Natural Bridge

Total Page:16

File Type:pdf, Size:1020Kb

Natural Bridge October 24, 2017: The USDA cited Natural Natural Bridge Bridge Zoo for the repeat violation of failing to have attendants or sufficient distance Zoo and/or barriers present during interactions (Karl Mogensen) between the public and animals. The public 5784 S. Lee Hwy., Natural Bridge, VA 24578 was permitted to walk directly up to several enclosures, including a temporary pen with two young llamas. There were no barriers present to discourage public contact, and Natural Bridge Zoo has failed to meet there were no attendants present. The minimum federal standards for the care fencing had spaces large enough for guests of animals used in exhibition as to reach through and touch the animals. established by the Animal Welfare Act (AWA). Among other issues, the U.S. June 20, 2017: The USDA cited Natural Department of Agriculture (USDA) has Bridge Zoo for the repeat violation of failing cited Natural Bridge Zoo for failing to to provide animals with adequate veterinary provide animals with veterinary care, care. Inspectors observed that a female failing to keep food free from the risk of camel had a large amount of fluid soaking contamination, failing to provide clean the hair on the back of her rear legs down drinking water, failing to maintain toward the feet. A thin trail of the fluid was enclosures, failing to provide animals also noted on the right front leg and was red with dry enclosures, failing to provide in color. The USDA also cited Natural dry bedding, failing to clean enclosures, Bridge Zoo for the repeat violation of failing and failing to provide animals with food to have attendants or sufficient distance and water. In 2015, the Virginia and/or barriers present during interactions Department of Game and Inland between the public and animals. An official Fisheries suspended Natural Bridge with the Animal and Plant Health Inspection Zoo’s permit for nearly two months. Service observed that an elephant was Owner Karl Mogensen has been without a handler when the public was assessed more than $20,000 in civil present. The barrier between her and the penalties by the USDA and had his public consisted of either a single-strand exhibitor license suspended on two electric wire fence or areas of livestock separate occasions for 30 days each. panel that were not structurally strong Natural Bridge Zoo regularly advertises enough to contain an adult elephant should animals in the Animal Finders’ Guide, a she choose to get out. In addition, publication in which exotic-animal temporary pens were set up to allow public auctioneers, trophy-hunting facilities, interaction with a young camel and goats. breeders, dealers, and members of the There were no barriers or signs present to public advertise a variety of exotic and discourage public contact, and there were wild animals for sale. Contact PETA for no attendants present. The fences had documentation. spaces large enough for guests to reach through and touch the animals. September 11, 2018: A week after Natural Bridge Zoo notified the Virginia Department The USDA also cited the facility for the of Game and Inland Fisheries that a wattled repeat violations of failing to maintain crane had escaped, the animal was found enclosures in good repair and failing to dead, apparently from hitting a power line. maintain a functional primary enclosure fence. The roof of the building housing Natural Bridge Zoo lemurs had areas of deterioration and a 2- observed in August 2016. There was no foot section that appeared to be sagging. documentation to indicate that this nyala Water was leaking into the building through ever received any veterinary evaluation. the damaged areas. Several areas of the primary enclosure fencing for multiple The USDA also cited Natural Bridge Zoo for animals had trees and vines growing the repeat violations of failing to maintain through, making them impossible to inspect. enclosures in good repair and failing to The roadside zoo was also cited for failing maintain a functional primary enclosure to provide two gibbons with an enclosure of fence. The roof of the building housing sufficient height to allow for normal lemurs had areas of deterioration and a 2- movement such as swinging, failing to have foot section that appeared to be sagging. a safe and effective program to control Water was leaking into the building through rodent populations around numerous the damaged areas. Several areas of the enclosures, and failing to have a perimeter primary enclosure fencing for multiple fence for some portions of the facility. animals had trees and vines growing Several primary enclosures backed up to a through, making them impossible to inspect. country road with no secondary perimeter The facility was also cited for failing to have fence between the animals