Therapeutic Drug Monitoring of 21-Day Oral Etoposide in Patients with Advanced Non-Small Cell Lung Cancer’

Total Page:16

File Type:pdf, Size:1020Kb

Therapeutic Drug Monitoring of 21-Day Oral Etoposide in Patients with Advanced Non-Small Cell Lung Cancer’ Vol. 4, 1705-1710, July /998 Clinical Cancer Research 1705 Therapeutic Drug Monitoring of 21-Day Oral Etoposide in Patients with Advanced Non-Small Cell Lung Cancer’ Antonius A. Miller,2 Elizabeth A. Tolley, and but poor in patients whose dosages were increased. The Harvey B. Niell actual observed ANC was compared with the predicted ANC based on the pharmacodynamic model. The predic- Department of Veteran Affairs Medical Center [A. A. M., H. B. N.] and University of Tennessee [A. A. M., E. A. I., H. B. N.], Memphis, tion was considered accurate if the predicted and actual Tennessee 38163 ANC values were within 500/pt of each other. Using this margin, the ANC was accurately predicted in 10 of 22 patients. Etoposide concentrations >0.3 pig/ml on this ABSTRACT schedule were significantly correlated with combined grades The purpose of this study was to prospectively test a 3 and 4 neutropenia (P < 0.0001). In conclusion, the phar- pharmacodynamic model for therapeutic drug monitoring macodynamic model is statistically sound when applied to a of 21-day oral etoposide. In our previous studies, etoposide population of patients. However, when applied to individual trough concentrations on this schedule were related to the patients for therapeutic drug monitoring, the model lacks hematological toxicity, expressed as WBC and neutrophil precision and accuracy. counts at the nadir. The following pharmacodynamic model estimated the absolute neutrophil count at the nadir (ANC) based on the etoposide concentration (Er) and the pretreat- INTRODUCTION ment count (ANC): Measurements of drugs like aminoglycosides, digoxin, phenytoin, or theophylline for making decisions during treat- ANC = 0.32(1 + ANC x e 2.47 X Ec) ment are accepted practice in internal medicine. Useful strate- Patients were treated with 40 mg/m2/day etoposide p.o. x 21 gies exist for these drugs such that concentrations can be deter- days and 100 mg/m2 cisplatin i.v. on day 1. All patients had mined at steady-state (i.e., theophylline) or at specified times non-small cell lung cancer stage 11111 or IV, had a perfor- (i.e., peak and trough for arninoglycosides) and doses adjusted, mance status of 0-2, and had a median age of 66 (range, depending on how far off the measured concentration is from 42-80). Etoposide was measured in the plasma on day 8 by the target (1). In cancer therapy, however, therapeutic drug high-performance liquid chromatography, and dosage ad- monitoring has not found a standard role except for methotrex- justments were made for the remainder of the course. We ate measurements to guide leucovorin rescue after high-dose targeted for grade 3 neutropenia (ANC, 500 to 999/pI) and therapy (2). Clinical oncologists are well aware of the narrow attempted to avoid grade 4 neutropenia (ANC0, <500/pA). therapeutic index of antineoplastic drugs and make dose adjust- of 25 patients entered, 22 were evaluable for therapeutic ments after toxicity is encountered. The problem of making drug monitoring in the first course. Three patients devel- correct dosing decisions is at least in part attributed to our oped grade 3 neutropenia, and seven patients developed incomplete clinical assessment of the pharmacokinetic variabil- grade 4 neutropenia. Etoposide concentrations were signif- ity between patients, which in turn determines the pharmacody- icantly correlated with ANC in the first course (r -0.50, name variability (3). Pharmacodynamics is defined as the rela- P < 0.02). For those patients whose dosages were not tionship between drug concentrations and therapeutic or toxic changed, the estimated correlation between predicted and responses. The problem of interpatient variability and the in- ability to predict the severity of toxicity cannot be overcome actual ANC was 0.77 (P < 0.01). No evidence of significant bias of the pharmacodynamic model was detected. The eto- unless the relationships between pharmacological measurements poside dosages were increased in 12 patients and were not and clinical effects are explored. The toxicity of anticancer changed in the remaining patients. The precision of the chemotherapy is mainly due to growth inhibition of rapidly model was good in patients whose dosages were not changed dividing normal tissues exemplified by bone marrow suppres- sion. Troublesome consequences of myelosuppression are neu- tropemic fever and sepsis. These adverse consequences of chem- otherapy are not immediately apparent, and the time interval and degree of toxicity are poorly predictable. Received 1/16/98; revised 4/3/98; accepted 4/10/98. Lung cancer is the leading cause of death from cancer in The costs of publication of this article were defrayed in part by the the United States (4). The majority of patients have non-small payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to