Monoradicals and Diradicals of Dibenzofluoreno[3,2-B]Fluorene Isomers: Mechanisms of Electronic Delocalization

Total Page:16

File Type:pdf, Size:1020Kb

Monoradicals and Diradicals of Dibenzofluoreno[3,2-B]Fluorene Isomers: Mechanisms of Electronic Delocalization pubs.acs.org/JACS Article Monoradicals and Diradicals of Dibenzofluoreno[3,2‑b]fluorene Isomers: Mechanisms of Electronic Delocalization Hideki Hayashi,○ Joshua E. Barker,○ Abel Cardenaś Valdivia,○ Ryohei Kishi, Samantha N. MacMillan, Carlos J. Gomez-Garć ía, Hidenori Miyauchi, Yosuke Nakamura, Masayoshi Nakano,* Shin-ichiro Kato,* Michael M. Haley,* and Juan Casado* Cite This: J. Am. Chem. Soc. 2020, 142, 20444−20455 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: The preparation of a series of dibenzo- and tetrabenzo-fused fluoreno[3,2-b]fluorenes is disclosed, and the diradicaloid properties of these molecules are compared with those of a similar, previously reported series of anthracene-based diradicaloids. Insights on the diradical mode of delocalization tuning by constitutional isomerism of the external naphthalenes has been explored by means of the physical approach (dissection of the electronic properties in terms of electronic repulsion and transfer integral) of diradicals. This study has also been extended to the redox species of the two series of compounds and found that the radical cations have the same stabilization mode by delocalization that the neutral diradicals while the radical anions, contrarily, are stabilized by aromatization of the central core. The synthesis of the fluorenofluorene series and their characterization by electronic absorption and vibrational Raman spectroscopies, X-ray diffraction, SQUID measurements, electrochemistry, in situ UV−vis−NIR absorption spectroelectro- chemistry, and theoretical calculations are presented. This work attempts to unify the properties of different series of diradicaloids in a common argument as well as the properties of the carbocations and carbanions derived from them. ■ INTRODUCTION considered a “chemical approach”,extendingquinoidal − conjugation (Figure 1 top, e.g., A → B → C)18 25 or changing Carbon-based diradicaloids are fundamentally interesting 26− 40 molecules that have received a great deal of attention over the conjugation pattern entirely 1−4 (e.g., from para- to meta-) can yield large scale changes in the past decade. These novel conjugated polycyclic − ΔE .41 43 This often correlates with a strong increase in the hydrocarbons (CPHs) promise use in many organic electronic ST 5−7 8,9 diradical character index (y , with y → 0, a compound (OE) applications and as magnetic materials; however, an 0 0 Downloaded via UNIV OF OREGON on January 23, 2021 at 18:41:53 (UTC). becomes more closed shell and with y → 1, a compound inherent shortcoming in such open-shell constructs is 0 becomes more open-shell) resulting from a greater driving instability. Bulky groups installed at positions of high reactivity force to aromatize the central quinoidal unit and create more have enabled the isolation of kinetically stable diradicaloids, 2,26,28,29,31,38,40 See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. Clar aromatic sextets. Recently our group has which have advanced the field beyond novel syntheses. With explored changing diradical character and tuning ΔE through the advent of increased stability, attention has turned to careful ST a contrasting “physical approach”, coupling synthetic modu- tuning of diradical properties with a goal toward application in 44−46 − lation with physical methods. The “two electrons in two OEs.10 16 sites” model of diradicals provides the framework for this An inherent property of diradicaloids is their ability to strategy through consideration of the effects of U (the on-site switch spins from a spin-paired singlet state to a spin-parallel − 44,45 electron electron repulsion term) and tab (the transfer triplet state. Controllable transition between these states can 46 integral, an electron delocalization term). Equation 1 be achieved through heating or cooling, and variable provides, in the two-site diradical model, the dependence of temperature (VT) measurements using SQUID magnetometry y (defined in eq 2) in terms of U and t . or ESR spectroscopy can determine the singlet−triplet energy 0 ab Δ gap ( EST). For the application of this class of molecules to be fully realized, it is essential to uncover the underlying Received: September 11, 2020 geometric/structural and theoretical parameters that can be Published: November 18, 2020 Δ modulated to optimize EST, in other words, to understand the basis of electronic diradical and spin delocalization.17 With this goal in mind, several groups have reported ff Δ di erent strategies for tuning EST. Broadly, in what could be © 2020 American Chemical Society https://dx.doi.org/10.1021/jacs.0c09588 20444 J. Am. Chem. Soc. 2020, 142, 20444−20455 Journal of the American Chemical