and the road. sufficient ventilation in a building housing Another section had an area where the lemurs, birds, and rodents. Inspectors noted public could climb up a short rise to get that the building had a strong odor of directly up to the giraffe enclosure fencing, ammonia, and the amount of ventilation and a third area of the facility, which held wasn’t sufficient to remove the odor. the camel and kudu enclosures, adjoined the property of a neighbor, whose dog was August 9, 2016: The USDA cited Natural seen running along the fence adjacent to Bridge Zoo for failing to provide animals the camels. with adequate veterinary care. The attending veterinarian had recommended February 22, 2017: The USDA cited “diagnostics and [a] physical exam” Natural Bridge Zoo for the repeat violation because of a spider monkey’s enlarged of failing to provide animals with adequate abdomen, but the veterinarian wasn’t veterinary care. One male giraffe had an allowed to complete the recommended approximately 4-inch crack in his left rear procedures. Another spider monkey was hoof, and there was no documentation to euthanized after, according to the licensee, indicate that this issue had been observed “going downhill for quite some time.” But by staff. Two female giraffes had there were no veterinary records prior to the excessively overgrown hooves on both front day when the animal was euthanized. At feet. A female nyala was seen standing with least four goats had multiple areas of hair a hunched posture, and her coat wasn’t loss, and a white sheep and a goat had smooth like those of the other nyalas in the visible areas of swelling. The facility was area. The front of her body didn’t coordinate also cited for failing to have a handler with with the rear when walking, resulting in a the elephant at all times when the facility swaying motion. When she attempted to run was open, failing to have an attendant down a slope, her gait was uncoordinated present in the walk-through area, and failing and her front legs crossed each other as to have an effective barrier around many she moved. The instability in her gait enclosures in the walk-through area. caused her to wobble in an attempt to regain her balance without falling over. The The USDA also cited Natural Bridge Zoo for licensee stated that the condition was first failing to have a primate enhancement plan Natural Bridge Zoo that addressed special considerations for ventilation in the building holding five primates showing potential signs of mandrills. Temperatures were in the 90s in psychological distress, failing to maintain the building, and two of the animals didn’t the flooring in the enclosure holding African have access to the outdoors. crested porcupines, failing to have a perimeter fence around several enclosures, The facility was also cited for failing to feed and failing to maintain the perimeter fence tiger cubs properly. Four cubs, who were in other areas. It was covered with born on April 9, 2015, and removed from overgrown vegetation, making it impossible their mother within one hour of birth, had to inspect. been fed a diet that was inappropriate for their age and species, and the one cub still December 15, 2015: The USDA cited remaining at the facility had a rough hair Natural Bridge Zoo for failing to provide coat, a prominent pelvis, and a pot-bellied animals with adequate veterinary care. appearance. Natural Bridge Zoo was also Several had excessive hair loss, and a cited for failing to maintain two enclosures camel had an abnormal gait. The facility used to hold primates (they were severely was also cited for failing to contain a red rusted), failing to have appropriate primary ruffed lemur named Wally, who was able to enclosure fencing for the pigs, and failing to get out of the enclosure and into the “keeper maintain the enclosure holding muntjacs, common area”; failing to have a primate which was overgrown with grass and enhancement plan that addressed special weeds. considerations for primates showing potential signs of psychological distress; April 2, 2015: The Virginia Department of and failing to clean the floor of the walk-in Game and Inland Fisheries suspended freezer. It was dirty, ice had accumulated on Natural Bridge Zoo’s permit to exhibit wild it, and several areas contained frozen blood animals after the second USDA inspection that had dripped onto it. Natural Bridge Zoo of the year found 44 violations of the AWA. was also cited for failing to maintain the (See March 10, 2015.) perimeter fence. It was covered with overgrown vegetation, making it impossible March 10, 2015: The USDA cited Natural to inspect. Bridge Zoo for failing to provide animals with veterinary care. A goat had multiple May 19, 2015: The USDA cited Natural areas of hair loss and appeared intensely Bridge Zoo for failing to provide animals itchy.