cell lung cancer. Patients with advanced non-small cell lung indicate this fact. cancer commonly receive chemotherapy for palliation of their Supported by a Merit Review Grant from the Office of Research and disease. Our previous Phase II study demonstrated that a 2 1 -day Development, Medical Research Service, Department of Veteran Af- schedule of oral etoposide in combination with iv. cisplatin was fairs. active in patients with advanced non-small cell lung cancer (5, 2 To whom requests for reprints should be addressed, at University of Tennessee, 3 North Dunlap, Memphis, IN 38163. Phone: (901) 448- 6). Etoposide was administered at a dosage of 50 mg/rn2 for 21 5157; Fax: (901) 448-5033; E-mail: [email protected]. days, and 100 mg/rn2 cisplatin were given on day 1 of a 28-day Downloaded from clincancerres.aacrjournals.org on September 29, 2021. © 1998 American Association for Cancer Research. 1706 Therapeutic Drug Monitoring of Etoposide cycle. Etoposide plasma concentrations were measured weekly PATIENTS AND METHODS just before the daily dose (trough levels). The etoposide con- Patients had biopsy-proven non-small cell lung cancer centrations on this schedule were related to the hematological stage IIIB or IV, measurable or evaluable disease, and a per- toxicity, expressed as WBC and neutrophil counts at the nadir formance status of 0-2 (Eastern Cooperative Oncology Group). (5). The following pharmacodynamic model was developed to Staging procedures were the same as in our previous studies estimate the absolute neutrophil count at the nadir (ANC) based (5-7). Prior chemotherapy and bone marrow or brain metastases on the etoposide concentration (Er) and the pretreatment count were reasons for exclusion. Required laboratory values for entry (ANC): on study were: ANC l500/i.l; hemoglobin 10 g/dl, platelets l00,000/iil; serum creatinine 1.5 mg/dl; and bilirubin 1 .5 X normal. Patients had to be able to swallow capsules so ANC = 0.32(1 + ANC X e247 X EC) they could comply with the oral etoposide regimen. Patients with another malignancy and other serious medical or psychi- Subsequently, this model was tested prospectively and per- atric disease were excluded. All patients gave written informed formed reliably (7). consent. A similar regimen consisting of 21-day oral etoposide (50 The treatment consisted of 40 rng/m2/day etoposide p.o. X mg/m2/day) with cisplatin given at a dosage of 33 mg/rn2 i.v. on 21 days and ]00 mg/rn2 cisplatin iv. on day 1. Treatment cycles days 1, 2, and 3 was used by the CALGB3 for extensive stage were repeated every 28 days. Up to three cycles of therapy were small-cell lung cancer (8). Multiple linear regression analysis of given with therapeutic drug monitoring. After that, patients were this CALGB trial led to the following pharrnacodynamic model off protocol but could receive a maximum of six cycles. Therapy (9): was given in the outpatient clinic. Bristol-Myers Oncology (Princeton, NJ) provided 10-mg capsules of etoposide, which log10(ANC) = - 0.153 - 0.017 X age - 0.363 were similar in formulation to the marketed 50-mg capsules x E + 0.530 x log10 (alkaline phosphatase) (VePesid). The trial was conducted under Investigational New Drug 43,71 1 from the Food and Drug Administration (Rock- ville, MD). The commercially available formulation of cisplatin However, this latter pharmacodynamic equation was not avail- was used. able at the beginning of the trial that is described here. It is All patients had laboratory studies performed before study important to note that the above equations were derived from entry and before each treatment cycle: complete blood cell count groups of patients (population pharmacology), and that their with differential; electrolytes (including calcium and magnesi- performance when applied to individual patients (therapeutic urn); liver and renal function chemistries; lactate dehydrogem- drug monitoring) remained unknown. ase; total protein; and albumin. While on treatment, patients In previous studies of 50 mg/m2/day X 21 days, we ob- returned weekly to clinic for monitoring of compliance with oral served grades 3 and 4 neutropenia in 73- 83% of all patients etoposide, complete blood cell counts, and etoposide plasma (5-9). Therefore, the starting dose was reduced from 50 to 40 concentrations. For therapeutic drug monitoring, weekly etopo- mg/m2/day X 21 days for this trial. Etoposide is marketed in the side samples were obtained just before the daily dose (trough United States only as a 50-mg capsule. This capsule size was used in the previous studies (5-9). For therapeutic drug moni- concentrations). The etoposide concentration on day 8 of cycle toting, the 50-mg capsules were not useful because dose adjust- 1 was used to predict the neutrophil count at the nadir based on ments were not feasible. For the sake of prospective therapeutic the following equation: ANC, 0.32 (1 + ANC X e247 X Ec) dose adjustments, 10-mg capsules were obtained from Bristol- Based on this prediction, the dose of etoposide was adjusted for Myers Oncology.