Society pubs.acs.org/JACS Article Figure 1. (top left) Strategies for tuning diradical character showing the “chemical approach” using an expansion in the quinoidal conjugation path in indenofluorene congeners (A, B, and C for benzo-, naphtho-, and anthraceno-quinodimethanes, respectively). (top right) The arrows and boxes Δ fl fl − denote the variation that the y0/ EST points might undergo with altering the lateral Ar substituents. The B region targets uoreno uorenes 1 5 reported in this study. (bottom) Literature examples of the DBDIAn/C series with different fused Ar groups illustrating that the Ar motif exhibits fi Δ “ ” secondary control ( ne-tuning) of y0/ EST, i.e., the physical approach . In all instances, only the conjugated diradical cores are shown without the bulky alkyl and/or pendant aryl groups used to protect the radical centers. 1 around the main points such as highlighted as the expanding y =−1 0 2 arrows in the boxes also in Figure 1. As a result, the main U Δ − 1 + changes among molecules all lie along the generalized EST y ()4tab (1) curve that is dictated by the benzo-, naphtho- and anthraceno- with quinodimethane cores of A−C shown in Figure 1. The use of the “chemical approach” to reduce the quinoidal central motif from anthracenoquinodimethane to naphthoquinodimethane U 1 ff fl fl Δ=EST 1 − + 2Kab a ords uoreno[3,2-b] uorene (FF, 1). As depicted in Figure 2 − yy00(2 ) 2, inclusion of additional benzene rings to each side of the core ÅÄ ÑÉ fl fl U Å Ñ FF structure gives the representative dibenzo uoreno uorenes =+fyÅ () 2 K Ñ fl fl ÅST 0 ab Ñ (DBFFs, 2-4) and tetrabenzo uoreno uorene (TBFF, 5). 2 Å Ñ (2) Å Ñ Alternatively, these derivatives can also be viewed as fusion ÇÅ ÖÑ Δ Equation 2 further accounts for the EST in terms of y0 and along the 1,2-bond or 2,3-bond of naphthalene to a fi Kab (direct exchange integral), where a and b de ne the dicyclopenta[b,g]naphthalene (DCN, 6) core. This new series electrons in the localized natural orbitals. For most organic of compounds provides an avenue for predicting the change in fi diradicaloids, Kab is expected to be much smaller than the rst diradical index based on U/tab in molecules with larger/smaller Δ fi Δ term, and thus EST is primarily determined by the rst term. EST/y0. Given that the structural alteration consists of Δ Given that y0 is expressed as a function of U/tab by eq 1, EST changing the fusion-orientation along the 2,3-bond of DCN fi is determined from the balance of U and U/tab. Speci cally, in (6), it should be possible to connect the variation of the bond- diindenoanthracene-based diradicaloids (DIAns, Figure 1 order of the fusion bond with the value of diradical parameters Δ bottom), we have observed that for an isomeric series of to evaluate the interdependence of EST and y0 in molecules dibenzo-fused DIAn (DBDIAn) diradicaloids, the same possessing intermediate values of y0. This is in contrast to the chemical hydrocarbon composition causes the repulsion U case of diradicals with larger y0, such as the dibenzoDIAn term to be similar among them, and the differences in diradical derivatives.46 Finally, in addition to the comparative study of 46 character result from a large change in tab. neutral diradicals, both DBFF and DBDIAn are amphoteric The current study focuses on the quinoidal approach. Figure redox molecules that nicely stabilize cations or anions, which Δ 1 illustrates the generalized representation of EST versus y0 become the monoradical versions of the neutral diradicals. (blue curve, defined above in eq 2) for the quinoidal This offers the possibility of a second comparative study of diindenoacene family A−C with two assumptions: (i) lateral mono- and diradicals in the DBFF and DBDIAn series to fusion with different Ar groups in a symmetric manner and (ii) obtain insight into the similarities and differences in electron these Ar groups do not become the main stabilizing force of delocalization between isomers within each series. Surprisingly, the diradical (as would be the case of fused phenalenyls); thus, when comparing the neutral diradicals and in the radical the fused arenes always represent secondary stabilization cations, the electron delocalization is inherently the same, but motifs and impart fine-tuning of the magnetic properties in the anions some variation is seen. 20445 https://dx.doi.org/10.1021/jacs.0c09588 J. Am. Chem. Soc. 2020, 142, 20444−20455 Journal of the American Chemical Society pubs.acs.org/JACS Article qualitative discussion on the basis of the “two electrons in two sites” model (for details, see the Computational Details in the SI). Calculations predict U/tab values to vary among the studied compounds as 2.30 in 2′, 2.56 in 3′, 2.64 in 4′, and 2.81 in 5′, in good agreement with the change of diradical character at the PUHF level. The evolution of y0 can be further simplified since its change is concomitant with the decrease in the series of tab alone.