Recommended publications
  • Genomic Divergence of Zebu and Taurine Cattle Identified Through High-Density SNP Genotyping
    Porto-Neto et al. BMC Genomics 2013, 14:876 http://www.biomedcentral.com/1471-2164/14/876 RESEARCH ARTICLE Open Access Genomic divergence of zebu and taurine cattle identified through high-density SNP genotyping Laercio R Porto-Neto1,2,6*, Tad S Sonstegard3*, George E Liu3, Derek M Bickhart3, Marcos VB Da Silva5, Marco A Machado5, Yuri T Utsunomiya4, Jose F Garcia4, Cedric Gondro2 and Curtis P Van Tassell3 Abstract Background: Natural selection has molded evolution across all taxa. At an arguable date of around 330,000 years ago there were already at least two different types of cattle that became ancestors of nearly all modern cattle, the Bos taurus taurus more adapted to temperate climates and the tropically adapted Bos taurus indicus. After domestication, human selection exponentially intensified these differences. To better understand the genetic differences between these subspecies and detect genomic regions potentially under divergent selection, animals from the International Bovine HapMap Experiment were genotyped for over 770,000 SNP across the genome and compared using smoothed FST. The taurine sample was represented by ten breeds and the contrasting zebu cohort by three breeds. Results: Each cattle group evidenced similar numbers of polymorphic markers well distributed across the genome. Principal components analyses and unsupervised clustering confirmed the well-characterized main division of do- mestic cattle. The top 1% smoothed FST, potentially associated to positive selection, contained 48 genomic regions across 17 chromosomes. Nearly half of the top FST signals (n = 22) were previously detected using a lower density SNP assay. Amongst the strongest signals were the BTA7:~50 Mb and BTA14:~25 Mb; both regions harboring candi- date genes and different patterns of linkage disequilibrium that potentially represent intrinsic differences between cattle types.
    [Show full text]
  • COX BRENTON, a C I Date: COX BRENTON, a C I USDA, APHIS, Animal Care 16-MAY-2018 Title: ANIMAL CARE INSPECTOR 6021 Received By
    BCOX United States Department of Agriculture Animal and Plant Health Inspection Service Insp_id Inspection Report Customer ID: ALVIN, TX Certificate: Site: 001 Type: FOCUSED INSPECTION Date: 15-MAY-2018 2.40(b)(2) DIRECT REPEAT ATTENDING VETERINARIAN AND ADEQUATE VETERINARY CARE (DEALERS AND EXHIBITORS). ***In the petting zoo, two goats continue to have excessive hoof growth One, a large white Boer goat was observed walking abnormally as if discomforted. ***Although the attending veterinarian was made aware of the Male Pere David's Deer that had a front left hoof that appeared to be twisted approximately 90 degrees outward from the other three hooves and had a long hoof on the last report, the animal has not been assessed and a treatment pan has not been created. This male maneuvers with a limp on the affect leg. ***A female goat in the nursery area had a large severely bilaterally deformed udder. The licensee stated she had mastitis last year when she kidded and he treated her. The animal also had excessive hoof length on its rear hooves causing them to curve upward and crack. The veterinarian has still not examined this animal. Mastitis is a painful and uncomfortable condition and this animal has a malformed udder likely secondary to an inappropriately treated mastitis. ***An additional newborn fallow deer laying beside an adult fallow deer inside the rhino enclosure had a large round spot (approximately 1 1/2 to 2 inches round) on its head that was hairless and grey. ***A large male Watusi was observed tilting its head at an irregular angle.
    [Show full text]
  • Mixed-Species Exhibits with Pigs (Suidae)
    Mixed-species exhibits with Pigs (Suidae) Written by KRISZTIÁN SVÁBIK Team Leader, Toni’s Zoo, Rothenburg, Luzern, Switzerland Email: [email protected] 9th May 2021 Cover photo © Krisztián Svábik Mixed-species exhibits with Pigs (Suidae) 1 CONTENTS INTRODUCTION ........................................................................................................... 3 Use of space and enclosure furnishings ................................................................... 3 Feeding ..................................................................................................................... 3 Breeding ................................................................................................................... 4 Choice of species and individuals ............................................................................ 4 List of mixed-species exhibits involving Suids ........................................................ 5 LIST OF SPECIES COMBINATIONS – SUIDAE .......................................................... 6 Sulawesi Babirusa, Babyrousa celebensis ...............................................................7 Common Warthog, Phacochoerus africanus ......................................................... 8 Giant Forest Hog, Hylochoerus meinertzhageni ..................................................10 Bushpig, Potamochoerus larvatus ........................................................................ 11 Red River Hog, Potamochoerus porcus ...............................................................
