120-A Central Florida 2270 Acre Lakefront Ranch 2.3 Miles Frontage

Total Page:16

File Type:pdf, Size:1020Kb

120-A Central Florida 2270 Acre Lakefront Ranch 2.3 Miles Frontage 120-A CENTRAL FLORIDA 2270 ACRE LAKEFRONT RANCH 2.3 MILES FRONTAGE “LAKE WALK IN WATER” AVAILABLE AS A PACKAGE 12,522 +- ft. Lake frontage with Dock & Pine Timber stands Lodge 7,261 +- Ft. Paved Road Frontage Trophy Bass Lake Large entertainment/convention bldg. Native Deer, Hogs, Quail, Turkey Exotic Animal Herds Commercial Cattle Herd Private Hunting/ Trophy Operation Fishing Guides available Modern 5 Bedroom Home w/apartment 2 Employee Houses 476 Ft. Dock with lighting Selected machinery & Equipment SHOWN BY APPOINTMENT. REALTORS OR PROSPECTS MUST CONFIRM THAT THEY HAVE THE ABILITY TO PURCHASE PRIOR TO PHYSICALLY VIEWING THE PROPERTY. Price for this complete package has been reduced to only $ 7999. per acre EXCLUSIVELY BY: MARY L. ADSIT, Realtor 5757 Trask Rd., Ft. Meade, FL 33841 PHONE 863 285 7118 FAX 863 285 8888 E-MAIL [email protected] WEB SITE www.maryadsit.com Lake Walk In the Water US 27 (Lake Weohyakapka) Crooked Lake 2,270 Acre Ranch Property is about 12 miles East of the Int. of US 27 (4 and 6 lane major North/South FL Hwy) And 630A at Frostproof. Property is on the North side of CR 630 and goes from the highway North to the Lake. Coming from East-Go about 5-1/2 miles West from the inter- section of Hwy. 60 at Indian Lake Estates. (Hwy. 60 is a major East/West FL highway going from coast to coast.) There are signs on the proper- ty. LAKE WALK IN WATER N 2,270 ACRE RANCH IS WITHIN THE ORANGE LINES The Lake Wales Ridge State Forest Ridge State Forest Wales The Lake . 630 Hwy Co. 5.07 a/c sold to Polk Co. As large well site. Owner reserved capacity The ranch includes areas of wetlands and swamps in addition to the Native and Improved pas- ture areas. These areas serve a specific purpose as they provide areas for the “Game Farm” and Trophy hunting operations. They are also ideal habitat for native white tail deer, hogs, Osce- ola turkeys, gators, quail, dove and combined with the improved pasture, service the commercial cattle herd. These areas also include primarily pine and Oak timber stands on the property. They are very important to the ecology of Florida and in the future may be desirable to the State of Florida who owns considerable acreage to the West (The Lake Wales Ridge State Forest) The Western boundary of the property adjoins the 6,034 Walk In the Water Wildlife Management area. The 13,530 acre Arbuckle area to the South makes a great game corridor. The property is bounded on the South by CR 630, on the North by Lake Walk in Water, 2000+ acres to the East owned by a developer (no development activity at this time) Note the 5.07 acre “out-parcel”. Polk County has purchased this parcel and has drilled large wells on it for possible future County water needs. The owner has reserved 250,000. gallons per day capacity for use for development in the event this parcel should ever be developed. This water capacity agreement would transfer to a buyer and is part of the package. There is very little public access to Lake Walk In The Water. This property has the advantage to good access and there is a 476 ft. long dock at the lake. Owner residence. Partial 2 story (2nd story is not full length of house) , CB with true brick ve- neer. 5 Bedrooms, 4-1/2 baths, Screened porch, Fireplace, Central Heat and air. 4311 SF under roof + 2 car garage. This house also includes an apartment with an outside en- trance and porch. The house was built in 1978. The paved drive goes the entire distance to the highway and is se- cured at the highway with a gate. Beautiful Oak shade and there is an area behind the house for “special” pets. There is well and septic for the house in this area. There is 1.2 +- mile of paved drive from CR 630 to the house, barns, etc. The privacy of this property along with the lake frontage, residential and recreational areas would be an ideal location for a Corporate retreat, camp for disadvantaged children, Boy Scouts, Churches, etc. or if you just liked the privacy and ranching, continue the present operations of commercial cattle, and sale of exotic animals as well as hunting operations for trophy animals. The property would also lend itself to a hunting lease operation. It could be reasonably assumed that the State of FL would have interest in this to expand existing wildlife conservancy operations as well as “in-fill” for Central Water Preservation corridor and possible candidate for inclusion in the Everglades Headwaters National Wildlife Refuge and Conservation area. Progress Energy high power lines are on the property and may contribute to bio-mass opera- tions? These current operations will not pay for or amortize the purchase of the property. A buyer would just want to have it and/or possibly have an additional alternative use for it. This could be an ideal IRS 1031 exchange whereby the buyer could utilize “Greenbelt” tax advantages while waiting for possible future land development or other such uses. Employee residence. 