Recommended publications
  • May-June 2013 OUTLOOK on Volume 35 No
    CHEMISTRY International The News Magazine of IUPAC May-June 2013 OUTLOOK ON Volume 35 No. 3 LATIN AMERICA Neglected Tropical Diseases INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY Green Chemistry in Teaching From the Editor CHEMISTRY International ay is a month of many celebrations. As we have mentioned several Mtimes before in CI, 20 May is World Metrology Day, which com- The News Magazine of the International Union of Pure and memorates the signing by representatives of 17 nations of The Metre Applied Chemistry (IUPAC) Convention on that day in 1875. This year, the theme is “Measurements in Daily Life”—see more at www.worldmetrologyday.org. www.iupac.org/publications/ci While living in the states, but having grown up in Belgium, I have found that measurements in my daily life can be quite bewildering. A simple Managing Editor: Fabienne Meyers length mentioned in inches, a travel distance Production Editor: Chris Brouwer referred to in miles, a quantity in a cook book Design: pubsimple specified in spoons or cups, or my own weight blurred in pounds on my bathroom scale make All correspondence to be addressed to: no sense to me. And, it is beyond me that this Fabienne Meyers “New World” is stuck in a nonmetric system. If IUPAC, c/o Department of Chemistry on 20 May I can convince just one friend that Boston University SI is the way to go, even for daily usage, it is Metcalf Center for Science and Engineering worth celebrating! 590 Commonwealth Ave. There are many more international and world days in May, several that Boston, MA 02215, USA are even recognized by the UN or UNESCO.
    [Show full text]
  • Synthesis and Properties of Corannulene Derivatives: Journey to Materials Chemistry and Chemical Biology
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2008 Synthesis and properties of corannulene derivatives: journey to materials chemistry and chemical biology Hayama, Tomoharu Abstract: Corannulene, also called as [5]-circulene, is a C20H10 fragment of buckminsterfullerene, C60. The most interesting property of corannulene is probably its bowl structure and bowl-to-bowl inversion. The unique curvature has many possiblities for applications in different fields. Today, large-scale synthesis of corannulene is possible and thus, the time has come to exploit its physical properties. This disserta- tion is divided into four areas: 1) efficient synthesis of sym-pentaarylsubstituedcorannulene derivatives, 2) solvent effect on the bowl inversion, 3) development of the method for solution-phase nanotube syn- thesis, and 4) designing a corannulene-based synthetic receptor. sym-pentaarylsubstituedcorannulenes are quite attractive compounds because of their five-fold symmetry and curvature. The efficient synthesis has been accomplished from sym-pentachlorocorannulene with the coupling reaction using N-heterocyclic carbene ligands in a moderately good yield in spite of its five low-reactive chlorides. The inversion energies of some sym-pentaarylsubstituedcorannulenes have been investigated in different types of sol- vent. The variable temperature 1H-NMR spectra were measured, and line shape analysis or coalescence approximation were used to evaluate the rate parameters. This experiment suggested endo-group inter- actions of those compounds and shows influences of solvent polarity or volume on the inversion energies. In addition, the bowl depths will also be compared and discussed using the crystallographic structural data. The high-energy per-ethynylated polynuclear compound decapentynyl-corannulene has been pre- pared via aryl-alkyne coupling chemistry of decachlorocorannulene.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Structure Index
    NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 This tabulation is presented as an aid in the identification of the chemical structures of polycyclic aromatic hydrocarbons (PAHs). The Structure Index consists of two parts: (1) a cross index of named PAHs listed in alphabetical order, and (2) chemical structures including ring numbering, name(s), Chemical Abstract Service (CAS) Registry numbers, chemical formulas, molecular weights, and length-to-breadth ratios (L/B) and shape descriptors of PAHs listed in order of increasing molecular weight. Where possible, synonyms (including those employing alternate and/or obsolete naming conventions) have been included. Synonyms used in the Structure Index were compiled from a variety of sources including “Polynuclear Aromatic Hydrocarbons Nomenclature Guide,” by Loening, et al. [1], “Analytical Chemistry of Polycyclic Aromatic Compounds,” by Lee et al. [2], “Calculated Molecular Properties of Polycyclic Aromatic Hydrocarbons,” by Hites and Simonsick [3], “Handbook of Polycyclic Hydrocarbons,” by J. R. Dias [4], “The Ring Index,” by Patterson and Capell [5], “CAS 12th Collective Index,” [6] and “Aldrich Structure Index” [7]. In this publication the IUPAC preferred name is shown in large or bold type.