    [Show full text]
  • Post-Translational Protein Deimination Signatures in Plasma and Plasma Evs of Reindeer (Rangifer Tarandus)
    biology Article Post-Translational Protein Deimination Signatures in Plasma and Plasma EVs of Reindeer (Rangifer tarandus) Stefania D’Alessio 1, Stefanía Thorgeirsdóttir 2, Igor Kraev 3 , Karl Skírnisson 2 and Sigrun Lange 1,* 1 Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; [email protected] 2 Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland; [email protected] (S.T.); [email protected] (K.S.) 3 Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)207-911-5000 (ext. 64832) Simple Summary: Reindeer are an important wild and domesticated species of the Arctic, Northern Europe, Siberia and North America. As reindeer have developed various strategies to adapt to extreme environments, this makes them an interesting species for studies into diversity of immune and metabolic functions in the animal kingdom. Importantly, while reindeer carry natural infections caused by viruses (including coronaviruses), bacteria and parasites, they can also act as carriers for transmitting such diseases to other animals and humans, so called zoonosis. Reindeer are also affected by chronic wasting disease, a neuronal disease caused by prions, similar to scrapie in sheep, mad cows disease in cattle and Creutzfeldt-Jakob disease in humans. The current study assessed a specific protein modification called deimination/citrullination, which can change how proteins Citation: D’Alessio, S.; function and allow them to take on different roles in health and disease processes.
    [Show full text]
  • Phenotypic Characterisation of Ukerewe and Bunda
    PHENOTYPIC CHARACTERISATION OF UKEREWE AND BUNDA TANGANYIKA SHORTHORN ZEBU CATTLE IN THE LAKE VICTORIA BASIN GODFREY LUCAS CHASAMA A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL ANIMAL PRODUCTION OF SOKOINE UNIVERSITY OF AGRICULTURE. MOROGORO, TANZANIA. ii 2013 ABSTRACT A study was carried out to characterise phenotypically the Ukerewe TSZ strain in order to know if it differs from the Bunda TSZ strain. Respondents from 46 households were interviewed on sources of income and food, number and species of livestock kept, ranking of livestock, usage of cattle, age at first calving, calving interval and lifetime number of calving. A total of 169 adult TSZ cattle were examined for coat colour pattern, and colours of coat, skin, muzzle, eyelid and hoof. Other traits that were examined are horn shape and sizes of udder, dewlap, testicle, navel-flap and prepuce. Physical body measurements namely body weight, heart girth, body length, withers height, horn length, ear length, muzzle circumference, hock circumference and tail length were taken for each cattle. The SPSS and SAS computer packages were used to analyse qualitative and quantitative data, respectively. Ukerewe TSZ cattle were observed to be significantly (p<0.05) heavier and calving earlier than Bunda TSZ cattle, whereas calving interval and lifetime number of calving revealed insignificant (p>0.05) differences between the two strains. Black colour occurred at significantly (p<0.05) higher frequency for the Ukerewe TSZ strain than for the Bunda TSZ strain. The Ukerewe TSZ strain was also found to have significantly (p<0.05) bigger heart girth and shorter horn length than the Bunda TSZ strain.
    [Show full text]
  • Hybridization of Banteng (Bos Javanicus) and Zebu (Bos Indicus) Revealed by Mitochondrial DNA, Satellite DNA, AFLP and Microsatellites
    Heredity (2003) 90, 10–16 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Hybridization of banteng (Bos javanicus) and zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites IJ Nijman1,2, M Otsen1, ELC Verkaar1, C de Ruijter1, E Hanekamp1, JW Ochieng3, S Shamshad4, JEO Rege5, O Hanotte3, MW Barwegen6, T Sulawati7 and JA Lenstra5 1Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; 2Institute of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; 3International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya; 4National Institute of Animal Biotechnology, Jerantut 27000, Pahang D.M., Malaysia; 5International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia; 6Royal Institute of Linguistics and Anthropology, Reuvensplaats 2, 2300 RA Leiden, The Netherlands; 7Animal Reproduction Laboratory, Animal Husbandry Faculty, Brawijaya University, Malang, Indonesia Hybridization between wild and domestic bovine species The Madura animals also carried mitochondrial DNA of either occurs worldwide either spontaneously or by organized zebu and banteng origin. In both populations, zebu intro- crossing. We have analysed hybridization of banteng (Bos gression was confirmed by AFLP and SFLP. Microsatellite javanicus) and zebu (Bos indicus) in south-east Asian cattle analysis of the Malaysian Bali population revealed for 12 out using mitochondrial DNA (PCR-RFLP and sequencing), of 15 loci screened, Bali-cattle-specific alleles, several of AFLP, satellite fragment length polymorphisms (SFLP or which were also found in wild banteng animals. The tools we PCR-RFLP of satellite DNA) and microsatellite genotyping.