3 BR, CB, 1 bath, 6 rooms. Asphalt shingle roof. 30’x48’. Built about 1960. Central heat and air and septic tank. Ideal guest house or operations tenants? There is a 4” well that services all of the buildings in this area. Additional residence. Frame construction, metal roof, 1 bath, 2 bedrooms. (total of 5 rooms) 25’ X 36’ +- The house is convenient to the barns, machinery stor- age and livestock feeding and work area. Central air and heat and septic tank. 40’ x 60’ equipment storage and maintenance building. Concrete floor, metal roof. Septic Tank. This building also includes a 20’ x 20’ air condi- tioned office area with a bathroom and phone. 62’ x 62’ Livestock barn. Frame, concrete floor, metal roof, 6 interior stalls, 2 feed/tack rooms, bath. Rear of building includes 8’ high board fenced “penning” area which includes “cat walk”, squeeze chute, etc. for handling and loading deer. Heavy construction pipe cattle pens. 24’ x 60’ Equipment Storage building There is an additional older building (about 1930?) in this service Chemical Storage Building area that is utilized for storage of the stock trailers and equip- ment of this nature. It is in 2 sections. 24’ x 100’ and 24’ x 60’. Public services to the ranch are Verizon telephone, Progress Energy for electric and Polk County arranges for garbage collection and this service fee is included with property taxes. Frostproof schools, hospitals and shopping Lake Wales, Avon Park & Sebring. This 476’ long dock has electric and lighting at the water’s edge. There is a walkway leading from the lodge/BBQ building area to the dock. There is a separate electric meter for this area of the ranch operations. There are 4 stocked fish ponds in this recreation area and also an ideal spot for a helicopter landing pad or possibly maintaining a float plane. RUSTIC HUNTING LODGE: Electric, TV, telephone, Air Condi- tioned. Sleeps 13 + couch. Large enclosed dining room across the front with a small kitchen. 1864 sq. ft. under roof. This is used for ranch family guests, hunting or fishing groups or just per- sons who want to relax. This building has its own septic tank and is intentionally “rustic” in appear- ance. BBQ HOUSE: 24’ x 48’ + 2 bathrooms and storage area. (1152 Sq. Ft.) Concrete block, recently sealed and air conditioned. Metal roof. Septic tank for this building. Currently used for family gatherings, church groups, etc. and has alternative uses. This covered area is used for skinning and cleaning game and fish. It has a “walk in” cooler and hot and cold water. One 2” well serves the improvements on this area of the property. There is a separate covered shed that accommodates 2 “swamp” buggies. This area would also adapt to short term RV camping. Typical view of an improved pasture area. Owner intentionally encourages trees and palmetto shelter for wild game and birds. The ranch typically runs about 100 head of commercial cattle without us- ing the areas utilized by the Water Buffalo and Exotics. There is no current inventory of the exotics as it keeps changing and they are wild animals! You get what is there when you buy it! This is a typical improved pasture with Oak hammock areas. These provide shade for cattle in the summer and natural habitat for wild game. The ranch has extensive fencing and cross fencing. All of the outer perimeter of the ranch is 4” “hog wire” or mesh fencing and 7-8 miles of interior 8 ft. high fencing for the exotic animals in the trophy hunting areas. Only barbed wire are the inte- rior cross fences for the cat- tle. Animals on the ranch include the commercial cattle, Water buffalo, Watusi cattle, native white tail deer abound, hogs, and the desirable Osceola turkey. Great hunting The sale will include the exotics, commercial cattle, And fishing! Water Buffalo, Watusi Cattle, etc. that are on the prop- erty at the time of sale. No inventory will be provided. EXOTIC ANIMAL DETAIL Typical game farm/Trophy animals may include: Fallow deer, Axis deer, Sika deer, Pere David deer, Red deer, Black Buck antelope, Zebu cattle. These are in addition to the native white tail deer, hogs, turkey, quail, dove, water buffalo and Watusi cattle. The exotic game and native game hunting is open to individuals or groups. Hunters may come for the day and obtain their trophy or stay for longer periods of time utilizing the lodge where they can prepare their own meals, socialize and enjoy a peaceful rest after the hunt.
