Title Attenuation of Coda Waves in the Source Area of the 1990 July 16 Luzon Earthquake, Philippines Author(S)

Total Page:16

File Type:pdf, Size:1020Kb

Title Attenuation of Coda Waves in the Source Area of the 1990 July 16 Luzon Earthquake, Philippines Author(S) View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Attenuation of Coda Waves in the Source Area of the 1990 Title July 16 Luzon Earthquake, Philippines Author(s) KANAO, Masaki; ITO, Kiyoshi Bulletin of the Disaster Prevention Research Institute (1992), Citation 42(2): 31-51 Issue Date 1992-06 URL http://hdl.handle.net/2433/124987 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Bull. Disas. Prey. Res. Inst. , Kyoto Univ. , Vol. 42, Part 2, No. 365, June, 1992 31 Attenuation of Coda Waves in the Source Area of the 1990 July 16 Luzon Earthquake, Philippines By Masaki KANAO and Kiyoshi ITO (Manuscript received on December 15, 1991) Abstract Coda Q values are determined by using small aftershocks of the Luzon earthquake of July 16, 1990 in Philippines (M = 7.8) recorded by temporary observations. The observations were conducted from August to December in 1990 as a cooperative project between the Disaster Prevention Research Institute, Kyoto University and the Philippine Institute of Volcanology and Seismology. The temporary stations were set at 21 sites, in an area of more than 150km along the Philippine fault and around the city of Baguio. 16-88 events, having S-P time less than 5.0s were analyzed at each station. The single scattering model of coda generation was applied to the band-pass filtered RMS coda amplitudes in five frequency bands from 2 to 32Hz. The time window was taken for all the events from more than twice the arrival time of S wave to 25s from origin time, which indicates that the scattering area contributing to the coda excitation is within a radius of approximately 45km. By fitting the coda Q to the power law, Q,=Qef, the averaged values of coda Q and frequency exponent n were obtained as Q,,= 68, and n=1.06 around the city of Baguio. On the other hand, Qe= 165, and n=0.84 in the southern part of the fault where the rupture of the main shock initiated. The lower value of coda Q and the higher value of n in the northern part suggest the existence of large heterogeneities, such as small cracks in the crust made by active aftershock activity around the city of Baguio. As for the southern part of the area, fault movement is considered to be smooth enough not to develop more cracks than in the northern area. The frequency dependence of coda source factors was determined to examine the difference in site amplifications according to respective geological aspects at each observation station. The temporal change in coda Q and coda source factors during four months after the occurrence of the main shock were not obvious when considering their errors. I. Introduction Coda parts of S waves are considered to consist of S waves scattered by many heter- ogeneitiesdistributed randomly in the lithosphere7' 8' 25' 26' 33) The decay rate of coda amplitude with time shows the attenuation property of the upper lithosphere. The quality factor determinedfrom the decay of coda amplitude with time is called coda Q (Q). Coda Q values have been determined in various regions in the world' S,6' 9' 10, 17, 20, 23, 27). Regionaldifferences in Q, have also been revealed by the studies of n in the formula of Q= Qofn, where f is frequency. The relationship among tectonic features, seismicity and coda Q has also been pointed out by analyzing coda waves. For example, Jin and Aid 14)searched the regional variations in coda Q for the oceanic lithosphere. They found that younger oceanic lithosphere has a higher frequency exponent n value than older one, which is similar to the continents where the active regions have higher n values. Thus coda Q and n values are 32 M. KANAOand K. ITO effective in determining the attenuation