    [Show full text]
  • New Electron-Deficient Polycyclic Aromatic Dicarboximides by Palladium-Catalyzed C–C Coupling and Core Halogenation–Cyanation
    New Electron-Deficient Polycyclic Aromatic Dicarboximides by Palladium-Catalyzed C–C Coupling and Core Halogenation–Cyanation Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Sabine Seifert aus Marktredwitz Würzburg 2017 ii Eingereicht bei der Fakultät für Chemie und Pharmazie am: 18.10.2017 Gutachter der schriftlichen Arbeit: 1. Gutachter: Prof. Dr. Frank Würthner 2. Gutachter: Prof. Dr. Anke Krüger Prüfer des öffentlichen Promotionskolloquiums: 1. Prüfer: Prof. Dr. Frank Würthner 2. Prüfer: Prof. Dr. Anke Krüger 3. Prüfer: Prof. Dr. Ingo Fischer Datum des öffentlichen Promotionskolloquiums: 15.12.2017 Doktorurkunde ausgehändigt am: _________________________ iii iv Abbreviations abs absorbance/absorption Ac acetyl Ar aryl ap applied a.u. arbitrary unit (I)CT (intramolecular) charge transfer CV cyclic voltammetry dba dibenzylideneacetone DBN 1,5-diazabicyclo[4.3.0]non-5-ene DBU 1,8-diazabicyclo[5.4.0]undec-7-ene DCM dichloromethane DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (TD-)DFT (time-dependent) density functional theory DIPEA diisopropylethylamine DMAP 4-dimethylaminopyridine DMF dimethylformamide DMSO dimethyl sulfoxide dppf 1,1'-bis(diphenylphosphino)ferrocene em emission ESI electrospray ionization ex excitation Fc+/Fc ferrocenium/ferrocene redox couple fl fluorescence iPr iso-propyl HOMO highest occupied molecular orbital HPLC high performance liquid chromatography HR high-resolution I intensity L ligand LUMO lowest unoccupied molecular orbital PADI
    [Show full text]
  • Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative (Part I) Synthesis of Platinum and Ethynyl-Platinum Corannulenes (Part II)
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative (Part I) Synthesis of Platinum and Ethynyl-Platinum Corannulenes (Part II) Maag, Roman M Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-164179 Dissertation Published Version Originally published at: Maag, Roman M. Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative (Part I) Synthesis of Platinum and Ethynyl-Platinum Corannulenes (Part II). 2012, University of Zurich, Faculty of Science. Part I: Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative and Part II: Synthesis of Platinum and Ethynyl-Platinum Corannulenes Dissertation zur Erlangung der naturwissenschaftlichen Doktorwurde¨ Dr. sc. nat. vorgelegt der Mathematisch-naturwissenschaftlichen Fakult¨at der Universit¨at Zurich¨ von Roman M. Maag von Winkel ZH Promotionskommitee: Prof. Dr. Jay S. Siegel (Vorsitz) Prof. Dr. Kim K. Baldridge Prof. Dr. Cristina Nevado Prof. Dr. Roger Alberto Zurich,¨ 2012 Abstract of the Dissertation Part I: Synthesis of an Unsymmetrically Pentafunctionalized Corannulene Derivative and Part II: Synthesis of Platinum and Ethynyl-Platinum Corannulenes by Roman M. Maag University of Zurich, 2012 Prof. Dr. Jay S. Siegel, Chair Corannulene (C20H10) is a polyaromatic hydrocarbon that can be considered as the smallest fragment of Buckminsterfullerene exhibiting a curved surface. Among the in- teresting properties of corannulene are rapid bowl inversion and esthetically appealing fivefold symmetry (C5v), which is rare in chemistry. Whereas the first synthesis in 1968 only afforded milligram quantities, several improvements in the synthetic strategy finally culminated in the development of an efficient process which today furnishes corannulene in kilogram quantities.