Recommended publications
  • Genomic Divergence of Zebu and Taurine Cattle Identified Through High-Density SNP Genotyping
    Porto-Neto et al. BMC Genomics 2013, 14:876 http://www.biomedcentral.com/1471-2164/14/876 RESEARCH ARTICLE Open Access Genomic divergence of zebu and taurine cattle identified through high-density SNP genotyping Laercio R Porto-Neto1,2,6*, Tad S Sonstegard3*, George E Liu3, Derek M Bickhart3, Marcos VB Da Silva5, Marco A Machado5, Yuri T Utsunomiya4, Jose F Garcia4, Cedric Gondro2 and Curtis P Van Tassell3 Abstract Background: Natural selection has molded evolution across all taxa. At an arguable date of around 330,000 years ago there were already at least two different types of cattle that became ancestors of nearly all modern cattle, the Bos taurus taurus more adapted to temperate climates and the tropically adapted Bos taurus indicus. After domestication, human selection exponentially intensified these differences. To better understand the genetic differences between these subspecies and detect genomic regions potentially under divergent selection, animals from the International Bovine HapMap Experiment were genotyped for over 770,000 SNP across the genome and compared using smoothed FST. The taurine sample was represented by ten breeds and the contrasting zebu cohort by three breeds. Results: Each cattle group evidenced similar numbers of polymorphic markers well distributed across the genome. Principal components analyses and unsupervised clustering confirmed the well-characterized main division of do- mestic cattle. The top 1% smoothed FST, potentially associated to positive selection, contained 48 genomic regions across 17 chromosomes. Nearly half of the top FST signals (n = 22) were previously detected using a lower density SNP assay. Amongst the strongest signals were the BTA7:~50 Mb and BTA14:~25 Mb; both regions harboring candi- date genes and different patterns of linkage disequilibrium that potentially represent intrinsic differences between cattle types.
    [Show full text]
  • COX BRENTON, a C I Date: COX BRENTON, a C I USDA, APHIS, Animal Care 16-MAY-2018 Title: ANIMAL CARE INSPECTOR 6021 Received By
    BCOX United States Department of Agriculture Animal and Plant Health Inspection Service Insp_id Inspection Report Customer ID: ALVIN, TX Certificate: Site: 001 Type: FOCUSED INSPECTION Date: 15-MAY-2018 2.40(b)(2) DIRECT REPEAT ATTENDING VETERINARIAN AND ADEQUATE VETERINARY CARE (DEALERS AND EXHIBITORS). ***In the petting zoo, two goats continue to have excessive hoof growth One, a large white Boer goat was observed walking abnormally as if discomforted. ***Although the attending veterinarian was made aware of the Male Pere David's Deer that had a front left hoof that appeared to be twisted approximately 90 degrees outward from the other three hooves and had a long hoof on the last report, the animal has not been assessed and a treatment pan has not been created. This male maneuvers with a limp on the affect leg. ***A female goat in the nursery area had a large severely bilaterally deformed udder. The licensee stated she had mastitis last year when she kidded and he treated her. The animal also had excessive hoof length on its rear hooves causing them to curve upward and crack. The veterinarian has still not examined this animal. Mastitis is a painful and uncomfortable condition and this animal has a malformed udder likely secondary to an inappropriately treated mastitis. ***An additional newborn fallow deer laying beside an adult fallow deer inside the rhino enclosure had a large round spot (approximately 1 1/2 to 2 inches round) on its head that was hairless and grey. ***A large male Watusi was observed tilting its head at an irregular angle.