Recommended publications
  • Cyclophosphamide-Etoposide PO Ver
    Chemotherapy Protocol LYMPHOMA CYCLOPHOSPHAMIDE-ETOPOSIDE ORAL Regimen Lymphoma – Cyclophosphamide-Etoposide PO Indication Palliative treatment of malignant lymphoma Toxicity Drug Adverse Effect Cyclophosphamide Dysuria, haemorrragic cystitis (rare), taste disturbances Etoposide Alopecia, hyperbilirubinaemia The adverse effects listed are not exhaustive. Please refer to the relevant Summary of Product Characteristics for full details. Patients diagnosed with Hodgkin’s Lymphoma carry a lifelong risk of transfusion associated graft versus host disease (TA-GVHD). Where blood products are required these patients must receive only irradiated blood products for life. Local blood transfusion departments must be notified as soon as a diagnosis is made and the patient must be issued with an alert card to carry with them at all times. Monitoring Drugs FBC, LFTs and U&Es prior to day one of treatment Albumin prior to each cycle Dose Modifications The dose modifications listed are for haematological, liver and renal function and drug specific toxicities only. Dose adjustments may be necessary for other toxicities as well. In principle all dose reductions due to adverse drug reactions should not be re-escalated in subsequent cycles without consultant approval. It is also a general rule for chemotherapy that if a third dose reduction is necessary treatment should be stopped. Please discuss all dose reductions / delays with the relevant consultant before prescribing, if appropriate. The approach may be different depending on the clinical circumstances. Version 1.1 (Jan 2015) Page 1 of 6 Lymphoma- Cyclophosphamide-Etoposide PO Haematological Dose modifications for haematological toxicity in the table below are for general guidance only. Always refer to the responsible consultant as any dose reductions or delays will be dependent on clinical circumstances and treatment intent.
    [Show full text]
  • BC Cancer Protocol Summary for Treatment of Lymphoma with Dose- Adjusted Etoposide, Doxorubicin, Vincristine, Cyclophosphamide
    BC Cancer Protocol Summary for Treatment of Lymphoma with Dose- Adjusted Etoposide, DOXOrubicin, vinCRIStine, Cyclophosphamide, predniSONE and riTUXimab with Intrathecal Methotrexate Protocol Code LYEPOCHR Tumour Group Lymphoma Contact Physician Dr. Laurie Sehn Dr. Kerry Savage ELIGIBILITY: One of the following lymphomas: . Patients with an aggressive B-cell lymphoma and the presence of a dual translocation of MYC and BCL2 (i.e., double-hit lymphoma). Histologies may include DLBCL, transformed lymphoma, unclassifiable lymphoma, and intermediate grade lymphoma, not otherwise specified (NOS). Patients with Burkitt lymphoma, who are not candidates for CODOXM/IVACR (such as those over the age of 65 years, or with significant co-morbidities) . Primary mediastinal B-cell lymphoma Ensure patient has central line EXCLUSIONS: . Cardiac dysfunction that would preclude the use of an anthracycline. TESTS: . Baseline (required before first treatment): CBC and diff, platelets, BUN, creatinine, bilirubin. ALT, LDH, uric acid . Baseline (required, but results do not have to be available to proceed with first treatment): results must be checked before proceeding with cycle 2): HBsAg, HBcoreAb, . Baseline (optional, results do not have to be available to proceed with first treatment): HCAb, HIV . Day 1 of each cycle: CBC and diff, platelets, (and serum bilirubin if elevated at baseline; serum bilirubin does not need to be requested before each treatment, after it has returned to normal), urinalysis for microscopic hematuria (optional) . Days 2 and 5 of each cycle (or days of intrathecal treatment): CBC and diff, platelets, PTT, INR . For patients on cyclophosphamide doses greater than 2000 mg: Daily urine dipstick for blood starting on day cyclophosphamide is given.
