminescent 55 emitting device, comprising: layer reported by Tang et al. in commonly assigned U.S. Pat. a) a Substrate; No. 4,769,292 and by Chen et al. in commonly assigned U.S. b) an anode and a cathode disposed over the Substrate; Pat. No. 5,908,581 are: tris(8-quinolinol)aluminum (AlO) c) aluminescent layer disposed between the anode and the host doped with coumarin dyes for green emitting OLEDs; cathode wherein the luminescent layer includes a host and AlQ doped with 4-dicyanomethylene-4H-pyrans 60 and at least one dopant; (DCMs) for orange-red emitting OLEDs. Shi et al., in d) the host of the luminescent layer being selected to commonly assigned U.S. Pat. No. 5,593,788, disclosed that include a solid organic material comprising a mixture a long operational life was obtained in an OLED device by of at least two components wherein: using a quinacridone compound as the dopant in an AlQ i) the first component of the mixture is an organic host.
Recommended publications
  • 14 Title: Coal Review of Hydrocarbon Emissions Related to Tar Pitch
    AP42 Section 7.1 Related: 14 Title: Review of Hydrocarbon Emissions Related to Coal Tar Pitch. Includes pitch vapor pressure data and Antoine's coefficients. EF Bart, et al. Allied Chemical Corporation 1980 I ._ ,.. ?i e!,/..'. r'.:.. ,,T.<,ili -:*., $0 ,i .# 1 .... i;.'.,.,: _..:, '">,U<>j. .. .. REVIEW OF HYDROCMSON EMISSIONS RELATED TO COAL TAR PITCH E. F. Bart, S. A. Visnic, P. A. Cerria Allied Chemical Corporation Morristown, New Jersey 07960 Sumnary Coal tar pitch is used primarily as a binder in the manufacture of carbon electrodes for the aluminum and steel industries. The pitch repre- sents the main product from the continuous, high-temperature distillation of coke oven tar. The pitch is produced and generally handled as a liquid at high temperatures, thus resulting in a potential for hydrocarbon emissions during its handling. An ever-increasing need for control of hydrocarbon emissions has resulted for process and storage equipment since amendments were made in 1977 to the Clean Air Act. Within the next several years, most industries will be faced with requirements for the installation of air pollution con- trol equipment. This paper deals with the types of emissions and methods used in quantifying and controlling emissions from coal tar pitch storage equipment. To better understand the nature of coal tar pitch, a brief description is given of its origin, chemistry and physical properties. Coal Tar Distillation Coal tar pitch is the residue from the distillation of coal tar and represents from 30% to 60% of the tar. It is a complex, bituminous sub- stance and has been estimated to contain about 5,000 compounds.
    [Show full text]
  • Organic Data Validation Report Soil Samples Collected June 4,1997 Brodhead Creek, Stroudsburg, Pa
    ENVIRONMENTAL RESEARCH AND CONSULTING, INC. 112 COMMONS COURT CHADDS FORD, PA 19317 ORGANIC DATA VALIDATION REPORT SOIL SAMPLES COLLECTED JUNE 4,1997 BRODHEAD CREEK, STROUDSBURG, PA JULY 1997 ACRES INTERNATIONAL CORPORATION 140 John James Audubon Parkway Amherst, New York 14228-1 1 80 AR302871* TABLE OF CONTENTS 1 NARRATIVE ........................................................... 1 2 OVERVIEW ............................................................ 1 3 SUMMARY ........................................................... 1 4 MAJORPROBLEMS .................................................... 1 5 MINOR PROBLEMS .................................................... 2 8 NOTES ......................................................."........ 2 7 REPORT CONTENT .................................................... 2 8 ATTACHMENTS ......".......'.......................................... 3 APPENDICES APPENDIX A - GLOSSARY OF DATA QUALIFIER CODES APPENDIX B - DATA SUMMARY FORMS^ APPENDIX C- RESULTS AS REPORTED BY THE LABORATORY FOR ALL TARGET COMPOUNDS APPENDIX D - REVIEWED AND ACCEPTED TENTATIVELY IDENTIFIED COMPOUNDS APPENDIX E - SUPPORT DOCUMENTATION AR302875 1 NARRATIVE Date: July 28,1997 Subject Organic Data Validation for Sample Delivery Group (SDG) #BRH01 Brodhead Creek • Stroudsburg, Pennsylvania From: James R. Stachowski. Environmental Specialist Acres International Corporation To: Harold M. Brundage III Environmental Research and Consulting, Inc. 2 OVERVIEW This report pertains to data validation of fifteen (15) soil samples from the
    [Show full text]
  • A Three-Step Sequence Strategy for Facile Construction of Donor-Acceptor Type Molecules: Triphenylamine- Substituted Acenes
