Rachana A. Kumar a Dissertation Submitted in Partial Fulfillment Of

Total Page:16

File Type:pdf, Size:1020Kb

Rachana A. Kumar a Dissertation Submitted in Partial Fulfillment Of CHANGES IN MOLECULAR INTEGRITY OF CHLOROPLAST DNA AND MITOCHONDRIAL DNA IN MAIZE Rachana A. Kumar A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2014 Reading Committee: Arnold J. Bendich, Chair Elizabeth Van Volkenburgh Takato Imaizumi Program Authorized to Offer Degree: Biology ©Copyright 2014 Rachana A. Kumar University Of Washington ABSTRACT Changes in molecular integrity of chloroplast DNA and mitochondrial DNA in maize Rachana A. Kumar Chair of the Supervisory Committee: Professor Arnold J. Bendich Biology Genome copy number is typically two for the nucleus in diploid plants and animals, regardless of developmental or environmental changes, and nuclear DNA is stable. For genomes in mitochondria and chloroplasts, I report that their copies and their DNA integrity change greatly during development in maize. In order to accurately determine organellar genome number, I devise new experimental procedures to overcome limitations of the standard PCR-based methods. First, I describe a new experimental procedure to avoid the confusing influence of nuclear-located organellar DNA (orgDNA) sequences on authentic orgDNA using the PCR. The procedure includes designing organelle-specific primers using bioinformatics methods and methylation-sensitive PCR. In addition to copy number determination, this procedure should be useful in a wide range of applications, including phylogenetic and functional analyses, as well as in a clinical setting. Further, I devise a novel long-PCR method to quantify DNA damage, molecular integrity, copy number, and amount of repair for both plastid DNA and mitochondrial DNA during maize leaf development. I find a developmental increase in orgDNA damage and molecules with impediments that prevent amplification by Taq polymerase, with light causing the greatest change. I also find a hundred- to a thousand-fold decrease in functional copies of orgDNA during leaf development. I suggest that the changes in molecular integrity of orgDNA during development are due to oxidative stress from energy metabolism that damages orgDNA. As leaves develop, the maintenance of high-copy orgDNA lessens, damage persists, and orgDNA is degraded. Furthermore, I confirm a hypothesis that oxidative stress causes DNA damage by studying differences in orgDNA between mesophyll and bundle sheath cells. Higher ROS levels occur in mesophyll due to the light-dependent reactions of photosynthesis. When compared to mesophyll cells, bundle sheath cells have less orgDNA damage and a higher percentage of unimpeded orgDNA. In addition, the orgDNA is more fragmented in mesophyll than bundle sheath cells. The data indicate that higher levels of ROS in mesophyll than bundle sheath cause orgDNA damage. The similar trend in orgDNA properties (copies, damage, and repair) for both plastid DNA and mitochondrial DNA suggests inter-organellar signaling and common regulation by nuclear genes. Table of Contents Chapter 1 Distinguishing Authentic Mitochondrial And Plastid DNAs From Similar DNA Sequences In The Nucleus Using The Polymerase Chain Reaction ..................................................................... 1 1.1 Abstract ................................................................................................................. 1 1.2 Introduction ........................................................................................................... 1 1.3 Materials and methods .......................................................................................... 2 1.3.1 Plant material and DNA preparation ................................................................ 2 1.3.2 Finding organelle-specific sequences .............................................................. 3 1.3.3 Designing primers ............................................................................................ 3 1.3.4 Testing the specificity of the primers ............................................................... 4 1.3.5 Quantifying nucleus-located organellar DNA using qPCR ............................. 5 1.4 Results ................................................................................................................... 5 1.5 Discussion ........................................................................................................... 14 1.6 Acknowledgements ............................................................................................. 18 1.7 Supplemental Materials ....................................................................................... 19 Chapter 2 Changes In DNA Damage, Molecular Integrity, And Copy Number For Plastid DNA And Mitochondrial DNA During Maize Development ........................................................................ 23 2.1 Abstract ............................................................................................................... 23 i 2.2 Introduction ......................................................................................................... 23 2.3 Materials and methods ........................................................................................ 27 2.3.1 Plant tissue and DNA isolation ...................................................................... 27 2.3.2 DNA damage assay, miPCR, and determination of orgDNA without structural impediments .............................................................................................................. 