    [Show full text]
  • Arsenic Trioxide Is Highly Cytotoxic to Small Cell Lung Carcinoma Cells
    160 Arsenic trioxide is highly cytotoxic to small cell lung carcinoma cells 1 1 Helen M. Pettersson, Alexander Pietras, effect of As2O3 on SCLC growth, as suggested by an Matilda Munksgaard Persson,1 Jenny Karlsson,1 increase in neuroendocrine markers in cultured cells. [Mol Leif Johansson,2 Maria C. Shoshan,3 Cancer Ther 2009;8(1):160–70] and Sven Pa˚hlman1 1Center for Molecular Pathology, CREATE Health and 2Division of Introduction Pathology, Department of Laboratory Medicine, Lund University, 3 Lung cancer is the most frequent cause of cancer deaths University Hospital MAS, Malmo¨, Sweden; and Department of f Oncology-Pathology, Cancer Center Karolinska, Karolinska worldwide and results in 1 million deaths each year (1). Institute and Hospital, Stockholm, Sweden Despite novel treatment strategies, the 5-year survival rate of lung cancer patients is only f15%. Small cell lung carcinoma (SCLC) accounts for 15% to 20% of all lung Abstract cancers diagnosed and is a very aggressive malignancy Small cell lung carcinoma (SCLC) is an extremely with early metastatic spread (2). Despite an initially high aggressive form of cancer and current treatment protocols rate of response to chemotherapy, which currently com- are insufficient. SCLC have neuroendocrine characteristics bines a platinum-based drug with another cytotoxic drug and show phenotypical similarities to the childhood tumor (3, 4), relapses occur in the absolute majority of SCLC neuroblastoma. As multidrug-resistant neuroblastoma patients. At relapse, the efficacy of further chemotherapy is cells are highly sensitive to arsenic trioxide (As2O3) poor and the need for alternative treatments is obvious. in vitro and in vivo, we here studied the cytotoxic effects Arsenic-containing compounds have been used in tradi- of As2O3 on SCLC cells.
    [Show full text]
  • Arsenic Trioxide Potentiates the Effectiveness of Etoposide in Ewing Sarcomas
    INTERNATIONAL JOURNAL OF ONCOLOGY 49: 2135-2146, 2016 Arsenic trioxide potentiates the effectiveness of etoposide in Ewing sarcomas KAREN A. BOEHME1*, JULIANE NITSCH1*, ROSA RIESTER1, RUPert HANDGRETINGER2, SABINE B. SCHLEICHER2, TORSTEN KLUBA3,4 and FRANK TRAUB1,3 1Laboratory of Cell Biology, Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen; 2Department of Haematology and Oncology, Children's Hospital, Eberhard Karls University Tuebingen; 3Department of Orthopaedic Surgery, Eberhard Karls University Tuebingen, Tuebingen; 4Department for Orthopaedic Surgery, Hospital Dresden-Friedrichstadt, Dresden, Germany Received June 12, 2016; Accepted July 28, 2016 DOI: 10.3892/ijo.2016.3700 Abstract. Ewing sarcomas (ES) are rare mesenchymal tumours, the drug concentrations used. With the exception of ATO in most commonly diagnosed in children and adolescents. Arsenic RD-ES cells, all drugs induced apoptosis in the ES cell lines, trioxide (ATO) has been shown to efficiently and selectively indicated by caspase-3 and PARP cleavage. Combination of target leukaemic blasts as well as solid tumour cells. Since the agents potentiated the reduction of viability as well as the multidrug resistance often occurs in recurrent and metastatic inhibitory effect on clonal growth. In addition, cell death induc- ES, we tested potential additive effects of ATO in combina- tion was obviously enhanced in RD-ES and SK-N-MC cells tion with the cytostatic drugs etoposide and doxorubicin. The by a combination of ATO and etoposide compared to single Ewing sarcoma cell lines A673, RD-ES and SK-N-MC as well application. Summarised, the combination of low dose, physi- as mesenchymal stem cells (MSC) for control were treated ologically easily tolerable ATO with commonly used etoposide with ATO, etoposide and doxorubicin in single and combined and doxorubicin concentrations efficiently and selectively application.