characteristics and their relation to tectonics in studied area. In and around the Philippine Islands, geophysical studies of crustal velocity structure for the Manila Trench and its fore arc basin were carried out by means of multichanned seismic reflection prospecting11,18). Attenuation of earthquake—shaking intensity with epicentral distance in the Philippines was determined from the data of 83 earthquakes 34). The result was quite similar to that in the San Andreas fault region. On the other hand, Acharya 2.'3) suggested that the attenuation of ground motion in the Philippines is less severe than in the San Andreas area. Since then, no detail analyses of seismic waves have been performed to reveal the structures of velocity and attenuation in Luzon Island. In particular, Q values have never been determined in the Philippines by using small local earthquakes. On July 16, 1990, a large earthquake with a magnitude of 7.8 occurred in the central part of Luzon Island. The event was a large shallow intra—plate earthquake common along the Philippine Fault, which, in fact, has caused many large historical earthquakes in Luzon Island. The ground ruptures by the earthquake extended about 150km from Gabaldon (GBD) to Digdig (DIG) as shown in Fig. 1. The seismic strong motions caused extensive damage along the Philippine Fault and around the city of Baguio. In order to study the distribution of after- shocks in detail, the observations of aftershocks were conducted two times as a cooperative project between the Disaster Prevention Research Institute, Kyoto University (DPRI), and the Philippine Institute of Volcanology and Seismology (PHIVOLCS). Temporary observation stations were set along the earthquake fault and in the vicinity of Baguio City. Many aftershocks were recorded and about 200 hypocenters were determined accurately by Ohkura et cd.21). Many records of the aftershocks have sufficient excitation of coda waves to determine coda Q. Seismograms of these temporary observations were used for the determination of coda Q in the crust and upper mantle. The records at 13 observation stations were used for the analyses of coda waves. The regional difference in coda Q values in the aftershock area of the Philippine earthquake is discussed in relation to the aftershock activities. Coda source factors were also determined from the data. Under the assumption that the averaged value of coda source factors of many events at a station indicates the site effect near the station, the frequency dependence of coda source factors for all the observation stations are studied to reveal the relationship between the frequency dependence of coda source factor and the surface geology. Furthermore, site amplicication is discussed on the basis of the coda source factor. Temporal change in Q,, is also discussed. 2. Data and Analyses 2. 1 Data Seismic wave forms obtained by the two observations of the aftershocks of the 1990 Philippine earthquake of July 16 were used for the analyses of coda Q in this paper. The first observation was conducted from Aug. 30 to Sep. 4, 1990. Twelve temporary stations were set along the Philippine Fault and in the vicinity of Baguio City. The Locations of the observation stations are listed in Table 1(a) and shown in Fig. 1 by solid triangles and Attenuation of Coda Waves in the Source Area of the 1990 July 16 Luzon Earthquake, Philippines 33 . , 1 t I 11–N i 17.0 N la- - TAG I I 50kin SAB/BUR _ A I\ ATK/AT2 PUG A-1 BAY A BAG * M0.0 1 CP1AM 16 .0 N —ss''-DIG CAR d A APB1/PB2 11111 i Phillipine 1\47.8 II,,\iiki.. LUP`-) "Dfault • • ...Zi: rur; II TAL Apity f Io,G. FMSGBD !111\11 \ I I l% 120.0 E 121.0 E Fig. 1. Map of Luzon Island showing the locations of temporary stations. Solid triangles show the stations set for the first observation. The open triangles show the stations set for the second observation. The half solid triangles show the stations set for both