28 2.3.3 Real-time qPCR .............................................................................................. 30 2.3.4 DNA repair ..................................................................................................... 31 2.3.5 Statistical Analysis ......................................................................................... 31 2.4 Results ................................................................................................................. 32 2.4.1 DNA damage .................................................................................................. 32 2.4.2 orgDNA without structural impediments ....................................................... 36 2.4.3 qPCR and miPCR ........................................................................................... 40 2.4.4 DNA repair ..................................................................................................... 46 2.5 Discussion ........................................................................................................... 50 2.5.1 Structure and molecular integrity of orgDNA ................................................ 51 2.5.2 Functional organellar DNA and methods for orgDNA quantification ........... 55 2.6 Concluding remarks ............................................................................................ 58 2.7 Supplemental Materials ....................................................................................... 59 Chapter 3 Molecular Integrity Of Chloroplast DNA And Mitochondrial DNA In Mesophyll And Bundle Sheath Cells Of Maize .................................................................................................................. 79 3.1 Abstract ............................................................................................................... 79 3.2 Introduction ......................................................................................................... 79 ii 3.3 Materials and methods ........................................................................................ 81 3.3.1 Isolation of mesophyll cells and bundle sheath strands ................................. 81 3.3.2 DNA extraction .............................................................................................. 83 3.3.3 Assays of real-time qPCR, DNA damage, unimpeded orgDNA copies, miPCR, and in vitro repair ........................................................................................ 84 3.3.4 Statistical Analysis ......................................................................................... 85 3.4 Results ................................................................................................................. 86 3.4.1 Preparation of maize mesophyll cells and bundle sheath strands .................. 86 3.4.2 Real-time qPCR .............................................................................................. 88 3.4.3 orgDNA damage, unimpeded orgDNA, and miPCR ..................................... 89 3.4.4 DNA repair ..................................................................................................... 93 3.5 Discussion ........................................................................................................... 95 3.5.1 Organellar DNA in M and BS cells ............................................................... 95 3.5.2 Similarities between ptDNA and mtDNA ...................................................... 96 3.5.3 Comparing orgDNA from entire leaf and M/BS cells ................................... 98 3.5.4 Converting C3 to C4 ....................................................................................... 98 3.6 Supplemental Materials ..................................................................................... 100 Chapter 4 (Appendix) The Amount And Integrity Of mtDNA In Maize Decline With Development .......................... 109 4.1 Abstract ............................................................................................................
Recommended publications
  • Organellar Signaling Expands Plant Phenotypic Variation and Increases the Potential for Breeding the Epigenome
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research in Agronomy and Horticulture Agronomy and Horticulture Department 10-2012 Organellar Signaling Expands Plant Phenotypic Variation and Increases the Potential for Breeding the Epigenome Roberto De la Rosa Santamaria University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/agronhortdiss Part of the Agriculture Commons, and the Genetics Commons De la Rosa Santamaria, Roberto, "Organellar Signaling Expands Plant Phenotypic Variation and Increases the Potential for Breeding the Epigenome" (2012). Theses, Dissertations, and Student Research in Agronomy and Horticulture. 57. https://digitalcommons.unl.edu/agronhortdiss/57 This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research in Agronomy and Horticulture by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ORGANELLAR SIGNALING EXPANDS PLANT PHENOTYPIC VARIATION AND INCREASES THE POTENTIAL FOR BREEDING THE EPIGENOME By Roberto De la Rosa Santamaria A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Agronomy (Plant Breeding and Genetics) Under the Supervision of Professor Sally A. Mackenzie Lincoln, Nebraska October, 2012 ORGANELLAR SIGNALING EXPANDS PLANT PHENOTYPIC VARIATION AND INCREASES THE POTENTIAL FOR BREEDING THE EPIGENOME Roberto De la Rosa Santamaria, Ph.D. University of Nebraska, 2012 Adviser: Sally A. Mackenzie MUTS HOMOLOGUE 1 (MSH1) is a nuclear gene unique to plants that functions in mitochondria and plastids, where it confers genome stability.