    [Show full text]
  • Mixed-Species Exhibits with Pigs (Suidae)
    Mixed-species exhibits with Pigs (Suidae) Written by KRISZTIÁN SVÁBIK Team Leader, Toni’s Zoo, Rothenburg, Luzern, Switzerland Email: [email protected] 9th May 2021 Cover photo © Krisztián Svábik Mixed-species exhibits with Pigs (Suidae) 1 CONTENTS INTRODUCTION ........................................................................................................... 3 Use of space and enclosure furnishings ................................................................... 3 Feeding ..................................................................................................................... 3 Breeding ................................................................................................................... 4 Choice of species and individuals ............................................................................ 4 List of mixed-species exhibits involving Suids ........................................................ 5 LIST OF SPECIES COMBINATIONS – SUIDAE .......................................................... 6 Sulawesi Babirusa, Babyrousa celebensis ...............................................................7 Common Warthog, Phacochoerus africanus ......................................................... 8 Giant Forest Hog, Hylochoerus meinertzhageni ..................................................10 Bushpig, Potamochoerus larvatus ........................................................................ 11 Red River Hog, Potamochoerus porcus ...............................................................
    [Show full text]
  • Post-Translational Protein Deimination Signatures in Plasma and Plasma Evs of Reindeer (Rangifer Tarandus)
    biology Article Post-Translational Protein Deimination Signatures in Plasma and Plasma EVs of Reindeer (Rangifer tarandus) Stefania D’Alessio 1, Stefanía Thorgeirsdóttir 2, Igor Kraev 3 , Karl Skírnisson 2 and Sigrun Lange 1,* 1 Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; [email protected] 2 Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland; [email protected] (S.T.); [email protected] (K.S.) 3 Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)207-911-5000 (ext. 64832) Simple Summary: Reindeer are an important wild and domesticated species of the Arctic, Northern Europe, Siberia and North America. As reindeer have developed various strategies to adapt to extreme environments, this makes them an interesting species for studies into diversity of immune and metabolic functions in the animal kingdom. Importantly, while reindeer carry natural infections caused by viruses (including coronaviruses), bacteria and parasites, they can also act as carriers for transmitting such diseases to other animals and humans, so called zoonosis. Reindeer are also affected by chronic wasting disease, a neuronal disease caused by prions, similar to scrapie in sheep, mad cows disease in cattle and Creutzfeldt-Jakob disease in humans. The current study assessed a specific protein modification called deimination/citrullination, which can change how proteins Citation: D’Alessio, S.; function and allow them to take on different roles in health and disease processes.
    [Show full text]
  • Phenotypic Characterisation of Ukerewe and Bunda
    PHENOTYPIC CHARACTERISATION OF UKEREWE AND BUNDA TANGANYIKA SHORTHORN ZEBU CATTLE IN THE LAKE VICTORIA BASIN GODFREY LUCAS CHASAMA A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL ANIMAL PRODUCTION OF SOKOINE UNIVERSITY OF AGRICULTURE. MOROGORO, TANZANIA. ii 2013 ABSTRACT A study was carried out to characterise phenotypically the Ukerewe TSZ strain in order to know if it differs from the Bunda TSZ strain. Respondents from 46 households were interviewed on sources of income and food, number and species of livestock kept, ranking of livestock, usage of cattle, age at first calving, calving interval and lifetime number of calving. A total of 169 adult TSZ cattle were examined for coat colour pattern, and colours of coat, skin, muzzle, eyelid and hoof. Other traits that were examined are horn shape and sizes of udder, dewlap, testicle, navel-flap and prepuce. Physical body measurements namely body weight, heart girth, body length, withers height, horn length, ear length, muzzle circumference, hock circumference and tail length were taken for each cattle. The SPSS and SAS computer packages were used to analyse qualitative and quantitative data, respectively. Ukerewe TSZ cattle were observed to be significantly (p<0.05) heavier and calving earlier than Bunda TSZ cattle, whereas calving interval and lifetime number of calving revealed insignificant (p>0.05) differences between the two strains. Black colour occurred at significantly (p<0.05) higher frequency for the Ukerewe TSZ strain than for the Bunda TSZ strain. The Ukerewe TSZ strain was also found to have significantly (p<0.05) bigger heart girth and shorter horn length than the Bunda TSZ strain.