    Canadian Journal of Chemistry A Three-step Sequence Strategy for Facile Construction of Donor-Acceptor Type Molecules: Triphenylamine- Substituted Acenes Journal: Canadian Journal of Chemistry Manuscript ID cjc-2019-0254.R1 Manuscript Type: Article Date Submitted by the 21-Sep-2019 Author: Complete List of Authors: Zhang, Chen; Wuhan University of Technology, chemical Engineering and Life Sciences Tang, Ming; Wuhan University of Technology, chemical Engineering and Life SciencesDraft Sun, Bing; Wuhan University of Technology, chemical Engineering and Life Sciences Wang, Weizhou; Wuhan University of Technology, chemical Engineering and Life Sciences Yi, Ying; Wuhan University of Technology, chemical Engineering and Life Sciences Zhang, Fang-Lin; Wuhan University of Technology, chemical Engineering and Life Sciences Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue?: Keyword: triphenylamine, anthracene, C–H activation, fluorescence https://mc06.manuscriptcentral.com/cjc-pubs Page 1 of 14 Canadian Journal of Chemistry 1 A Three-step Sequence Strategy for Facile Construction of Donor-Acceptor Type Molecules: Triphenylamine-Substituted Acenes Chen Zhang, Ming Tang, Bing Sun, Weizhou Wang, Ying Yi and Fang-Lin Zhang Chen Zhang, Ming Tang, Bing Sun, Ying Yi and Fang-Lin Zhang. chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, PR China. Weizhou Wang. College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials,
    [Show full text]
  • ORGANIC CHEMISTRY- I (Nature of Title Bonding and Stereochemistry) Module No
    Subject Chemistry Paper No. and Paper 1: ORGANIC CHEMISTRY- I (Nature of Title Bonding and Stereochemistry) Module No. and Module 8: Aromaticity of fused rings Title Module Tag CHE_P1_M8 CHEMISTRY PAPER 1: ORGANIC CHEMISTRY- I(Nature of Bonding and Stereochemistry) MODULE 8: Aromaticity of fused rings TABLE OF CONTENT 1. Learning Outcomes 2. Introduction 3. Classification of fused ring systems 4. Aromaticity in fused ring systems 4.1. Aromaticity of some benzenoid fused systems 4.1.1. Naphthalene 4.1.2. Anthracene 4.1.3. Phenanthrene 4.1.4. Resonance energy of fused ring systems 4.2. Aromaticity of some non-benzenoid fused systems 4.2.1. Azulenes 4.2.2. Oxaazulenaones 5. Other fused ring systems 5.1. Phenalene 5.2. Benzo cyclobutadiene 5.3. Ferrocene 6. Summary CHEMISTRY PAPER 1: ORGANIC CHEMISTRY- I(Nature of Bonding and Stereochemistry) MODULE 8: Aromaticity of fused rings 1. Learning Outcomes After studying this module, you shall be able to: Learn about the fused rings Understand that how fused rings are classified Learn about the aromaticity of the fused rings Understand aromaticity in the benzenoid and non-benzenoid fused ring systems Learn about some other special cases 2. Introduction As you are already aware that the aromatic compounds apparently contain alternate double and single bonds in a cyclic structure and resemble benzene in chemical behavior. Up till now we have discussed the aromaticity in monocyclic rings. In this module, we shall discuss about the aromaticity of fused rings. So, before starting with the aromaticity of fused rings first we should know what fused rings are.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Structure Index
    NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 This tabulation is presented as an aid in the identification of the chemical structures of polycyclic aromatic hydrocarbons (PAHs). The Structure Index consists of two parts: (1) a cross index of named PAHs listed in alphabetical order, and (2) chemical structures including ring numbering, name(s), Chemical Abstract Service (CAS) Registry numbers, chemical formulas, molecular weights, and length-to-breadth ratios (L/B) and shape descriptors of PAHs listed in order of increasing molecular weight. Where possible, synonyms (including those employing alternate and/or obsolete naming conventions) have been included. Synonyms used in the Structure Index were compiled from a variety of sources including “Polynuclear Aromatic Hydrocarbons Nomenclature Guide,” by Loening, et al. [1], “Analytical Chemistry of Polycyclic Aromatic Compounds,” by Lee et al. [2], “Calculated Molecular Properties of Polycyclic Aromatic Hydrocarbons,” by Hites and Simonsick [3], “Handbook of Polycyclic Hydrocarbons,” by J. R. Dias [4], “The Ring Index,” by Patterson and Capell [5], “CAS 12th Collective Index,” [6] and “Aldrich Structure Index” [7]. In this publication the IUPAC preferred name is shown in large or bold type.