    [Show full text]
  • ABSTRACT NI, SIHUI. RNA Translocation
    ABSTRACT NI, SIHUI. RNA Translocation into Chloroplasts. (Under the direction of Dr. Heike Inge Sederoff). Plastids and mitochondria are known as semi-autonomous organelles because they can encode and synthesize proteins that are essential for metabolism. They are both derived from endosymbiotic events. The bacterial ancestor of plastids was cyanobacteria, while the bacterial ancestor of mitochondria was a proteobacteria. During their evolution, most of the ancestral bacterial DNA was translocated into the nuclear genome DNA. The current plastid genome encodes proteins for the photosynthetic apparatus, the transcription/translation system, and various biosynthetic processes. The current mitochondrial genome mainly encodes proteins for electron transport, ATP synthesis, translation, protein import and metabolism. Plastids and mitochondria are not self-sufficient; they import the majority of their proteins, which are synthesized in the cytosol. For plastids, a transit peptide at the N-terminus of protein precursors can be recognized by TOC/TIC complex and mediate their import. Similarly, for mitochondria, a piece of β-signal at the N-terminal of protein precursors can be recognized by TOM/TIM complex and mediate the import of the protein precursors. It worth noting that plastids also encode a suite of transfer RNAs while mitochondria need to import certain types of tRNAs. In most angiosperms, plastids and mitochondria are inherited maternally and can only be passed down from the maternal plant organs through seed to the next generation. Maternal inheritance has benefits for organellar genetic engineering such as stable inheritance of genes over generations, absence of out-crossing, absence of contamination by pollen and minimal pleiotropic effects. The tradition methodology of plastid genomic engineering is biolistic transformation, where DNA covered gold particles parent cell walls of tissue or protoplasts at high velocity, leading to integration of DNA into chromosome(s) through recombination.
    [Show full text]
  • Identifying Mitochondrial Genomes in Draft Whole-Genome Shotgun Assemblies of Six Gymnosperm Species
    Identifying Mitochondrial Genomes in Draft Whole-Genome Shotgun Assemblies of Six Gymnosperm Species Yrin Eldfjell Bachelor’s Thesis in Computer Science at Stockholm University, Sweden, 2018 Identifying Mitochondrial Genomes in Draft Whole-Genome Shotgun Assemblies of Six Gymnosperm Species Yrin Eldfjell Bachelor’s Thesis in Computer Science (15 ECTS credits) Single Subject Course Stockholm University year 2018 Supervisor at the Department of Mathematics was Lars Arvestad Examiner was Jens Lagergren, KTH EECS Department of Mathematics Stockholm University SE-106 91 Stockholm, Sweden Identifying Mitochondrial Genomes in Draft Whole-Genome Shotgun Assemblies of Six Gymnosperm Species Abstract Sequencing e↵orts for gymnosperm genomes typically focus on nuclear and chloroplast DNA, with only three complete mitochondrial genomes published as of 2017. The availability of additional mitochondrial genomes would aid biological and evolutionary understanding of gymnosperms. Identifying mtDNA from existing whole genome sequencing (WGS) data (i.e. contigs) negates the need for additional experimental work but pre- vious classification methods show limitations in sensitivity or accuracy, particularly in difficult cases. In this thesis I present a classification pipeline based on (1) kmer probability scoring and (2) SVM classifica- tion applied to the available contigs. Using this pipeline the mitochon- drial genomes of six gymnosperm specias were obtained: Abies sibirica, Gnetum gnemon, Juniperus communis, Picea abies, Pinus sylvestris and Taxus baccata. Cross-validation experiments showed a satisfying and for some species excellent degree of accuracy. Identifiering av mitokondriers arvsmassa fr˚anprelimin¨ara versioner av arvsmassan f¨or sex gymnospermer Sammanfattning Vid sekvensering av gymnospermers arvsmassa har fokus oftast lagts p˚a k¨arn- och kloroplast-DNA.