    [Show full text]
  • On-Surface Synthesis of a Nitrogen-Embedded Buckybowl with Inverse Stoneâ
    ARTICLE DOI: 10.1038/s41467-018-04144-5 OPEN On-surface synthesis of a nitrogen-embedded buckybowl with inverse Stone–Thrower–Wales topology Shantanu Mishra1, Maciej Krzeszewski2, Carlo A. Pignedoli1, Pascal Ruffieux 1, Roman Fasel 1,3 & Daniel T. Gryko2 π 1234567890():,; Curved -conjugated polycyclic aromatic hydrocarbons, buckybowls, constitute an important class of materials with wide applications in materials science. Heteroatom doping of buck- ybowls is a viable route to tune their intrinsic physicochemical properties. However, synthesis of heteroatom-doped buckybowls is a challenging task. We report on a combined in-solution and on-surface synthetic strategy toward the fabrication of a buckybowl containing two fused nitrogen-doped pentagonal rings. We employ ultra-high-resolution scanning tunneling microscopy and spectroscopy, in combination with density functional theory calculations to characterize the final compound. The buckybowl contains a unique combination of non- hexagonal rings at its core, identified as the inverse Stone–Thrower–Wales topology, resulting in a distinctive bowl-opening-down conformation of the buckybowl on the surface. Our controlled design of non-alternant, heteroatom-doped polycyclic aromatic frameworks with established bottom-up fabrication techniques opens new opportunities in the synthesis of carbon nanostructures with the perspective of engineering properties of graphene-based devices. 1 Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf 8600, Switzerland. 2 Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, Warsaw 01-224, Poland. 3 Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland. Correspondence and requests for materials should be addressed to R.F. (email: [email protected]) or to D.T.G.
    [Show full text]
  • DFT Study of Five-Membered Ring Pahs
    DFT study of five-membered ring PAHs Gauri Devi1, Mridusmita Buragohain1*, Amit Pathak2, 1Department of Physics, Tezpur University, Tezpur 784028, India, [email protected], *Corresponding author 2Department of Physics, Banaras Hindu University, Varanasi 221 005, India ([email protected]) Abstract This work reports a ‘Density Functional Theory’ (DFT) calculation of PAH molecules with a five-member ring to determine the expected region of infrared features. It is highly possible that fullerene molecule might be originated from five-membered ring PAH molecules in the ISM. Effect of ionization and protonation on five-membered ring PAH molecule is also discussed. A detail vibrational analysis of five-membered ring PAH molecule has been reported to further compare with observations and to identify any observational counterpart. Keywords: PAH, Interstellar molecules, IR spectra, Unidentified infrared bands, Astrochemistry INTRODUCTION Polycyclic Aromatic Hydrocarbons(PAHs) are suspected to beoneofthe stableand largest aromatic compounds present in the interstellar medium (ISM) of the Milky Way and external galaxies. The ubiquitous presence of PAHs has been established through numerous observations of the unidentified infrared (UIR) emission bands in the mid- IR (Tielens, 2008, and references therein). PAH molecules, being stable, can survive acute conditions of the ISM in its regular as well as in ionized or de-hydrogenated phase. These properties help to understand the total carbon budget of the universe. PAHs, because of their ubiquitous presence, may provide some clues to some of the hitherto unsolved problems of astronomical spectroscopy, e.g. the 3.4 µm absorp- arXiv:1902.10464v1 [astro-ph.GA] 27 Feb 2019 tion feature (Sellgren et al., 1994), the far-UV steep of the interstellar extinction curve (Li and Draine, 2001), the 217.5 nm bump (Henning and Salama, 1998) and the diffuse interstellar bands (Salama et al., 1999) that appear as absorption features in the visible region of the interstellar extinction curve.