    [Show full text]
  • Etoposide Injection USP
    Etoposide Injection USP Rx ONLY WARNINGS Etoposide should be administered under the supervision of a qualified physician experienced in the use of cancer chemotherapeutic agents. Severe myelosuppression with resulting infection or bleeding may occur. DESCRIPTION Etoposide (also commonly known as VP-16) is a semisynthetic derivative of podophyllotoxin used in the treatment of certain neoplastic diseases. It is 4'-demethylepipodophyllotoxin 9-[4,6- O-(R)-ethylidene-β-D-glucopyranoside]. It is very soluble in methanol and chloroform, slightly soluble in ethanol and sparingly soluble in water and ether. It is made more miscible with water by means of organic solvents. It has a molecular weight of 588.58 and a molecular formula of C29H32O13. Etoposide Injection USP is available for intravenous use as 20 mg/mL solution in 100 mg (5 mL), 250 mg (12.5 mL), 500 mg (25 mL), and 1 g (50 mL) sterile, multiple-dose vials. The pH of the clear, colorless to pale yellow liquid is 3 to 4. Each mL contains 20 mg etoposide USP, 2 mg anhydrous citric acid, 30 mg benzyl alcohol, 80 mg polysorbate 80/tween 80, 650 mg polyethylene glycol 300, and 30.5 percent (v/ v) dehydrated alcohol. Vial head space contains nitrogen. The structural formula is: CLINICAL PHARMACOLOGY Etoposide Injection USP has been shown to cause metaphase arrest in chick fibroblasts. Its main effect, however, appears to be at the G2 portion of the cell cycle in mammalian cells. Two different dose-dependent responses are seen. At high concentrations (10 mcg/mL or more), lysis of cells entering mitosis is observed.
    [Show full text]
  • Etoposide-Cisplatin Alternating with Vinorelbine-Cisplatin Versus Etoposide-Cisplatin for Small Cell Lung Cancer
    DOI:http://dx.doi.org/10.7314/APJCP.2014.15.10.4159 Etoposide-Cisplatin Alternating with Vinorelbine-Cisplatin Versus Etoposide-Cisplatin for Small Cell Lung Cancer RESEARCH ARTICLE Etoposide-Cisplatin Alternating with Vinorelbine-Cisplatin Versus Etoposide-Cisplatin Alone in Patients with Extensive Disease Combined with Small Cell Lung Cancer Jie Zhang1&, Hui-Wei Qi1&, Hui Zheng2, Mo Chen1, Jun Zhu1, Hui-Kang Xie3, Jian Ni1, Jian-Fang Xu1*, Cai-Cun Zhou1* Abstract Background: The aim of this study was to evaluate the efficacy of alternating etoposide-cisplatin and vinorelbine-cisplatin (EP-NP) compared with an etoposide-cisplatin (EP) regimen for advanced combined small cell carcinomas. Materials and Methods: Histologically confirmed combined small cell carcinoma patients who met the inclusion criteria were randomly assigned (1:1) into either the EP-NP setting (group A) or the EP setting (group B). The primary endpoint was progression-free survival in patients who received at least one dose of treatment. Results: Eighty-two patients entered into this trial, 42 in group A and 40 in group B. The objective response rates in group A and group B were 42.9% and 32.5%, respectively (p=0.334). Survival analysis showed that median progression-free survival was 6.1 months in group A, which was significantly longer than the 4.1 months in group B (p=0.041). However, as to overall survival, no significant difference was found between the two groups (11.0 vs 10.1 months in groups A and B, respectively, p=0.545). No unexpected side effects were observed in either group.