    [Show full text]
  • Downloaded from the Uni- [76] and Kept Only the Best Match with the Delta-Filter Protkb [85] Databank (9/2014) Were Aligned to the Gen- Command
    Farhat et al. BMC Biology (2021) 19:1 https://doi.org/10.1186/s12915-020-00927-9 RESEARCH ARTICLE Open Access Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp Sarah Farhat1,2† , Phuong Le,3,4† , Ehsan Kayal5† , Benjamin Noel1† , Estelle Bigeard6, Erwan Corre5 , Florian Maumus7, Isabelle Florent8 , Adriana Alberti1, Jean-Marc Aury1, Tristan Barbeyron9, Ruibo Cai6, Corinne Da Silva1, Benjamin Istace1, Karine Labadie1, Dominique Marie6, Jonathan Mercier1, Tsinda Rukwavu1, Jeremy Szymczak5,6, Thierry Tonon10 , Catharina Alves-de-Souza11, Pierre Rouzé3,4, Yves Van de Peer3,4,12, Patrick Wincker1, Stephane Rombauts3,4, Betina M. Porcel1* and Laure Guillou6* Abstract Background: Dinoflagellates are aquatic protists particularly widespread in the oceans worldwide. Some are responsible for toxic blooms while others live in symbiotic relationships, either as mutualistic symbionts in corals or as parasites infecting other protists and animals. Dinoflagellates harbor atypically large genomes (~ 3 to 250 Gb), with gene organization and gene expression patterns very different from closely related apicomplexan parasites. Here we sequenced and analyzed the genomes of two early-diverging and co-occurring parasitic dinoflagellate Amoebophrya strains, to shed light on the emergence of such atypical genomic features, dinoflagellate evolution, and host specialization. Results: We sequenced, assembled, and annotated high-quality genomes for two Amoebophrya strains (A25 and A120), using a combination of Illumina paired-end short-read and Oxford Nanopore Technology (ONT) MinION long-read sequencing approaches. We found a small number of transposable elements, along with short introns and intergenic regions, and a limited number of gene families, together contribute to the compactness of the Amoebophrya genomes, a feature potentially linked with parasitism.
    [Show full text]
  • Native Plants North Georgia
    Native Plants of North Georgia A photo guide for plant enthusiasts Mickey P. Cummings · The University of Georgia® · College of Agricultural and Environmental Sciences · Cooperative Extension CONTENTS Plants in this guide are arranged by bloom time, and are listed alphabetically within each bloom period. Introduction ................................................................................3 Blood Root .........................................................................5 Common Cinquefoil ...........................................................5 Robin’s-Plantain ..................................................................6 Spring Beauty .....................................................................6 Star Chickweed ..................................................................7 Toothwort ..........................................................................7 Early AprilEarly Trout Lily .............................................................................8 Blue Cohosh .......................................................................9 Carolina Silverbell ...............................................................9 Common Blue Violet .........................................................10 Doll’s Eye, White Baneberry ...............................................10 Dutchman’s Breeches ........................................................11 Dwarf Crested Iris .............................................................11 False Solomon’s Seal .........................................................12
    [Show full text]
  • Dispersal Effects on Species Distribution and Diversity Across Multiple Scales in the Southern Appalachian Mixed Mesophytic Flora
    DISPERSAL EFFECTS ON SPECIES DISTRIBUTION AND DIVERSITY ACROSS MULTIPLE SCALES IN THE SOUTHERN APPALACHIAN MIXED MESOPHYTIC FLORA Samantha M. Tessel A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology in the Curriculum for the Environment and Ecology. Chapel Hill 2017 Approved by: Peter S. White Robert K. Peet Alan S. Weakley Allen H. Hurlbert Dean L. Urban ©2017 Samantha M. Tessel ALL RIGHTS RESERVED ii ABSTRACT Samantha M. Tessel: Dispersal effects on species distribution and diversity across multiple scales in the southern Appalachian mixed mesophytic flora (Under the direction of Peter S. White) Seed and spore dispersal play important roles in the spatial distribution of plant species and communities. Though dispersal processes are often thought to be more important at larger spatial scales, the distribution patterns of species and plant communities even at small scales can be determined, at least in part, by dispersal. I studied the influence of dispersal in southern Appalachian mixed mesophytic forests by categorizing species by dispersal morphology and by using spatial pattern and habitat connectivity as predictors of species distribution and community composition. All vascular plant species were recorded at three nested sample scales (10000, 1000, and 100 m2), on plots with varying levels of habitat connectivity across the Great Smoky Mountains National Park. Models predicting species distributions generally had higher predictive power when incorporating spatial pattern and connectivity, particularly at small scales. Despite wide variation in performance, models of locally dispersing species (species without adaptations to dispersal by wind or vertebrates) were most frequently improved by the addition of spatial predictors.