    [Show full text]
  • Hybridization of Banteng (Bos Javanicus) and Zebu (Bos Indicus) Revealed by Mitochondrial DNA, Satellite DNA, AFLP and Microsatellites
    Heredity (2003) 90, 10–16 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Hybridization of banteng (Bos javanicus) and zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites IJ Nijman1,2, M Otsen1, ELC Verkaar1, C de Ruijter1, E Hanekamp1, JW Ochieng3, S Shamshad4, JEO Rege5, O Hanotte3, MW Barwegen6, T Sulawati7 and JA Lenstra5 1Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; 2Institute of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; 3International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya; 4National Institute of Animal Biotechnology, Jerantut 27000, Pahang D.M., Malaysia; 5International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia; 6Royal Institute of Linguistics and Anthropology, Reuvensplaats 2, 2300 RA Leiden, The Netherlands; 7Animal Reproduction Laboratory, Animal Husbandry Faculty, Brawijaya University, Malang, Indonesia Hybridization between wild and domestic bovine species The Madura animals also carried mitochondrial DNA of either occurs worldwide either spontaneously or by organized zebu and banteng origin. In both populations, zebu intro- crossing. We have analysed hybridization of banteng (Bos gression was confirmed by AFLP and SFLP. Microsatellite javanicus) and zebu (Bos indicus) in south-east Asian cattle analysis of the Malaysian Bali population revealed for 12 out using mitochondrial DNA (PCR-RFLP and sequencing), of 15 loci screened, Bali-cattle-specific alleles, several of AFLP, satellite fragment length polymorphisms (SFLP or which were also found in wild banteng animals. The tools we PCR-RFLP of satellite DNA) and microsatellite genotyping.
    [Show full text]
  • The Origin of Indonesian Cattle and Conservation Genetics of the Bali Cattle Breed
    The Origin of Indonesian Cattle and Conservation Genetics of the Bali Cattle Breed K Mohamad, M Olsson, G Andersson, B Purwantara, H T A van Tol, Heriberto Rodriguez-Martinez, B Colenbrander and J A Lenstra Linköping University Post Print N.B.: When citing this work, cite the original article. This is the authors’ version of the following article: K Mohamad, M Olsson, G Andersson, B Purwantara, H T A van Tol, Heriberto Rodriguez- Martinez, B Colenbrander and J A Lenstra, The Origin of Indonesian Cattle and Conservation Genetics of the Bali Cattle Breed, 2012, Reproduction in domestic animals (1990), (47), SI, 18-20. which has been published in final form at: http://dx.doi.org/10.1111/j.1439-0531.2011.01960.x Copyright: Blackwell Publishing http://www.blackwellpublishing.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-74148 Swedish Links Indonesia Symposia 2010-2011-ChapterKM-GA-2011 The origin of Indonesian cattle and conservation genetics of the Bali cattle breed Mohamad K1,3, Olsson M2, Andersson G2, Purwantara B1, van Tol HTA3, Rodriguez-Martinez H4, Colenbrander B3, Lenstra JA3 1 Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia; 2 Dept of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; 3 Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; 4 Dept of Clinical & Experimental Medicine, University of Linköping, Linköping, Sweden. Running title: Conservation genetics of Bali cattle. Contents Both Bos indicus (zebu) and Bos javanicus (banteng) contribute to the Indonesian indigenous livestock, which is supposedly of a mixed species origin, not by direct breeding but by secondary cross breeding.
    [Show full text]
  • Livestock Water Needs in Pastoral Africa in Relation to Climate and Forage
    Livestock water needs in pastoral Africa in relation to climate and forage Table of Contents John M. King ILCA Research Report No.7 International Livestock Centre for Africa September 1 983 ILCA PUBLICATIONS The International Livestock Centre for Africa (ILCA) is an autonomous, non-profit making research and information centre with a mandate to improve livestock production throughout sub-Saharan Africa. The activities and publications of the centre are financed by the Consultative Group on International Agricultural Research (CGIAR). The CGIAR members which have funded ILCA to date are the International Development Research Centre, the International Fund for Agricultural Development, the United Nations Development Programme, the World Bank, and the governments of Australia, Belgium, Denmark, the Federal Republic of Germany, France, Iran, Ireland, Italy, the Netherlands, Nigeria, Norway, Saudi Arabia, Sweden, Switzerland, the United Kingdom and the United States of America. Responsibility for ILCA publications rests solely with the centre and with such other parties as may be cited as joint authors. Until 1982, the centre's two main series of scientific publications were Systems Studies and Monographs. These two series have now been superseded by the present series of Research Report. ORIGINAL: ENGLISH This electronic document has been scanned using optical character recognition (OCR) software and careful manual recorrection. Even if the quality of digitalisation is high, the FAO declines all responsibility for any discrepancies that may exist between the present document and its original printed version. Table of Contents Summary Key words Preface Acknowledgments 1. Introduction 2. Body water 2.1 Functions 2.2 Body water pool 2.2.1 Water storage 2.2.2 Oedema 3.