    [Show full text]
  • The Study of the Absoiption Spectra of the Hydrocarbons Isolated from the Products of the Action of Alunzinium Chloride on Nup12tkccle.R~E
    View Article Online / Journal Homepage / Table of Contents for this issue ABSORPTION SPECTRA OF HYDROCARBONS. 1319 Published on 01 January 1908. Downloaded by University of California - San Diego 12/04/2016 06:21:24. CXXV1.-The Study of the Absoiption Spectra of the Hydrocarbons isolated from the Products of the Action of Alunzinium Chloride on Nup12tkccle.r~e. By ANNIEHOMER, Fellow of Newnham College, and JOHNEDWARD PURVIS, M.A. FROMthe products of the action of aluminium chloride on naphthalene, besides PP-dinaphthyl previously isolated by Friedel and Crafts from the same reaction, there have been isolated three new hydrocarbons which have been described in detail by one of us (Homer, Trans., 1907, 9 1, 1103). The substances isolated were : (.i) CI4Hl6, a homologue of naphthalene, either tetramethyl- or 4s2 View Article Online 1320 HOMER AND PURVIS: THE STUDY OF THE diethyl-naphthalene, more probably the former ; (ii) CZ0Hl4, /3@-dinaphthyl; (iii) c26H22, a substance supposed to be a homologue of dinaphthanthracene, C,,H14 ; and (iv) C40H26, probably tetra- naph t h yl. @B-Dinaphthylis formed by the condensation of two naphthalene molecules. It was thought that the hydrocarbon C,,HZ6 was formed by the condensation of either two PP-dinaphthgl or four naphthalene molecules, more probably by the former, as an increase in the time allowed for the action of aluminium chloride on naphthalene, or a rise in the temperature at which the reaction was conducted, caused a decrease in the amount of the hydrocarbon aad an increase in the amount of the hydrocarbon C,,H,, produced. It was suggested that the substance C261322was a homologue of dinaphthanthracene, CZ2Hl4,and its formation from alkylnaphthalenes, which are also formed during the reaction, was given as follows : The intense fluorescence of the substance suggested the presence of an anthracenoid linking, In the method of formation thus proposed, hydrogen would be eliminated from a /3-methyl group of trimethylnaphthalene.