obvervations. Stations SAB, ATK, and PB1 were moved to more adequate neighboring places BUR, AT2 and PB2, respectively,during the observations. The large star shows the epicenter of the 16 July 1990 Luzon earthquake (USGS), The small star shows the epicenter of the largest aftershock. The thick lines show the faults. half–solid triangles. The seismograms analyzed were recorded with high–gain vertical–component short period (2Hz) velocity–type seismometers at all stations except the station CAR. A horizontal–com- ponent was also set at CAR as the vertical one. Three types of records were used for the analyses. One is digital seismograms recorded in floppy discs at nine stations, another is digital seismograms recorded on audio magnetic tapes at stations GBD and CP1, and the other is FM records at the station CAR. The seismograms at CAR were digitized on a personal computer for the following analyses. Details of the recording systems are described by Ohkura et aL21). The second observation was conducted from Nov. 17 to Dec. 7 by staff members both of S ' \ 34 M. KANAOand K. ITO Table 1. Locations of observation stations ; (a) stations of the first observation, (b) stations of DPRI in the second observation, and (c) stations of PHIVOLCS in the second observation. The abbreviation codes corres- pond to those in Fig. 1. station code lat. (N) long (E) Height (km) (a) Palayan PLY 15.5865 121.1194 0.090 Gabaldon GBD 15.4501 121.3354 0.125 Talavera TAL 15.5999 120.9713 0.045 Fort Magsaysay FMS 15.4363 121.0758 0.100 Pantabangan 1 PB1 15.8143 121.1058 0.150 Pantabangan 2 PB2 15.8110 121.1070 0.220 Lupao LUP 15.8473 120.9499 0.160 Digdig DIG 15.9489 121.0007 0.300 Carranglan CAR 15.9547 121.1055 0.265 San Manuel SAM 16.1327 120.6862 0.100 Camp One CP1 16.2353 120.5265 0.120 Baguio BAG 16.4162 120.6210 1.520 Atok ATK 16.5058 120.6806 1.824 (b) Sablan SAB 16.4965 120.4867 0.460 Burgos BUR 16.5183 120.4630 0.460 Atok ATK 16.5058 120.6806 1.824 Atok2 AT2 16.4983 120.6733 1.750 Pugo PUG 16.3321 120.4765 0.100 Camp One CP1 16.2353 120.5265 0.120 (c) Tagudin TAG 16.9180 120.4590 0.100 Bayombong BAY 16.4830 121.1300 0.320 Baguio BAG 16.4162 120.6210 1.520 DPRI and PHIVOLCS.
Recommended publications
  • General Plan
    Final Report 12.4.4 Simulation of December 12, 1999 Earthquake and August 1, 1968 Earthquake The recent earthquake motion in Metro Manila was simulated by the method that was adopted in this study. The subjected events are the December 12, 1999 earthquake of magnitude 6.8 that occurred at Manila Trench of 200 km north-northwest of Metro Manila, and the August 2, 1968 earthquake of magnitude 7.3 that occurred at Casiguran Fault of 200 km north-northeast of Metro Manila. In addition, the Model 01 almost corresponds to 1990 Luzon earthquake. The simulated PGA distribution of December 12, 1999 Earthquake is shown in Figure 12.4.7. In this earthquake, PHV and MRK station of MM-STAR, which is shown in the figure, observed the earthquake ground motion. The observed horizontal acceleration at PHV is 36gal in NS and EW component. MRK observed 39 gal in NS component and 102 gal in EW component, and geometric mean is 63 gal. The simulated PGA corresponds to these observed records. The simulated seismic intensity distribution in MMI scale of August 2, 1968 Earthquake is shown in Figure 12.4.8. By this earthquake, Ruby Tower in Metro Manila has collapsed and several buildings were severely damaged. On the other hand, 1990 Luzon Earthquake affected only minor damage to the building in Metro Manila, nevertheless the 1990 Luzon Earthquake show larger intensity. On April 7, 1970, another earthquake of magnitude 7.3 occurred along Casiguran Fault and some buildings in Metro Manila were badly damaged. The magnitude of 1968 Earthquake and 1970 Earthquake are smaller than 1990 Luzon Earthquake and the focal distance are larger, but the damage situation was more serious than 1990 Luzon Earthquake.