    [Show full text]
  • The Origin of Indonesian Cattle and Conservation Genetics of the Bali Cattle Breed
    The Origin of Indonesian Cattle and Conservation Genetics of the Bali Cattle Breed K Mohamad, M Olsson, G Andersson, B Purwantara, H T A van Tol, Heriberto Rodriguez-Martinez, B Colenbrander and J A Lenstra Linköping University Post Print N.B.: When citing this work, cite the original article. This is the authors’ version of the following article: K Mohamad, M Olsson, G Andersson, B Purwantara, H T A van Tol, Heriberto Rodriguez- Martinez, B Colenbrander and J A Lenstra, The Origin of Indonesian Cattle and Conservation Genetics of the Bali Cattle Breed, 2012, Reproduction in domestic animals (1990), (47), SI, 18-20. which has been published in final form at: http://dx.doi.org/10.1111/j.1439-0531.2011.01960.x Copyright: Blackwell Publishing http://www.blackwellpublishing.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-74148 Swedish Links Indonesia Symposia 2010-2011-ChapterKM-GA-2011 The origin of Indonesian cattle and conservation genetics of the Bali cattle breed Mohamad K1,3, Olsson M2, Andersson G2, Purwantara B1, van Tol HTA3, Rodriguez-Martinez H4, Colenbrander B3, Lenstra JA3 1 Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia; 2 Dept of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; 3 Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; 4 Dept of Clinical & Experimental Medicine, University of Linköping, Linköping, Sweden. Running title: Conservation genetics of Bali cattle. Contents Both Bos indicus (zebu) and Bos javanicus (banteng) contribute to the Indonesian indigenous livestock, which is supposedly of a mixed species origin, not by direct breeding but by secondary cross breeding.
    [Show full text]
  • Livestock Water Needs in Pastoral Africa in Relation to Climate and Forage
    Livestock water needs in pastoral Africa in relation to climate and forage Table of Contents John M. King ILCA Research Report No.7 International Livestock Centre for Africa September 1 983 ILCA PUBLICATIONS The International Livestock Centre for Africa (ILCA) is an autonomous, non-profit making research and information centre with a mandate to improve livestock production throughout sub-Saharan Africa. The activities and publications of the centre are financed by the Consultative Group on International Agricultural Research (CGIAR). The CGIAR members which have funded ILCA to date are the International Development Research Centre, the International Fund for Agricultural Development, the United Nations Development Programme, the World Bank, and the governments of Australia, Belgium, Denmark, the Federal Republic of Germany, France, Iran, Ireland, Italy, the Netherlands, Nigeria, Norway, Saudi Arabia, Sweden, Switzerland, the United Kingdom and the United States of America. Responsibility for ILCA publications rests solely with the centre and with such other parties as may be cited as joint authors. Until 1982, the centre's two main series of scientific publications were Systems Studies and Monographs. These two series have now been superseded by the present series of Research Report. ORIGINAL: ENGLISH This electronic document has been scanned using optical character recognition (OCR) software and careful manual recorrection. Even if the quality of digitalisation is high, the FAO declines all responsibility for any discrepancies that may exist between the present document and its original printed version. Table of Contents Summary Key words Preface Acknowledgments 1. Introduction 2. Body water 2.1 Functions 2.2 Body water pool 2.2.1 Water storage 2.2.2 Oedema 3.