    [Show full text]
  • Myeloma DCEP (Dexamethasone, Cyclophosphamide, Etoposide, and Cisplatin) Is an Effective Regimen for Peripheral Blood Stem Cell Collection in Multiple Myeloma
    Bone Marrow Transplantation (2001) 28, 835–839 2001 Nature Publishing Group All rights reserved 0268–3369/01 $15.00 www.nature.com/bmt Myeloma DCEP (dexamethasone, cyclophosphamide, etoposide, and cisplatin) is an effective regimen for peripheral blood stem cell collection in multiple myeloma M Lazzarino1, A Corso1, L Barbarano2, EP Alessandrino1, R Cairoli2, G Pinotti3, G Ucci4, L Uziel5, F Rodeghiero6, S Fava7, D Ferrari8, M Fiumano`9, G Frigerio10, L Isa11, A Luraschi12, S Montanara12, S Morandi13, D Perego14, A Santagostino15, M Savare`16, A Vismara17 and E Morra2 1Division of Hematology, IRCCS Policlinico S Matteo, University of Pavia, Italy; 2Division of Hematology, Ospedale Niguarda, Milano, Italy; 3Division of Oncology, Varese, Italy; 4Division of Oncology, Lecco, Italy; 5Division of Oncology, Milano S Paolo, Italy; 6Division of Hematology, Vicenza, Italy; 7Division of Internal Medicine 2, Legnano, Italy; 8Division of Internal Medicine, Abbiategrasso, Italy; 9Division of Oncology, Sondrio, Italy; 10Division of Internal Medicine, Como, Valduce, Italy; 11Division of Oncology, Gorgonzola, Italy; 12Division of Oncology, Verbania, Italy; 13Division of Hematology, Cremona, Italy; 14Division of Internal Medicine, Desio, Italy; 15Division of Oncology, Vercelli, Italy; 16Division of Internal Medicine, Magenta, Italy; and 17Division of Internal Medicine 2, Rho, Italy Summary: grams for multiple myeloma. Bone Marrow Transplan- tation (2001) 28, 835–839. DCEP (dexamethasone, cyclophosphamide, etoposide, Keywords: peripheral stem cell; mobilization; myeloma; and cisplatin) has proved to be an effective salvage ther- chemotherapy; purging in vivo apy for refractory-relapsed MM patients. Little is known, however, about its potential as mobilizing ther- apy. The aim of this study was to evaluate the efficacy of DCEP in mobilizing PBSC and to define its toxicity.
    [Show full text]
  • Thames Valley Chemotherapy Regimens Lung Cancer
    Thames Valley Thames Valley Chemotherapy Regimens Lung Cancer Thames Valley Notes from the editor These regimens are available on the Network website www.tvcn.org.uk. Any correspondence about the regimens should be addressed to: Sally Coutts, Cancer Pharmacist, Thames Valley email: [email protected] Tel: 01865 857158 to leave a message Acknowledgements These regimens have been compiled by the Network Pharmacy Group in collaboration with the Lung TSSG with key contributions from Dr Nick Bates, Consultant Oncologist, ORH Dr Paul Rogers, Consultant Oncologist, RBFT Dr Joss Adams, Consultant Oncologist, RBFT Sally Punter, formerly Oncology Pharmacist, ORH Sandra Harding Brown, formerly Specialist Principal Pharmacist Oncology, ORH Alison Ashman, formerly Lead Pharmacist Thames Valley Cancer Network © Thames Valley Cancer Network. All rights reserved. Not to be reproduced in whole or in part without the permission of the copyright owner. Network Chemotherapy Protocols – Lung Cancer 2 Thames Valley Thames Valley Chemotherapy Regimens Lung Cancer Network Chemotherapy regimens used in the management of Lung Cancer Date published: March 2015 Date of review: March 2017 Chemotherapy Regimens Name of protocol Indication Page List of amendments to this version 5 Notes 6 ACE Small Cell lung 7 CAV Small Cell lung 9 Carboplatin Etoposide Small cell lung 11 Cisplatin (75) Etoposide (100) Small cell lung 13 Cisplatin (60) Etoposide(120) Small cell lung 15 Topotecan oral Small cell lung 17 Afatnib Non small cell lung 19 Cisplatin (50) Etoposide (50)