    [Show full text]
  • On the Breeds of Cattle—Historic and Current Classifications
    Diversity 2011, 3, 660-692; doi:10.3390/d3040660 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Review On the Breeds of Cattle—Historic and Current Classifications Marleen Felius 1, Peter A. Koolmees 2, Bert Theunissen 2, European Cattle Genetic Diversity Consortium † and Johannes A. Lenstra 2,* 1 Mauritsstraat 167, Rotterdam 3012 CH, The Netherlands; E-Mail: [email protected] 2 Utrecht University, Yalelaan 2, Utrecht 3584 CM, The Netherlands; E-Mails: [email protected] (P.A.K.); [email protected] (B.T.) † The following members of the European Cattle Genetic Diversity Consortium contributed to the study: Austria: R. Baumung, S. Manatrinon, BOKU University, Vienna; Belgium: G. Mommens, University of Ghent, Merelbeke; Denmark: L.-E. Holm, Aarhus University, Tjele; K.B. Withen, B.V. Pedersen, P. Gravlund, University of Copenhagen, Copenhagen; Estonia: H. Viinalass, Estonian University of Life Sciences, Tartu; Finland: J. Kantanen, I. Tapio, M.H. Li, MTT, Jokioinen; France: K. Moazami-Goudarzi, M. Gautier, Denis Laloë, INRA, Jouy-en-Josas; A. Oulmouden, H. Levéziel, INRA, Limoges; P. Taberlet, Université Joseph Fourier et CNRS, Grenoble; Germany: B. Harlizius, School of Veterinary Medicine, Hannover; H. Simianer, H. Täubert, Georg-August-Universität, Göttingen; G. Erhardt, O. Jann, C. Weimann, E.-M. Prinzenberg, Justus-Liebig Universität, Giessen; I. Medugorac, A. Medugorac, M. Förster, Ludwig-Maximilians Universität, Munich; H.M. Mix, Naturschutz International, Grünheide; C. Looft, E. Kalm, Christian-Albrechts-Universität, Kiel; Ireland: D.G. Bradley, C.J. Edwards, D.E. MacHugh, A.R. Freeman, Trinity College, Dublin; Italy: P. Ajmone Marsan, R. Negrini, Università Cattolica del S.
    [Show full text]
  • Zebu Cattle of Kenya: Uses, Performance, Farmer Preferences and Measures of Genetic Diversity
    5', J Zebu cattle of Kenya: Uses, performance, farmer preferences and measures of genetic diversity ILRI International Livestock Research Institute INTERNATIONAL L/VE5TOCK RESEARCH INSTITUTE tOTijr Kenya Agricultural Research Institute Zebu cattle of Kenya: Uses, performance, farmer preferences, measures of genetic diversity and options for improved use Animal Genetic Resources Research 1 J.E.O. Rege, A. Kahi, M. Okomo-Adhiambo, J. Mwacharo and O. Hanotte ILRI International Livestock Research Institute INTERNATIONAL LIVESTOCK RESEAXCH INSTITUTE Kenya Agricultural Research Institute Thl s One I I II II HS6H-2WA-EXK7 Authors' affiliations J.E.O. Rege, International Livestock Research Institute (ILRI), RO. Box 5689, Addis Ababa, Ethiopia A. Kahi, Department of Animal Science, Egerton University, P.O. Box 536, Njoro, Kenya M. OkomoAdhiambo, ILRI, P.O. Box 30709, Nairobi, Kenya J. Mwacharo, Kenya Agricultural Research Institute, KARI, Kiboko Research Centre, P.O. Box 5781 1, Makindu, Kenya O. Hanotte, ILRI, P.O. Box 30709, Nairobi, Kenya © 2001 ILRI (International Livestock Research Institute) All rights reserved. Parts of this docment may be reproduced without express permission for non-commercial use but with acknowledgment to ILRI. Cover photo courtesy of Clemens Wollny. ISBN 92-9146-094-X Correct citation: Rege J.E.O., Kahi A.K., OkomoAdhiambo M., Mwacharo J. and Hanotte O. 2001. Zebu cattle of Kenya: Uses, performance, farmer preferences, measures of genetic diversity and options for improved use. Animal Genetic Resources Research 1. ILRI (International Livestock Research Institute), Nairobi, Kenya. 103 pp. Table of Contents List of Tables v List of Figures vii Acknowledgements viii Foreword ix 1 Introduction 1 2 Background on African cattle 3 2.1 Origin and current classification of African cattle 3 2.2 Zebu cattle breeds of eastern Africa 4 2.2.