    [Show full text]
  • On the Breeds of Cattle—Historic and Current Classifications
    Diversity 2011, 3, 660-692; doi:10.3390/d3040660 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Review On the Breeds of Cattle—Historic and Current Classifications Marleen Felius 1, Peter A. Koolmees 2, Bert Theunissen 2, European Cattle Genetic Diversity Consortium † and Johannes A. Lenstra 2,* 1 Mauritsstraat 167, Rotterdam 3012 CH, The Netherlands; E-Mail: [email protected] 2 Utrecht University, Yalelaan 2, Utrecht 3584 CM, The Netherlands; E-Mails: [email protected] (P.A.K.); [email protected] (B.T.) † The following members of the European Cattle Genetic Diversity Consortium contributed to the study: Austria: R. Baumung, S. Manatrinon, BOKU University, Vienna; Belgium: G. Mommens, University of Ghent, Merelbeke; Denmark: L.-E. Holm, Aarhus University, Tjele; K.B. Withen, B.V. Pedersen, P. Gravlund, University of Copenhagen, Copenhagen; Estonia: H. Viinalass, Estonian University of Life Sciences, Tartu; Finland: J. Kantanen, I. Tapio, M.H. Li, MTT, Jokioinen; France: K. Moazami-Goudarzi, M. Gautier, Denis Laloë, INRA, Jouy-en-Josas; A. Oulmouden, H. Levéziel, INRA, Limoges; P. Taberlet, Université Joseph Fourier et CNRS, Grenoble; Germany: B. Harlizius, School of Veterinary Medicine, Hannover; H. Simianer, H. Täubert, Georg-August-Universität, Göttingen; G. Erhardt, O. Jann, C. Weimann, E.-M. Prinzenberg, Justus-Liebig Universität, Giessen; I. Medugorac, A. Medugorac, M. Förster, Ludwig-Maximilians Universität, Munich; H.M. Mix, Naturschutz International, Grünheide; C. Looft, E. Kalm, Christian-Albrechts-Universität, Kiel; Ireland: D.G. Bradley, C.J. Edwards, D.E. MacHugh, A.R. Freeman, Trinity College, Dublin; Italy: P. Ajmone Marsan, R. Negrini, Università Cattolica del S.
    [Show full text]
  • Zebu Cattle of Kenya: Uses, Performance, Farmer Preferences and Measures of Genetic Diversity
    5', J Zebu cattle of Kenya: Uses, performance, farmer preferences and measures of genetic diversity ILRI International Livestock Research Institute INTERNATIONAL L/VE5TOCK RESEARCH INSTITUTE tOTijr Kenya Agricultural Research Institute Zebu cattle of Kenya: Uses, performance, farmer preferences, measures of genetic diversity and options for improved use Animal Genetic Resources Research 1 J.E.O. Rege, A. Kahi, M. Okomo-Adhiambo, J. Mwacharo and O. Hanotte ILRI International Livestock Research Institute INTERNATIONAL LIVESTOCK RESEAXCH INSTITUTE Kenya Agricultural Research Institute Thl s One I I II II HS6H-2WA-EXK7 Authors' affiliations J.E.O. Rege, International Livestock Research Institute (ILRI), RO. Box 5689, Addis Ababa, Ethiopia A. Kahi, Department of Animal Science, Egerton University, P.O. Box 536, Njoro, Kenya M. OkomoAdhiambo, ILRI, P.O. Box 30709, Nairobi, Kenya J. Mwacharo, Kenya Agricultural Research Institute, KARI, Kiboko Research Centre, P.O. Box 5781 1, Makindu, Kenya O. Hanotte, ILRI, P.O. Box 30709, Nairobi, Kenya © 2001 ILRI (International Livestock Research Institute) All rights reserved. Parts of this docment may be reproduced without express permission for non-commercial use but with acknowledgment to ILRI. Cover photo courtesy of Clemens Wollny. ISBN 92-9146-094-X Correct citation: Rege J.E.O., Kahi A.K., OkomoAdhiambo M., Mwacharo J. and Hanotte O. 2001. Zebu cattle of Kenya: Uses, performance, farmer preferences, measures of genetic diversity and options for improved use. Animal Genetic Resources Research 1. ILRI (International Livestock Research Institute), Nairobi, Kenya. 103 pp. Table of Contents List of Tables v List of Figures vii Acknowledgements viii Foreword ix 1 Introduction 1 2 Background on African cattle 3 2.1 Origin and current classification of African cattle 3 2.2 Zebu cattle breeds of eastern Africa 4 2.2.