    [Show full text]
  • TWEETING RELIEF and AID DURING TYPHOON ONDOY a Thesis Submitted to the Faculty of the Graduate School Of
    NETWORKS TO THE RESCUE: TWEETING RELIEF AND AID DURING TYPHOON ONDOY A Thesis submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Master of Arts in Communication, Culture, and Technology By Xenia Yasmin Zia Gutierrez Morales, B.A. April 26, 2010 Washington DC Copyright 2010 by Xenia Yasmin Zia Gutierrez Morales All Rights Reserved ii NETWORKS TO THE RESCUE: TWEETING RELIEF AND AID DURING TYPHOON ONDOY Xenia Yasmin Zia Gutierrez Morales, B.A. Thesis Advisor: Mirjana Dedaic, Ph.D. ABSTRACT In September 2009, the forces of social networking sites were harnessed to create a civil society network in aid of disaster relief operations in the Philippines. This occured spontaneously, individually and then collectively in the midst of tropical storm Ondoy, forming a networked group of individuals bonded by shared goals and identities. Using data from Twitter in general and the RockEdRadio Twitter Network in particular, this thesis traces the emergence of relief and rescue networks during the Ondoy Typhoon and subsequent flooding. Diffusion Theory and Theories of Networked Interaction are employed in the analysis of the architecture and operationality of the relevant disaster-relief oriented SNS networks. Furthermore, this thesis also analyses the content of selected Tweets and delves into the unique features of the Philippine context to explain how these online social networks of rescue and relief diffused so spontaneously, rapidly and seamlessly amidst challenging circumstances. The thesis concludes with recommendations regarding the use of SNS technologies in other national disaster scenarios. iii The research and writing of this thesis is dedicated to my father, Danilo Morales, my mother, Lourdes Morales and my sister, Armi Prisara Morales.
    [Show full text]
  • Earthquake Plan Swiss Community
    Embassy of Switzerland in the Philippines Our reference: 210.0-2-MAV Phone: + 632 757 90 00 Fax: + 632 757 37 18 Manila, November 2010 Earthquake Plan WHAT IS AN EARTHQUAKE? 1. Earthquakes are caused by geological movements in the earth which release energy and can cause severe damage due to ground vibration, surface faulting, tectonic uplifts or ground ruptures. These can also trigger tsunamis (large sea- waves), landslides, flooding, dam failures and other disasters up to several hundred kilometres from the epicentre. 2. These occur suddenly and usually without warning. Major earthquakes can last minutes, but as a rule, these last only a few ten seconds. All types of earthquakes are followed by aftershocks, which may continue for several hours or days, or even years. It is not uncommon for a building to survive the main tremor, only to be demolished later by an aftershock. 3. The actual movement of the ground during an earthquake seldom directly causes death or injury. Most casualties result from falling objects and debris or the collapse of buildings. The best protection for buildings is solid construction and a structural design intended to withstand an earthquake. 4. An initial shock of an earthquake is generally accompanied by a loud rumbling noise, and it is not uncommon that people rush outside of the building to see what is happening, only to be caught unprepared by the subsequent and potentially more dangerous shocks and falling debris. EARTHQUAKES AND THEIR EFFECTS Intensity Force Effects on Persons Buildings Nature I Unnoticed Not noticeable Very light noticed here and there II III Light Mainly noticed by persons in relaxing phase IV Medium Noticed in houses; Windows are vibrating waking up V Medium to strong Noticed everywhere in the open.
    [Show full text]
  • Data Collection Survey for Strategy Development of Disaster Risk Reduction and Management Sector in the Republic of the Philippines
    THE REPUBLIC OF THE PHILIPPINES DATA COLLECTION SURVEY FOR STRATEGY DEVELOPMENT OF DISASTER RISK REDUCTION AND MANAGEMENT SECTOR IN THE REPUBLIC OF THE PHILIPPINES FINAL REPORT FEBRUARY 2017 JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS GLOBAL CO., LTD. CTI ENGINEERING INTERNATIONAL CO., LTD. 1R PACIFIC CONSULTANTS CO., LTD. JR 17-021 THE REPUBLIC OF THE PHILIPPINES DATA COLLECTION SURVEY FOR STRATEGY DEVELOPMENT OF DISASTER RISK REDUCTION AND MANAGEMENT SECTOR IN THE REPUBLIC OF THE PHILIPPINES FINAL REPORT FEBRUARY 2017 JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS GLOBAL CO., LTD. CTI ENGINEERING INTERNATIONAL CO., LTD. PACIFIC CONSULTANTS CO., LTD. Data Collection Survey for Strategy Development of Disaster Risk Reduction and Management Sector in the Republic of the Philippines Summary Background and Objectives: The JICA cooperation strategy on DRRM formulated in 2008 included the promotion of non-structural measures such as the support for policy making and community enhancement based on the Hyogo Framework for Action (HFA) adopted in 2005 into the conventional cooperation projects mainly focusing on the implementation of structural measures. Since then, both Japan and the Philippines have experienced catastrophic disasters such as the Great East Japan Earthquake and Typhoon Yolanda, and both countries undertook efforts to respond and rebuild from unexpected and extraordinary disasters. Other countries have also experienced several catastrophic disasters, and new frameworks such as the Sendai Framework for DRR (SFDRR) were agreed and some targets to achieve their goals are being discussed through recently conducted international dialogues. From those international trends, several well-known keywords arose such as “Mainstreaming DRR” and “Build Back Better: BBB” which were originally used in Japan.