    [Show full text]
  • ROTATIONAL SPECTRA of SMALL Pahs: ACENAPHTHENE, ACENAPHTHYLENE, AZULENE, and FLUORENE S
    The Astrophysical Journal, 662:1309 Y 1314, 2007 June 20 A # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. ROTATIONAL SPECTRA OF SMALL PAHs: ACENAPHTHENE, ACENAPHTHYLENE, AZULENE, AND FLUORENE S. Thorwirth,1, 2, 3 P. Theule´,2, 3, 4 C. A. Gottlieb,2, 3 M. C. McCarthy,2, 3 and P. Thaddeus2, 3 Received 2007 January 5; accepted 2007 March 7 ABSTRACT Pure rotational spectra of four small polycyclic aromatic hydrocarbons have been observed by Fourier transform microwave spectroscopy of a molecular beam in the frequency range from 7 to 37 GHz. Initial searches for acenaphthene (C12H10), acenaphthylene (C12H8), and fluorene (C13H10) were guided by quantum chemical calculations performed at the B3LYP/cc-pVTZ level of theory. All three molecules exhibit b-type rotational spectra and are calculated to be moderately polar, with dipole moments of 0.3Y0.9 D. Close agreement (to better than 1%) between the calculated equilibrium and experimentally derived ground-state rotational constants is achieved. Selected transitions of acenaphthene and fluorene have also been measured in the 3 mm region by conventional free-space absorption spectroscopy, as have transitions of the previously studied azulene (C10H8). The data presented here facilitate deep radio astronomical searches with large radio telescopes. Subject headingsg: astrochemistry — ISM: molecules — molecular data Online material: machine-readable tables 1. INTRODUCTION (C12H8; molecule 2), and fluorene (C13H10; molecule 3) have been obtained for the first time employing Fourier transform The mid-infrared spectra from 3 to 20 m of many astronom- microwave (FTM) spectroscopy. Centimeter-wave transitions ical objects are dominated by emission features usually referred of azulene (molecule 4) were also measured, complementing the to as the unidentified infrared bands (UIRs).
    [Show full text]
  • Mechanochemical Transformation of Planar Polyarenes to Curved Fused-Ring Systems ✉ ✉ Teoh Yong1,2, Gábor Báti1,2, Felipe García 1 & Mihaiela C
    ARTICLE https://doi.org/10.1038/s41467-021-25495-6 OPEN Mechanochemical transformation of planar polyarenes to curved fused-ring systems ✉ ✉ Teoh Yong1,2, Gábor Báti1,2, Felipe García 1 & Mihaiela C. Stuparu 1 The transformation of planar aromatic molecules into π-extended non-planar structures is a challenging task and has not been realized by mechanochemistry before. Here we report that mechanochemical forces can successfully transform a planar polyarene into a curved geo- 1234567890():,; metry by creating new C-C bonds along the rim of the molecular structure. In doing so, mechanochemistry does not require inert conditions or organic solvents and provide better yields within shorter reaction times. This is illustrated in a 20-minute synthesis of cor- annulene, a fragment of fullerene C60, in 66% yield through ball milling of planar tetra- bromomethylfluoranthene precursor under ambient conditions. Traditional solution and gas-phase synthetic pathways do not compete with the practicality and efficiency offered by the mechanochemical synthesis, which now opens up a new reaction space for inducing curvature at a molecular level. 1 Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore. ✉ 2These authors contributed equally: Teoh Yong, Gábor Báti. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:5187 | https://doi.org/10.1038/s41467-021-25495-6 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25495-6 he synthesis of strained aromatic molecules from strain-free Br Br precursors is a challenging task. This requires the natural T 2 trigonal planar geometry of the sp -hybridised carbon atoms to become non-planar.
    [Show full text]
  • Magnetic Shielding Study of Bonding and Aromaticity in Corannulene and Coronene
    Article Magnetic Shielding Study of Bonding and Aromaticity in Corannulene and Coronene Peter B. Karadakov Department of Chemistry, University of York, Heslington, York YO10 5DD, UK; [email protected] Abstract: Bonding and aromaticity in the bowl-shaped C5v and planar D5h geometries of corannulene and the planar D6h geometry of coronene are investigated using 3D isosurfaces and 2D contour plots of the isotropic magnetic shielding siso(r) and, for planar geometries, of the out-of-plane component of the shielding tensor szz(r). Corannulene and coronene both feature conjoined shielded “doughnuts” around a peripheral six-membered carbon ring, suggesting strong bonding interactions and aromatic stability; a deshielded region inside the hub ring of corannulene indicates that this ring is antiaromatic, more so in planar corannulene. The switch from the planar to the bowl-shaped geometry of corannulene is shown to enhance both bonding and the local aromaticities of the five- and six-membered rings; these factors, in addition to ring strain reduction, favour the bowl-shaped geometry. The most and least shielded bonds in both corannulene and coronene turn out to be the spoke and hub bonds, respectively. The higher π electron activity over spoke bonds in planar corannulene and coronene is supported by szz(r) contour plots in planes 1 Å above the respective molecular planes; these findings about spoke bonds are somewhat unexpected, given that ring current studies indicate next to no currents over spoke bonds. Keywords: aromaticity; antiaromaticity; corannulene; coronene; magnetic shielding isosurfaces; Citation: Karadakov, P.B. Magnetic magnetic shielding contour plots; shielding over chemical bonds Shielding Study of Bonding and Aromaticity in Corannulene and Coronene.