    [Show full text]
  • Unusual Mitochondrial Genome in Introduced and Native Populations of Listronotus Bonariensis (Kuschel)
    Heredity 77 (1996) 565—571 Received 23 January 1996 Unusual mitochondrial genome in introduced and native populations of Listronotus bonariensis (Kuschel) C. LENNEY WILLIAMS, S. L. GOLDSON & D. W. BULLOCK* Centre for Molecular Biology, P0 Box 84, Lincoln University, Canterbury and AgResearch, P0 Box 60, Lincoln, New Zealand TheArgentine stem weevil is a serious pest of pasture and other graminaceous crops in New Zealand. Fifteen populations from South America, New Zealand and Australia were examined in an effort to determine the geographical origin of the species in New Zealand. Our previ- ously reported RAPD analysis of these populations (Williams et al., 1994) revealed that the source of the pest was the Rio de la Plata on the east coast of South America. As a second approach to examining genetic variation, RFLP analysis of the mitochondrial genome, using the digoxigenin-labelled boll weevil mitochondrial genome as a probe, was also performed. The mitochondrial analysis revealed that the species possesses an unusually large mitochondrial genome of 32 kb, which exhibits extremely low levels of polymorphism both in the introduced and native populations. This low variation is in contrast with the informative level of inter- and intrapopulation variation revealed by RAPD. Keywords:geneticvariation, introduced species, Listronotus bonariensis, mitochondrial genome, RFLP. that the typical mitochondrial genome was about 15 Introduction kilobases (kb). Soon afterwards, sizes of 14—26 kb TheArgentine stem weevil is an introduced pest were found for animal mtDNA, owing to differences throughout New Zealand (Goldson & Emberson, in copy number of short, tandemly repeated 1980) and causes $NZ78—25lmillion in losses per sequences within the control region or to duplication annum, mainly through damaged pasture although or deletion of sequences (Moritz et a!., 1987).
    [Show full text]
  • History of Botanical Collectors at Grandfather Mountain, NC
    HISTORY OF BOTANICAL COLLECTORS AT GRANDFATHER MOUNTAIN, NC DURING THE 19TH CENTURY AND AN ANALYSIS OF THE FLORA OF THE BOONE FORK HEADWATERS WITHIN GRANDFATHER MOUNTAIN STATE PARK, NC A Thesis by ETHAN LUKE HUGHES Submitted to the School of Graduate Studies at Appalachian State University in partial fulfillment of the requirements for the degree of Master of Science May 2020 Department of Biology HISTORY OF BOTANICAL COLLECTORS AT GRANDFATHER MOUNTAIN, NC DURING THE 19TH CENTURY AND AN ANALYSIS OF THE FLORA OF THE BOONE FORK HEADWATERS WITHIN GRANDFATHER MOUNTAIN STATE PARK, NC A Thesis by ETHAN LUKE HUGHES May 2020 APPROVED BY: Dr. Zack E. Murrell Chairperson, Thesis Committee Dr. Mike Madritch Member, Thesis Committee Dr. Paul Davison Member, Thesis Committee Dr. Zack E. Murrell Chairperson, Department of Biology Mike McKenzie, Ph.D. Dean, Cratis D. Williams School of Graduate Studies Copyright by Ethan L. Hughes 2020 All Rights Reserved Abstract History of botanical collectors at Grandfather Mountain, NC during the 19th century and an analysis of the flora of the Boone Fork headwaters Within Grandfather Mountain State Park, NC Ethan L. Hughes B.S. Clemson University Chairperson: Dr. Zack E. Murrell The Southern Appalachian Mountains have been an active region of botanical exploration for over 250 years. The high mountain peaks of western North Carolina, in particular, have attracted interest due to their resemblance of forest communities in NeW England and Canada and to their high species diversity. From the middle of the 19th century, Grandfather Mountain has been a destination for famous botanists conducting research in the region.