    [Show full text]
  • World Bank Document
    Report No: ACS12182 . East Asia and Pacific EAP Critical Infrastructure Risk Assessment and Retrofitting Program Public Disclosure Authorized Safe and Resilient Infrastructure in the Philippines Applications of International Experience . August 2014 . Public Disclosure Authorized GSURR EAST ASIA AND PACIFIC . Public Disclosure Authorized Public Disclosure Authorized Document of the World Bank . Standard Disclaimer: . This volume is a product of the staff of the International Bank for Reconstruction and Development/ The World Bank. The findings, interpretations, and conclusions expressed in this paper do not necessarily reflect the views of the Executive Directors of The World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Copyright Statement: . The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development/ The World Bank encourages dissemination of its work and will normally grant permission to reproduce portions of the work promptly. For permission to photocopy or reprint any part of this work, please send a request with complete information to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA, telephone 978-750-8400, fax 978-750-4470, http://www.copyright.com/. All other queries on rights and licenses, including subsidiary rights, should be addressed to the Office of the Publisher, The World Bank, 1818 H Street NW, Washington, DC 20433, USA, fax 202-522-2422, e-mail [email protected].
    [Show full text]
  • 1. Official Name of Philippines Is Republika Ng Pilipinas (Republic of the Philippines)
    Philippines - Location Map (2013) - PHL - UNOCHA" by OCHA. Licensed under CC BY 3.0 1. Official name of Philippines is Republika ng Pilipinas (Republic of the Philippines) The Philippines consists of 7,107 islands that are categorized broadly under three main geographical divisions: Luzon, Visayas, and Mindanao. Its capital city is Manila while its most populous city is Quezon City; both are part of Metro Manila. To the north of the Philippines across the Luzon Strait lies Taiwan; Vietnam sits west across the South China Sea; southwest is the island of Borneo across the Sulu Sea, and to the south the Celebes Sea separates it from other islands of Indonesia; while to the east it is bounded by the Philippine Sea and the island-nation of Palau. Its location on the Pacific Ring of Fire and close to the equator makes the Philippines prone to earthquakes and typhoons, but also endows it with abundant natural resources and some of the world's greatest biodiversity. At approximately 300,000 square kilometers (115,831 sq mi), the Philippines is the 64th-largest country in the world. The Philippines has a tropical maritime climate that is usually hot and humid. There are three seasons: tag-init or tag-araw, the hot dry season or summer from March to May; tag-ulan, the rainy season from June to November; and tag-lamig, the cool dry season from December to February. The southwest monsoon (from May to October) is known as the Habagat, and the dry winds of the northeast monsoon (from November to April), the Amihan.