    [Show full text]
  • Species and Genotypes of Cryptosporidium RON FAYER USDA AGRICULTURAL RESEARCH SERVICE WHAT IS a SPECIES?
    Species and Genotypes of Cryptosporidium RON FAYER USDA AGRICULTURAL RESEARCH SERVICE WHAT IS A SPECIES? It is a basic unit of biological classification and a taxonomic rank. A species is often defined as a group of organisms capable of interbreeding and producing fertile offspring. More precise or differing measures can be used, such as similarity of DNA, morphology or ecological niche. Species that are believed to have the same ancestors are grouped together, as a genus. All species have two part name (a "binomial name"). The first part of a binomial name is the genus of the species. The second part is the specific name. For example, Boa constrictor which is commonly called by its binomial name, and is one of four species of the Boa genus. The first part of the name is capitalized, and the second part has a lower case. The two part name is written in italics. What are the sources of Cryptosporidium? FIELD MOUSE WOODCHUCK VOLE SKUNK BEAVER More than 150 species of animals infected with Cryptosporidium spp. Order Artiodactyla Addax nasomaculatus (Addax) Aepyceros melampus (Impala) Cervus elaphus (Red deer/elk/wapiti) Ammotragus lervia (Barbary sheep) Cervus eldi (Eld's deer) Alces alces (moose) Cervus nippon (Sika deer) Antidorcas marsupialis (Springbok) Cervus unicolor (Sambar) Antilocapra americana (Pronghorn) Connochaetes gnou (Wildebeest) Antilope cervicapra (Blackbuck) Connochaetes taurinus (Blue-eared gnu) Axis axis (Axis deer) Dama dama (Fallow deer) Bison bison (American bison) Elaphurus davidianus (Pere David’s deer) Bison bonasus
    [Show full text]
  • Phylogenetic Relationships of Romanian Cattle to Other Cattle Populations Determined by Using Mitochondrial DNA D-Loop Sequence Variation
    Romanian Biotechnological Letters Vol. 15, No.3, 2010 Copyright © 2010 University of Bucharest Printed in Romania. All rights reserved ORIGINAL PAPER Phylogenetic relationships of Romanian cattle to other cattle populations determined by using mitochondrial DNA D-Loop sequence variation Received for publication, January 9, 2009 Accepted, June 15, 2010 THIEU PHAN XUAN1, S. E. GEORGESCU1, MARIA ADINA MANEA1, ANCA OANA HERMENEAN2, MARIETA COSTACHE1 1University of Bucharest, Molecular Biology Center, 91-95 Splaiul Independentei, 5 Bucharest, Romania, email: [email protected]; [email protected]; 2Vasile Goldis Western University of Arad, 94-96 Revolution Avenue, Arad, Romania Abstract Phylogenetic relationships of Romanian cattle breeds to various other cattle breeds including Bos taurus, Bos indicus (Indian zebu), Bison bison and Bison bonasus were assessed using mtDNA D- loop sequences. Kimura's two-parameter distances were calculated and a cluster analysis using the Neighbour-joining method was performed to obtain phylogenetic trees among sequences determined and then published in GenBank. The NJ tree showed that Bison bison, Bison bonasus and Bos indicus, respectively, are clearly separate from other cattle breeds. In addition, there are two main distinct genetic lineages: taurine (Bos taurus) and zebu (Bos indicus), that was fully supported by 100% of 1000 bootstrap iterations. The result also indicates that the geographic cattle sequences of taurine lineage are mixed. The conclusion we have reached indicates that the sequences are closely related or have recently diverged. Keywords: Cattle; Mitochondrial DNA; D-Loop; Phylogenetic analysis Introduction The cattle species, humpless taurine (Bos taurus) and zebu (Bos indicus) are believed to be originated from the aurochs, Bos primigenius through a domestication event that occurred 8,000–10,000 years before present (B.P.) (Epstein and Mason 1984; MacHugh et al.
    [Show full text]