    [Show full text]
  • SUMMER WILDFLOWERS Late May, June, July, Early August (96 Species)
    SUMMER WILDFLOWERS Late May, June, July, Early August (96 species) Cat-tail Family (Typhaceae) ____ Yellow Sweet Clover ____ Cat-tail (Typha angustifolia) (Melilotus officinalis)* ____ Crimson Clover (Trifolium incarnatum)* Water-plaintain Family (Alismataceae) ____ Red Clover (T. pratense)* ____ Water-plantain (Alisma subcordatum) ____ White Clover (T. repens)* Arum Family (Araceae) Spurge Family (Euphorbiaceae) ___ Jack-in-the-Pulpit (Arisaema atrorubens) ____ Flowering Spurge (Euphorbia corollata) ___ Green Dragon (A. dracontium) Touch-me-not Family (Balsaminaceae) Spiderwort Family (Commelinaceae) ____ Spotted Jewelweed (Impatiens capensis) ____ Virginia Dayflower (Commelina virginica) Mallow Family (Malvaceae) Rush Family (Juncaceae) ____ Common Mallow (Malva neglecta)* ____ Common Rush (Juncus effusus) St. John’s Wort Family (Clusiaceae) Lily Family (Liliaceae) ____ St. John’s Wort (Hypericum dolabriforme) ____ Nodding Wild Onion (Allium ceruum) ____ Field Garlic (A. stellatum) Parsley Family (Apiaceae) ____ Wild Asparagus (Asparagus officinalis)* ____ Queen-Anne’s Lace (Daucus carota)* ____ Orange Daylily (Hemerocallis fulva)* ____ False Solomon’s Seal Primrose Family (Primulaceae) (Smilacina acemosa) ____ Fringed Loosestrife (Lysimachia ciliata) Nettle Family (Urticaceae) Gentian Family (Gentianaceae) ____ Stinging Nettle (Urtica dioica) ____ Rose Pink (Sabatia angularis) Knotweed Family (Polygonaceae) Dogbane Family (Apocynaceae) ____ Curled Dock (Rumex crispus)* ____ Intermediate Dogbane (Apocynum medium) Pink Family (Caryophyllaceae) ____ Myrtle (Vinca minor)* ____ Deptford Pink (Dianthus armeria)* ____ Common Chickweed (Stellavia media)* Milkweed Family (Asclepiadaceae) ____ Swamp Milkweed (Asclepias incartata) Buttercup Family (Ranunculaceae) ____ Common Milkweed (A.syriaca) ____ Thimbleweed (Anemone virginiana) ____ Butterfly Weed (A. tuberosa) ____ Cliff Meadow Rue (Thalictrum clavatum) ____ Whirled Milkweed (A. verticillata) ____ Tall Meadow Rue (T. polygamum) ____ Green Milkweed (A.
    [Show full text]
  • Virus-Induced Gene Silencing As a Tool for Comparative Functional Studies in Thalictrum
    Virus-Induced Gene Silencing as a Tool for Comparative Functional Studies in Thalictrum Vero´ nica S. Di Stilio*, Rachana A. Kumar, Alessandra M. Oddone, Theadora R. Tolkin, Patricia Salles, Kacie McCarty Department of Biology, University of Washington, Seattle, Washington, United States of America Abstract Perennial woodland herbs in the genus Thalictrum exhibit high diversity of floral morphology, including four breeding and two pollination systems. Their phylogenetic position, in the early-diverging eudicots, makes them especially suitable for exploring the evolution of floral traits and the fate of gene paralogs that may have shaped the radiation of the eudicots. A current limitation in evolution of plant development studies is the lack of genetic tools for conducting functional assays in key taxa spanning the angiosperm phylogeny. We first show that virus-induced gene silencing (VIGS) of a PHYTOENE DESATURASE ortholog (TdPDS) can be achieved in Thalictrum dioicum with an efficiency of 42% and a survival rate of 97%, using tobacco rattle virus (TRV) vectors. The photobleached leaf phenotype of silenced plants significantly correlates with the down-regulation of endogenous TdPDS (P,0.05), as compared to controls. Floral silencing of PDS was achieved in the faster flowering spring ephemeral T. thalictroides. In its close relative, T. clavatum, silencing of the floral MADS box gene AGAMOUS (AG) resulted in strong homeotic conversions of floral organs. In conclusion, we set forth our optimized protocol for VIGS by vacuum-infiltration of Thalictrum seedlings or dormant tubers as a reference for the research community. The three species reported here span the range of floral morphologies and pollination syndromes present in Thalictrum.