    [Show full text]
  • The Project for Study on Improvement of Bridges Through Disaster Mitigating Measures for Large Scale Earthquakes in the Republic of the Philippines
    THE REPUBLIC OF THE PHILIPPINES DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS (DPWH) THE PROJECT FOR STUDY ON IMPROVEMENT OF BRIDGES THROUGH DISASTER MITIGATING MEASURES FOR LARGE SCALE EARTHQUAKES IN THE REPUBLIC OF THE PHILIPPINES FINAL REPORT MAIN TEXT [1/2] DECEMBER 2013 JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) CTI ENGINEERING INTERNATIONAL CO., LTD CHODAI CO., LTD. NIPPON KOEI CO., LTD. EI JR(先) 13-261(2) Exchange Rate used in the Report is: PHP 1.00 = JPY 2.222 US$ 1.00 = JPY 97.229 = PHP 43.756 (Average Value in August 2013, Central Bank of the Philippines) LOCATION MAP OF STUDY BRIDGES (PACKAGE B : WITHIN METRO MANILA) i LOCATION MAP OF STUDY BRIDGES (PACKAGE C : OUTSIDE METRO MANILA) ii B01 Delpan Bridge B02 Jones Bridge B03 Mc Arthur Bridge B04 Quezon Bridge B05 Ayala Bridge B06 Nagtahan Bridge B07 Pandacan Bridge B08 Lambingan Bridge B09 Makati-Mandaluyong Bridge B10 Guadalupe Bridge Photos of Package B Bridges (1/2) iii B11 C-5 Bridge B12 Bambang Bridge B13-1 Vargas Bridge (1 & 2) B14 Rosario Bridge B15 Marcos Bridge B16 Marikina Bridge B17 San Jose Bridge Photos of Package B Bridges (2/2) iv C01 Badiwan Bridge C02 Buntun Bridge C03 Lucban Bridge C04 Magapit Bridge C05 Sicsican Bridge C06 Bamban Bridge C07 1st Mandaue-Mactan Bridge C08 Marcelo Fernan Bridge C09 Palanit Bridge C10 Jibatang Bridge Photos of Package C Bridges (1/2) v C11 Mawo Bridge C12 Biliran Bridge C13 San Juanico Bridge C14 Lilo-an Bridge C15 Wawa Bridge C16 2nd Magsaysay Bridge Photos of Package C Bridges (2/2) vi vii Perspective View of Lambingan Bridge (1/2) viii Perspective View of Lambingan Bridge (2/2) ix Perspective View of Guadalupe Bridge x Perspective View of Palanit Bridge xi Perspective View of Mawo Bridge (1/2) xii Perspective View of Mawo Bridge (2/2) xiii Perspective View of Wawa Bridge TABLE OF CONTENTS Location Map Photos Perspective View Table of Contents List of Figures & Tables Abbreviations Main Text Appendices MAIN TEXT PART 1 GENERAL CHAPTER 1 INTRODUCTION .....................................................................................
    [Show full text]
  • The 2013 Bohol Earthquake in Central Philippines: Hazards and Source Fault Characteristics
    The 2013 Bohol earthquake in central Philippines: Hazards and source fault characteristics Noelynna T. Ramos1, Kathrine V. Maxwell1, Betchaida D. Payot1, Nichole Anthony D. Pacle1, Carla B. Dimalanta1, Karlo L. Queaño2, Decibel V. Faustino-Eslava3 and Graciano P. Yumul, Jr.2,4 1National Institute of Geological Sciences, College of Science, University of the Philippines, Diliman, Quezon City, Philippines 2Monte Oro Resources and Energy Inc., Makati City, Philippines 3School of Environmental Science and Management, University of the Philippines, Los Baños, Laguna, Philippines 4Apex Mining Company Inc., Ortigas City, Philippines 7th South China Sea Tsunami Workshop 21 November 2014 | National Museum of Natural Science, Taichung, Taiwan Outline Background Seismotectonic setting The 2013 Bohol earthquake Regional geology Geological hazards Surface rupture Shoreline deformation Karst collapses Implications for source fault Highlights and future work Ramos et al. | The 2013 Bohol Earthquake, Philippines SCSTW-7, Taichung, Taiwan 1 Seismotectonicsetting of the Philippines Data sources: NASA, NGDC, PHIVOLCS, Tsutsumi and Perez (2013) N.Ramos Ramos et al. | The 2013 Bohol Earthquake, Philippines SCSTW-7, Taichung, Taiwan Notable earthquakes in the Philippines *17 Aug 1976 Moro Gulf (MS8.0) *08 Feb 1990 Bohol (MS6.6) 16 Jul 1990 Luzon (MS7.7) *17 May 1992 eastern Mindanao (MS7.1~7.5) *15 Nov 1994 Mindoro (7.8) 06 Mar 2002 Sultan Kudarat (6.8) 15 Feb 2003 Masbate (6.2) 06 Feb 2012 Negros Oriental (mb6.9) 15 Oct 2013 Bohol (MW7.2) *tsunamigenic Ramos et al. | The 2013 Bohol Earthquake, Philippines SCSTW-7, Taichung, Taiwan 2 1990 Bohol tsunamigenic earthquake (Ms6.6) Besana et al., 2005 • Southeastern shorelines experienced a regional retreat (10 to 60 m) of sea water several minutes after the quake • Small to moderate tsunami waves (0.2 to 2 m) Ramos et al.