    [Show full text]
  • Recent Progress in Quinoidal Singlet Biradical Molecules
    Received: November 2, 2014 | Accepted: November 21, 2014 | Web Released: November 29, 2014 CL-140997 Highlight Review Recent Progress inQuinoidal Singlet Biradical Molecules Takashi Kubo Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (E-mail: [email protected]) Takashi Kubo was born in Yamaguchi, Japan, in 1968. He graduated from Osaka University in 1991, received M.Sc. in 1993 under the guidance of Professor Ichiro Murata, and received Ph.D. in 1996 under the guidance of Professor Kazuhiro Nakasuji.After working at Mitsubishi Chemical Co., he joined Professor Nakasuji’s group at Department of Chemistry, Graduate School of Science, Osaka University in 2000 as Assistant Professor. In 2006 he served as Associate Professor. Since 2006 he is Professor of Graduate School of Science, Osaka University. He received the Bulletinof the Chemical Society of Japan Award in 2001. His research interests are structural and physical organic chemistry, mainly the syntheses and properties of polycyclic aromatic compounds with open-shell character, and the development of multifunctional materialsusing a cooperative proton- and electron-transfer system. Chem. Lett. 2015, 44, 111–122 | doi:10.1246/cl.140997 © 2015 The Chemical Society of Japan | 111 Abstract Ph Ph Ph Ph Elusive nature inspin state isafeature of singlet biradical Ph Ph Ph Ph molecules and arises from the weak coupling of unpaired 2 l i i li i f i e ectrons. Th shgh ght rev ew ocuses on recent advances n i i i i ’ f l f experimental approaches for elucidating the electronic structure F gure 2.
    [Show full text]
  • Octapodal Corannulene Porphyrin-Based Assemblies: Allosteric Behavior in Fullerene Hosting
    pubs.acs.org/joc Article Octapodal Corannulene Porphyrin-Based Assemblies: Allosteric Behavior in Fullerene Hosting ́ Sergio Ferrero, Hectoŕ Barbero, Daniel Miguel, Rauĺ García-Rodríguez,* and Celedonio M. Alvarez* Cite This: J. Org. Chem. 2020, 85, 4918−4926 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: An octapodal corannulene-based supramolecular system has been prepared by introducing eight corannulene moieties in a porphyrin scaffold. Despite the potential of this double picket fence porphyrin for double- tweezer behavior, NMR titrations show exclusive formation of 1:1 adducts. ffi ± × The system exhibits very strong a nity for C60 and C70 (K1 = (2.71 0.08) 104 and (2.13 ± 0.1) × 105 M−1, respectively), presenting selectivity for the latter. Density functional theory (DFT) calculations indicate that, in addition to the four corannulene units, the relatively flexible porphyrin tether actively participates in the recognition process, resulting in a strong synergistic effect. This leads to a very strong interaction with C60, which in turn also induces a large structural change on the other face (second potential binding site), leading to a negative allosteric effect. We also introduced Zn2+ in the porphyrin core in an attempt to modulate its flexibility. The resulting metalloporphyrin ff also displayed single-tweezer behavior, albeit with slightly smaller binding constants for C60 and C70, suggesting that the e ect of the coordination of fullerene to one face of our supramolecular platform was still transmitted to the other face, leading to the deactivation of the second potential binding site. ■ INTRODUCTION buckybowl, has unique properties not seen in planar π- Since its establishment, supramolecular chemistry1 has been conjugated compounds arising from its nonplanarity, which enables it to form supramolecular assemblies with fullerenes used to design and develop new entities with a wide range of 10 applications in various areas of science.
    [Show full text]