    [Show full text]
  • Cell-To-Cell Movement of Mitochondria in Plants
    Cell-to-cell movement of mitochondria in plants Csanad Gurdona, Zora Svaba, Yaping Fenga, Dibyendu Kumara, and Pal Maligaa,b,1 aWaksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854; and bPlant Biology & Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901 Edited by Jeffrey D. Palmer, Indiana University, Bloomington, IN, and approved January 26, 2016 (received for review September 18, 2015) We report cell-to-cell movement of mitochondria through a graft We looked for cell-to-cell movement of mitochondria in stem junction. Mitochondrial movement was discovered in an experiment grafts of two species, N. tabacum and N. sylvestris.Wefirstselected designed to select for chloroplast transfer from Nicotiana sylvestris forthenuclearmarkerfromN. tabacum and the chloroplast into Nicotiana tabacum cells. The alloplasmic N. tabacum line we marker in N. sylvestris and regenerated plants from double-resistant used carries Nicotiana undulata cytoplasmic genomes, and its flowers tissue derived from the graft junction. We identified branches with are male sterile due to the foreign mitochondrial genome. Thus, rare fertile flowers on one of the regenerated plants, indicating presence mitochondrial DNA transfer from N. sylvestris to N. tabacum could be of fertile mtDNA in the otherwise CMS plant, and analyzed the recognized by restoration of fertile flower anatomy. Analyses of the mtDNA of its fertile and CMS seed progeny. Recombination at mitochondrial genomes revealed extensive recombination, tentatively alternative sites in the mitochondrial genome facilitated the orf293 linking male sterility to ,amitochondrialgenecausinghomeotic identification of a candidate mitochondrial gene responsible for conversion of anthers into petals. Demonstrating cell-to-cell move- homeotic transformation of anthers resulting in CMS.
    [Show full text]
  • Vascular Plant Inventory and Plant Community Classification for Mammoth Cave National Park
    VASCULAR PLANT INVENTORY AND PLANT COMMUNITY CLASSIFICATION FOR MAMMOTH CAVE NATIONAL PARK Report for the Vertebrate and Vascular Plant Inventories: Appalachian Highlands and Cumberland/Piedmont Network Prepared by NatureServe for the National Park Service Southeast Regional Office February 2010 NatureServe is a non-profit organization providing the scientific basis for effective conservation action. A NatureServe Technical Report Prepared for the National Park Service under Cooperative Agreement H 5028 01 0435. Citation: Milo Pyne, Erin Lunsford Jones, and Rickie White. 2010. Vascular Plant Inventory and Plant Community Classification for Mammoth Cave National Park. Durham, North Carolina: NatureServe. © 2010 NatureServe NatureServe Southern U. S. Regional Office 6114 Fayetteville Road, Suite 109 Durham, NC 27713 919-484-7857 International Headquarters 1101 Wilson Boulevard, 15th Floor Arlington, Virginia 22209 www.natureserve.org National Park Service Southeast Regional Office Atlanta Federal Center 1924 Building 100 Alabama Street, S.W. Atlanta, GA 30303 The view and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government. This report consists of the main report along with a series of appendices with information about the plants and plant communities found at the site. Electronic files have been provided to the National Park Service in addition to hard copies. Current information on all communities described here can be found on NatureServe Explorer at http://www.natureserve.org/explorer/ Cover photo: Mature Interior Low Plateau mesophytic forest above the Green River, Mammoth Cave National Park - Photo by Milo Pyne ii Acknowledgments This report was compiled thanks to a team including staff from the National Park Service and NatureServe.
    [Show full text]