    [Show full text]
  • Seismic Vulnerability Evaluation of Urban Structures in Metro Manila Part 1: Generation of Strong Ground Motion from a Scenario
    Asia Conference on Earthquake Engineering Technical Proceedings SEISMIC VULNERABILITY EVALUATION OF URBAN STRUCTURES IN METRO MANILA PART 1: GENERATION OF STRONG GROUND MOTION FROM A SCENARIO EARTHQUAKE OF THE WEST VALLEY FAULT Nelson Pulido, Bartolome Bautista, Leonila Bautista, Hisakazu Sakai, Hiroshi Arai and Tetsuo Kubo ABSTRACT : The West Valley Fault System, which crosses Metro Manila from the south to the north, poses a very important seismic hazard to the city. We performed a broadband frequency strong ground motion simulation in the Metro Manila region, for an outcropping engineering bedrock site condition, based on several fault rupture scenarios and a multi- asperity model. We considered two possible scenarios of fault rupture within the West Valley fault system. The first scenario by assuming a total fault rupture length of 63km (Mw=6.76) and the second scenario we assumed a shorter fault rupture length of 34km (Mw=6.47). We calculated the ground motion at two sites located in the southern part of the fault, in the Muntinlupa city, by constraining the structure velocity model for our calculations from results of microtremor array measurements at both sites. The bedrock ground motion obtained in this study is used as input motion to calculate the nonlinear soil response at the Muntinlupa sites, and subsequently to study the seismic performance of existing school buildings in Metro Manila. KEYWORDS: Seismic Vulnerability, West Valley Fault, Earthquake Scenario, Strong Ground Motion, Muntinlupa city. 1 INTRODUCTION The Marikina Valley is a pull-apart basin bounded by escarpments of the East and West Valley fault systems (Figure 1). Right-lateral movement of the West and East Valley faults suggests clockwise rotation of the fault block underlying the valley (Nelson et.
    [Show full text]
  • Dealing with Infectious Diseases in the Aftermath of a Disaster
    DEPARTMENT OF HEALTH RESEARCH INSTITUTE FOR TROPICAL MEDICINE Curb the Chaos: Dealing with Infectious Diseases in the Aftermath of a Disaster Beatriz Puzon-Quiambao, MD, FPPS, FPIDSP 6 8 Philippines: Disaster prone country • 2012 UN World Disaster report – Philippines is the 3rd most disaster prone country in the world, next to Tonga and Vanuatu • Around 19 tropical cyclones or storms enter PAR in a typical year – 6 to 9 make landfall RESEARCH INSTITUTE FOR TROPICAL MEDICINE 9 Philippines: Disaster prone country • More than 900 earthquakes annually – Only 106 (11%) earthquakes with a magnitude > 6 since the 1600s – 2008 to 2015 - only three earthquakes were felt slightly in Metro Manila – January 2016 – 87 tremors recorded • 8/87 (9%) - magnitude of 5 or higher in the Richter Scale • Only Palawan island has not been visited by destructive earthquakes RESEARCH INSTITUTE FOR TROPICAL MEDICINE 10 Objectives • To discuss the most important infectious diseases which may arise after a disaster (floods, earthquakes) such as water-borne diseases, infections related to crowding, etc. • To discuss practical interventions and prevention & control strategies which the pediatrician can utilize to prevent the spread of infections after a major disaster. RESEARCH INSTITUTE FOR TROPICAL MEDICINE 11 12 Why is the Philippines prone to natural disasters? • Geography – Island nation located in a part of the world that gets a lot of big tropical storms. • a rise in sea levels, extreme rainfall events, extreme heating events, increased ocean temperatures and