    [Show full text]
  • New Electron-Deficient Polycyclic Aromatic Dicarboximides by Palladium-Catalyzed C–C Coupling and Core Halogenation–Cyanation
    New Electron-Deficient Polycyclic Aromatic Dicarboximides by Palladium-Catalyzed C–C Coupling and Core Halogenation–Cyanation Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Sabine Seifert aus Marktredwitz Würzburg 2017 ii Eingereicht bei der Fakultät für Chemie und Pharmazie am: 18.10.2017 Gutachter der schriftlichen Arbeit: 1. Gutachter: Prof. Dr. Frank Würthner 2. Gutachter: Prof. Dr. Anke Krüger Prüfer des öffentlichen Promotionskolloquiums: 1. Prüfer: Prof. Dr. Frank Würthner 2. Prüfer: Prof. Dr. Anke Krüger 3. Prüfer: Prof. Dr. Ingo Fischer Datum des öffentlichen Promotionskolloquiums: 15.12.2017 Doktorurkunde ausgehändigt am: _________________________ iii iv Abbreviations abs absorbance/absorption Ac acetyl Ar aryl ap applied a.u. arbitrary unit (I)CT (intramolecular) charge transfer CV cyclic voltammetry dba dibenzylideneacetone DBN 1,5-diazabicyclo[4.3.0]non-5-ene DBU 1,8-diazabicyclo[5.4.0]undec-7-ene DCM dichloromethane DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (TD-)DFT (time-dependent) density functional theory DIPEA diisopropylethylamine DMAP 4-dimethylaminopyridine DMF dimethylformamide DMSO dimethyl sulfoxide dppf 1,1'-bis(diphenylphosphino)ferrocene em emission ESI electrospray ionization ex excitation Fc+/Fc ferrocenium/ferrocene redox couple fl fluorescence iPr iso-propyl HOMO highest occupied molecular orbital HPLC high performance liquid chromatography HR high-resolution I intensity L ligand LUMO lowest unoccupied molecular orbital PADI
    [Show full text]
  • Hexaazatriphenylene (HAT) Derivatives. from Synthesis to Molecular Design, Self-Organization and Device Applications
    Chemical Society Reviews Hexaazatriphenylene (HAT) derivatives. From synthesis to molecular design, self-organization and device applications Journal: Chemical Society Reviews Manuscript ID: CS-SYN-02-2015-000181.R2 Article Type: Review Article Date Submitted by the Author: 25-Jun-2015 Complete List of Authors: Segura, Jose; Universidad Complutense, Quimica Organica I Juárez, Rafael; Universidad Rey Juan Carlos, Department of Environmental and Technological Chemistry Ramos, María del Mar; Universidad Rey Juan Carlos, Department of Environmental and Technological Chemistry Seoane, Carlos; Universidad Complutense, Quimica Organica I Page 1 of 34Journal Name Chemical Society Reviews Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE Hexaazatriphenylene (HAT) derivatives. From synthesis to molecular design, self-organization and device applications Jose Luis Segura, a* Rafael Juarez, a,b Mar Ramos b and Carlos Seoane a 5 Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x Dipyrazino[2,3-f:2',3'-h]quinoxaline also known as 1,4,5,8,9,12-hexaazatriphenylene ( HAT ) is an electron deficient, rigid, planar, aromatic discotic system with an excellent π-π stacking ability. Because it is one of the smallest two-dimensional N-containing polyheterocyclic aromatic systems, it has been used as the basic scaffold for larger 2D N-substituted polyheterocyclic aromatics. 10 Furthermore, it is the building block of choice in a plethora of molecular, macromolecular and supramolecular systems for a variety of applications. This review is aimed to critically review the research performed during the almost three decades of research based on HAT from the synthetic, theoretical and applications point of view.
    [Show full text]
  • Gas Phase Formation of Phenalene Via 10Π-Aromatic, Resonantly Stabilized Free Radical Intermediates
    Gas Phase Formation of Phenalene via 10π-Aromatic, Resonantly Stabilized Free Radical Intermediates Long Zhao1, Ralf I. Kaiser1* 1 Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822 (USA) Wenchao Lu2, Musahid Ahmed2* 2 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA) Artem D. Oleinikov 3,4, Valeriy N. Azyazov3,4 3Department of Physics, Samara National Research University, Samara 443086 (Russian Federation) 4Lebedev Physical Institute, Samara 443011 (Russian Federation) Alexander M. Mebel3,5* A. Hasan Howlader,5 Stanislaw F. Wnuk5 5Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (USA) * Corresponding author: Ralf I. Kaiser <[email protected]> Musahid Ahmed <[email protected]> Alexander M. Mebel <[email protected]> 1 Abstract: For the last decades, the Hydrogen-Abstraction/aCetylene-Addition (HACA) mechanism has been fundamental in aiding our understanding of the source of polycyclic aromatic hydrocarbons (PAHs) in combustion processes and in circumstellar envelopes of carbon rich stars. However, the reaction mechanisms driving high temperature molecular mass growth beyond triphenylene (C18H12) along with the link between PAHs and graphene-type nanostructures as identified in carbonaceous meteorites such as in Murchison and Allende has remained elusive. By • exploring the reaction of the 1-naphthyl radical ([C10H7] ) with methylacetylene (CH3CCH) and allene (H2CCCH2) under conditions prevalent in carbon-rich circumstellar environments and combustion systems, we provide compelling evidence on a facile formation of 1H-phenalene (C13H10) – the central molecular building block of graphene-type nanostructures. Beyond PAHs, molecular mass growth processes from 1H-phenalene via ring-annulation through C3 molecular building blocks may ultimately lead to two-dimensional structures such as graphene nano flakes and after condensation of multiple layers to graphitized carbon.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Monoradicals and Diradicals of Dibenzofluoreno[3,2-B]Fluorene Isomers: Mechanisms of Electronic Delocalization
    pubs.acs.org/JACS Article Monoradicals and Diradicals of Dibenzofluoreno[3,2‑b]fluorene Isomers: Mechanisms of Electronic Delocalization Hideki Hayashi,○ Joshua E. Barker,○ Abel Cardenaś Valdivia,○ Ryohei Kishi, Samantha N. MacMillan, Carlos J. Gomez-Garć ía, Hidenori Miyauchi, Yosuke Nakamura, Masayoshi Nakano,* Shin-ichiro Kato,* Michael M. Haley,* and Juan Casado* Cite This: J. Am. Chem. Soc. 2020, 142, 20444−20455 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: The preparation of a series of dibenzo- and tetrabenzo-fused fluoreno[3,2-b]fluorenes is disclosed, and the diradicaloid properties of these molecules are compared with those of a similar, previously reported series of anthracene-based diradicaloids. Insights on the diradical mode of delocalization tuning by constitutional isomerism of the external naphthalenes has been explored by means of the physical approach (dissection of the electronic properties in terms of electronic repulsion and transfer integral) of diradicals. This study has also been extended to the redox species of the two series of compounds and found that the radical cations have the same stabilization mode by delocalization that the neutral diradicals while the radical anions, contrarily, are stabilized by aromatization of the central core. The synthesis of the fluorenofluorene series and their characterization by electronic absorption and vibrational Raman spectroscopies, X-ray diffraction, SQUID measurements, electrochemistry, in situ UV−vis−NIR absorption spectroelectro- chemistry, and theoretical calculations are presented. This work attempts to unify the properties of different series of diradicaloids in a common argument as well as the properties of the carbocations and carbanions derived from them.
    [Show full text]
  • Absence of Photoemission from the Fermi Level in Potassium Intercalated Picene and Coronene films: Structure, Polaron Or Correlation Physics?
    Absence of photoemission from the Fermi level in potassium intercalated picene and coronene films: structure, polaron or correlation physics? Benjamin Mahns,1 Friedrich Roth,1 and Martin Knupfer1 IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany (Dated: 13 September 2018) The electronic structure of potassium intercalated picene and coronene films has been studied using photoemission spectroscopy. Picene has additionally been intercalated using sodium. Upon alkali metal addition core level as well as valence band pho- toemission data signal a filling of previously unoccupied states of the two molecular materials due to charge transfer from potassium. In contrast to the observation of superconductivity in Kxpicene and Kxcoronene (x ∼ 3), none of the films studied shows emission from the Fermi level, i. e. we find no indication for a metallic ground state. Several reasons for this observation are discussed. arXiv:1203.4728v1 [cond-mat.supr-con] 21 Mar 2012 1 I. INTRODUCTION Superconductivity always has attracted a large number of researchers since this phe- nomenon harbors challenges and prospects both under fundamental and applied points of view. Very recently, it has been discovered that some molecular crystal consisting of poly- cyclic aromatic hydrocarbons demonstrate superconductivity upon alkali metal addition. Furthermore, these compounds are characterized by rather high transition temperatures into 1 2 the superconducting state, for instance K3picene (Tc=18 K) and K3coronene (Tc=15 K) . Most recently, superconductivity with a transition temperature of 33 K has been reported 3 for K3dibenzopentacene . These doped aromatic hydrocarbons thus represent a class of or- ganic superconductors with transition temperatures only slightly below that of the famous 4{8 alkali metal doped fullerenes with Tc's up to 40 K .
    [Show full text]