    [Show full text]
  • DRUG NAME: Cyclophosphamide
    Cyclophosphamide DRUG NAME: Cyclophosphamide SYNONYM: Cyclo, CPA, CPM, CTX, CYC, CYT COMMON TRADE NAME: CYTOXAN®,1 PROCYTOX®, NEOSAR® (USA) CLASSIFICATION: Alkylating agent Special pediatric considerations are noted when applicable, otherwise adult provisions apply. MECHANISM OF ACTION: Cyclophosphamide is an alkylating agent of the nitrogen mustard type.2 An activated form of cyclophosphamide, phosphoramide mustard, alkylates, or binds, to DNA. Its cytotoxic effect is mainly due to cross-linking of strands of DNA and RNA, and to inhibition of protein synthesis.3 These actions do not appear to be cell-cycle specific. PHARMACOKINETICS: Interpatient variability metabolism; clearance of cyclophosphamide and its metabolites4 Oral Absorption >75%2; manufacturer recommends drug be taken on an empty stomach, but states may be taken with food to decrease GI upset5 time to peak plasma 1-2 h3 concentration Distribution throughout body cross blood brain barrier? to limited extent2 volume of distribution 0.56 L/kg6 plasma protein binding7 12-14% of unchanged drug; 67% of total plasma alkylating metabolites6 Metabolism mainly by microsomal enzymes in the liver;8 cytochrome P450 (CYP) primarily CYP 2B69 active metabolites4 4-hydroxycyclophosphamide, aldophosphamide, phosphoramide mustard, acrolein10 inactive metabolites4 4-keto-cyclophosphamide, carboxyphosphamide, nornitrogen mustard Excretion primarily by enzymatic oxidation to active and inactive metabolites, which are mainly excreted in the urine7 urine 5-25% unchanged2 feces 31-66% after oral dose terminal half life7 6.5 h (1.8-12.4 h) clearance7 1.17 mL/min/kg Gender no clinically important differences found Elderly no clinically important differences found Children terminal half life 2.4-6.5 h7; volume of distribution 0.67 L/kg7 Ethnicity no clinically important differences found Adapted from standard reference11 unless specified otherwise.
    [Show full text]
  • E1383 Etoposide Molecular Formula: C29H32O13 Molecular Weight: 588.6 Melting Point: 236-251°C 1 Pka: 9.8
    ETOPOSIDE H Sigma Prod. No. E1383 H 3 C O O O CAS NUMBER: 33419-42-0 H O 1 O SYNONYMS: EPEG ; VP-16; VP-16213; OH O NK 171; NSC-141540; O 4'-Demethylepipodophyllotoxin O 9-(4,6-O-Ethylidene-b-D-Glucopyranoside)2 O O O PHYSICAL DESCRIPTION: H 3 C C H3 Appearance: Powder, white to white with a OH yellow cast. E1383 Etoposide Molecular formula: C29H32O13 Molecular weight: 588.6 Melting point: 236-251°C 1 pKa: 9.8. EM(283nm) = 4245 (Absolute Methanol) Purity: Not less than 98% (Thin-Layer Chromatography)3 METHOD OF PREPARATION: Etoposide is semisynthetically prepared from podophyllotoxin.4 Various synthetic methods have been 5 reported. SOLUBILITY / SOLUTION STABILITY: Etoposide is poorly soluble in water but soluble in organic solvents such as ethanol, methanol and DMSO to different extents.4,6,7 Aqueous solutions are most stable at pH 4-5.5 A 50 mM solution can be prepared in dimethyl sulfoxide as a stock solution. Dilutions of about 1000-fold can be made in media such as RPMI or Hank's Balanced Salt Solution (HBSS). Etoposide was reportedly dissolved in a small volume of DMSO and diluted to the appropriate concentration with 0.9% sodium chloride (final volume of DMSO did not exceed 1%).7 Etoposide can also be dissolved in Tween 80 or in a mixture containing polyethylene glycol 300, ethanol, and Tween 80 then diluted with water or balanced salt solutions for use in cell culture or in animals.8 Solutions of 0.25 g/L in either 0.9% sodium chloride, 5% dextrose or a solution of dextrose:NaCl (4%:0.18%) were stable for about 96 hours while a 1 g/L solution was stable for 5 hours at room temperature.