    [Show full text]
  • Economic, Social and Environmental Impacts of Disasters in the Philippines
    33822 NATURAL DISASTER RISK MANAGEMENT IN THE PHILIPPINES: v 1 ENHANCING POVERTY ALLEVIATION THROUGH DISASTER REDUCTION THE WORLD BANK NATIONAL DISASTER COORDINATING COUNCIL EAST ASIA AND PACIFIC REGION REPUBLIC OF THE PHILIPPINES RURAL DEVELOPMENT Table of Contents Acknowledgements ii Acronyms iii Executive Summary v Chapter 1. Introduction 1 Chapter 2. Hazard Exposure and Disaster Impacts in the Philippines 3 Chapter 3. Disaster Management Capacity in the Philippines 24 Chapter 4. Sharing the Costs of Disasters 39 Chapter 5. The Way Forward: Summary of Findings and Recommendations 44 References 58 List of interviewees 60 Figures ii Acknowledgements This study would not have been possible without the funding support provided by the Regional VPU. The study is part of a broader study that is looking at “ Comprehensive Disaster Risk Management For East Asia And The Pacific Region” , also funded by the Regional VPU. In particular the team would also like to thank Messieurs: Homi Kharas, Chief Economist, EASPR; Jeffrey Gutman, Director Strategy and Operations (EAPVP); Mark Wilson, Sector Director, EASRD; Van Pulley, Director, EACPF; Stephen Mink, Lead Economist, EASRD; Llyod Mckay, Lead Economist, EASPR, Susan Hume, Country Program Coordinator, EACPQ and Wael Zakout, Lead Operations Officer, EASRD for their guidance and support. The team also extends a very warm thanks to NDCC, in particular, General M. Rosales for their guidance, availing of important information and considerable patience in the long process. A special thanks to all those
    [Show full text]
  • Natural Disaster Risk Management in the Philippines: Enhancing Poverty Alleviation Through Disaster Reduction
    33822 NATURAL DISASTER RISK MANAGEMENT IN THE PHILIPPINES: ENHANCING POVERTY ALLEVIATION THROUGH DISASTER REDUCTION Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized THE WORLD BANK NATIONAL DISASTER COORDINATING COUNCIL EAST ASIA AND PACIFIC REGION REPUBLIC OF THE PHILIPPINES RURAL DEVELOPMENT Table of Contents Acknowledgements ii Acronyms iii Executive Summary v Chapter 1. Introduction 1 Chapter 2. Hazard Exposure and Disaster Impacts in the Philippines 3 Chapter 3. Disaster Management Capacity in the Philippines 24 Chapter 4. Sharing the Costs of Disasters 39 Chapter 5. The Way Forward: Summary of Findings and Recommendations 44 References 58 List of interviewees 60 Figures ii Acknowledgements This study would not have been possible without the funding support provided by the Regional VPU. The study is part of a broader study that is looking at “ Comprehensive Disaster Risk Management For East Asia And The Pacific Region” , also funded by the Regional VPU. In particular the team would also like to thank Messieurs: Homi Kharas, Chief Economist, EASPR; Jeffrey Gutman, Director Strategy and Operations (EAPVP); Mark Wilson, Sector Director, EASRD; Van Pulley, Director, EACPF; Stephen Mink, Lead Economist, EASRD; Llyod Mckay, Lead Economist, EASPR, Susan Hume, Country Program Coordinator, EACPQ and Wael Zakout, Lead Operations Officer, EASRD for their guidance and support. The team also extends a very warm thanks to NDCC, in particular, General M. Rosales for their guidance, availing of important information and considerable patience in the long process. A special thanks to all those who helped make the report a reality, even though they may not be explicitly named here.
    [Show full text]