    [Show full text]
  • Species and Genotypes of Cryptosporidium RON FAYER USDA AGRICULTURAL RESEARCH SERVICE WHAT IS a SPECIES?
    Species and Genotypes of Cryptosporidium RON FAYER USDA AGRICULTURAL RESEARCH SERVICE WHAT IS A SPECIES? It is a basic unit of biological classification and a taxonomic rank. A species is often defined as a group of organisms capable of interbreeding and producing fertile offspring. More precise or differing measures can be used, such as similarity of DNA, morphology or ecological niche. Species that are believed to have the same ancestors are grouped together, as a genus. All species have two part name (a "binomial name"). The first part of a binomial name is the genus of the species. The second part is the specific name. For example, Boa constrictor which is commonly called by its binomial name, and is one of four species of the Boa genus. The first part of the name is capitalized, and the second part has a lower case. The two part name is written in italics. What are the sources of Cryptosporidium? FIELD MOUSE WOODCHUCK VOLE SKUNK BEAVER More than 150 species of animals infected with Cryptosporidium spp. Order Artiodactyla Addax nasomaculatus (Addax) Aepyceros melampus (Impala) Cervus elaphus (Red deer/elk/wapiti) Ammotragus lervia (Barbary sheep) Cervus eldi (Eld's deer) Alces alces (moose) Cervus nippon (Sika deer) Antidorcas marsupialis (Springbok) Cervus unicolor (Sambar) Antilocapra americana (Pronghorn) Connochaetes gnou (Wildebeest) Antilope cervicapra (Blackbuck) Connochaetes taurinus (Blue-eared gnu) Axis axis (Axis deer) Dama dama (Fallow deer) Bison bison (American bison) Elaphurus davidianus (Pere David’s deer) Bison bonasus
    [Show full text]
  • Phylogenetic Relationships of Romanian Cattle to Other Cattle Populations Determined by Using Mitochondrial DNA D-Loop Sequence Variation
    Romanian Biotechnological Letters Vol. 15, No.3, 2010 Copyright © 2010 University of Bucharest Printed in Romania. All rights reserved ORIGINAL PAPER Phylogenetic relationships of Romanian cattle to other cattle populations determined by using mitochondrial DNA D-Loop sequence variation Received for publication, January 9, 2009 Accepted, June 15, 2010 THIEU PHAN XUAN1, S. E. GEORGESCU1, MARIA ADINA MANEA1, ANCA OANA HERMENEAN2, MARIETA COSTACHE1 1University of Bucharest, Molecular Biology Center, 91-95 Splaiul Independentei, 5 Bucharest, Romania, email: [email protected]; [email protected]; 2Vasile Goldis Western University of Arad, 94-96 Revolution Avenue, Arad, Romania Abstract Phylogenetic relationships of Romanian cattle breeds to various other cattle breeds including Bos taurus, Bos indicus (Indian zebu), Bison bison and Bison bonasus were assessed using mtDNA D- loop sequences. Kimura's two-parameter distances were calculated and a cluster analysis using the Neighbour-joining method was performed to obtain phylogenetic trees among sequences determined and then published in GenBank. The NJ tree showed that Bison bison, Bison bonasus and Bos indicus, respectively, are clearly separate from other cattle breeds. In addition, there are two main distinct genetic lineages: taurine (Bos taurus) and zebu (Bos indicus), that was fully supported by 100% of 1000 bootstrap iterations. The result also indicates that the geographic cattle sequences of taurine lineage are mixed. The conclusion we have reached indicates that the sequences are closely related or have recently diverged. Keywords: Cattle; Mitochondrial DNA; D-Loop; Phylogenetic analysis Introduction The cattle species, humpless taurine (Bos taurus) and zebu (Bos indicus) are believed to be originated from the aurochs, Bos primigenius through a domestication event that occurred 8,000–10,000 years before present (B.P.) (Epstein and Mason 1984; MacHugh et al.
    [Show full text]