    [Show full text]
  • Multiple Myeloma
    MULTIPLE MYELOMA ARSENIC TRIOXIDE Arsenic trioxide 0.25 mg/kg/day IV* Monday - Friday of Weeks 1 and 2** *Administer over 1 hour; **Administer Monday - Friday (5 days per week) during the first 2 weeks of each 4 week cycle. Repeat cycles every 28 days. NOTE: Ensure that serum electrolytes are assessed and corrected, particularly potassium and magnesium, prior to start of treatment, and maintain these values throughout the cycle. Avoid medication known to prolong the QTc interval. Obtain a 12-lead ECG prior to the first dose and ensure that the QTc interval is not greater than 460 msec. Reference: Hussein MA, et al. Br J Haematol 2004;125:470 - 6. BORTEZOMIB Bortezomib 1.3 mg/m2 IVB Days 1, 4, 8 and 11 Repeat cycle every 21 days to a maximum of 8 cycles. NOTE: Patients with progressive disease after 2 cycles or stable diseases after 4 cycles were able to receive dexamethasone 20 mg on the day of and the day after bortezomib. Reference: Richardson PG, et al. N Engl J Med 2003;348:2609 – 17. BORTEZOMIB – DOXORUBICIN - DEXAMETHASONE Bortezomib 1.3 mg/m2 IVB Days 1, 4, 8 and 11 Dexamethasone 40 mg /day PO See below (cycle dependent) Doxorubicin 9 mg/m2/day IV Days 1 - 4 Repeat cycle every 21 days for 4 cycles. NOTE: Dexamethasone dosing: 40 mg PO/day was administered on days 1 – 4, 8 – 11, and 15 – 18 of cycle 1 and on days 1 – 4 of cycles 2 – 4. Concurrent bisphosphonate therapy, gastric protection, erythropoietin and Pneumocystis carinii prophylaxis were given.
    [Show full text]
  • Acronyms for Oncology Regimens
    ACRONYMS AND ABBREVIATIONS OF COMMONLY USED REGIMENS ACRONYM CHEMOTHERAPY COMBINATION 7 + 3 Anthracycline (daunorubicin/idarubicin) or anthracenedione (mitoxantrone)/cytarabine ABV Doxorubicin/ bleomycin/vincristine ABVD Doxorubicin/ bleomycin/vinblastine/dacarbazine AC Doxorubicin/cyclophosphamide ACE Doxorubicin/cyclophosphamide/etoposide AI Doxorubicin/ifosfamide AIDA Tretinoin/idarubicin/dexamethasone/mitoxantrone/6-mercaptopurine/ methotrexate AP Doxorubicin/cisplatin AT Doxorubicin/docetaxel BEACOPP Bleomycin/etoposide/doxorubicin/cyclophosphamide/vincristine/procarbazine/ prednisone BEP Bleomycin/etoposide/cisplatin BMC Bleomycin/methotrexate/carmustine CAD Cyclophosphamide/doxorubicin/dacarbazine CAP Cyclophosphamide/doxorubicin/cisplatin CAPIRI Capecitabine/irinotecan CAPOX Capecitabine/oxaliplatin CAV Cyclophosphamide/doxorubicin/vincristine CDE Cyclophosphamide/doxorubicin/etoposide CDE-R Cyclophsopahmide/doxorubicin/etoposide/rituximab CECA Cyclophosphamide/etoposide/carboplatin/cytarabine CFAR Alemtuzumab/fludarabine/cyclophosphamide/rituximab CHOEP Cyclophosphamide/doxorubicin/vincristine/etoposide/prednisone CHOP Cyclophosphamide/doxorubicin/vincristine/prednisone CHOP-R Cyclophosphamide/doxorubicin/vincristine/prednisone/rtuximab ChlVPP Chlorambucil/vinblastine/procarbazine/prednisone CMF Cyclophosphamide/methotrexate/5-Fluorouracil CNOP Cyclophosphamide/mitoxantrone/vincristine/prednisone CODOX-M Cyclophsopahmide/vincristine/doxorubicin/cyclophosphamide/methotrexate/ leucovorin/intrathecal cytarabine/intrathecal methotrexate
    [Show full text]