Ojos Del Salado Expedition Trip Notes 2022
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mitre Peak Guided Ascent Trip Notes 2021/22
MITRE PEAK / RAHOTU 1,683M / 5,522FT 2021/22 TRIP NOTES MITRE PEAK TRIP NOTES 2021/22 TRIP DETAILS Dates: Available on demand January to April Duration: 5 days Departure: ex Wanaka, New Zealand Price: NZ$6,300 per person Mitre Peak is an exhilarating climb from sea level. Photo: Lydia Bradey Situated above the languid waters of Milford Sound, Mitre Peak is one of New Zealand’s most iconic mountains. We climb the South East Ridge, a razor-sharp ridge that appears like a giant sleeping dragon’s tail as we make our way along to the pointed summit apex. And finally, the summit; as spectacular a view as one THE ROUTE will ever be fortunate enough to see. The sun reflects off the Tasman Sea directly to the west while the The programme starts with ascents around the Homer spectacular granite and glaciated peaks of the Darran Tunnel region where we warm up with a plethora of Mountains stimulate the visual senses when we gaze to good climbing options to choose from. The variety the east. extends from classic alpine ascents to an ascent of one of the established ‘trad’ rock routes through to sport After we spend time soaking up the views we begin climbing routes so there’s something for everyone. the descent along the route by which we have come, content with a well-deserved summit. When the weather allows, we drop down to Milford Sound to make our attempt on Mitre Peak. If the ocean is smooth, we may paddle kayaks across the bay or PREREQUISITE SKILLS alternatively, we take a short helicopter flight to the start of the climb. -
Clarkia Tenella Is Tetraploid, Having N 34 (Hiorth, 1941; Raven and Lewis, 1959) and 2Fl32 (Moore and Lewis, I965b)
VARIATION AND EVOLUTION IN SOUTH AMERICAN CLARKIA D. M. MOORE and HARLAN LEWiS Botany Department, University of Leicester and Botany Department, University of California, Los Angeles Received5.V.65 1.INTRODUCTION THEgenus Clarkia (Onagracee), currently considered to contain 36 species, is restricted to the western parts of North and South America (fig. i). The 35 North American species are distributed from Baja California to British Columbia (300N.to 48° N.), most of them occurring in California. The South American populations, which have a smaller though still considerable latitudinal spread (290 30' S. to 42030'S.), comprise a single variable species, Clarkia tenella (Cay.) H. and M. Lewis (Lewis and Lewis, within which four sub.. species have been recognised (Moore and Lewis, i 965b). Clarkia tenella is tetraploid, having n 34 (Hiorth, 1941; Raven and Lewis, 1959) and 2fl32 (Moore and Lewis, i965b). It is placed in section Godetia, together with seven North American species, and shows its closest affinities with the only tetraploid among these, C. davyi (Jeps.) H. and M. Lewis. A study of artificial hybrids between C. tenella and C. davji, together with pakeo-ecological evidence, led Raven and Lewis (i) to hypothesise that the two species were derived from a common tetraploid ancestor which had traversed the tropics by long-distance dispersal during or since the Late-Tertiary and given rise to the populations now comprising C. tenella. Detailed study of the variation within Clarkia tenella was made possible by a field trip to Chile and Argentina during 1960-61 and by subsequent experimental work at Leicester and Los Angeles. -
America's Highest Peak Now Measures 6962 Metres!
America’s highest peak now measures 6962 metres! At 6,962 Metres on Aconcagua in January 2001: Climber Gianpetro Verza has just mounted the terre- strial reflector signal to enable the classical terrestrial survey with tacheometres from the valley, and he has fixed on the top the Leica GPS 530 antenna. This configura- The highest mountain of The 7242 kilometre-long mountains are “growing” tion allowed at the same time mea- the Americas is only 38.17 Andes are the longest or "shrinking". From now on, surement in both technologies with meters short of seven mountain chain in the world. however, with technology high accuracy. Verza has put the thousand. The indications The Swiss Matthias and systems providing a Leica GPS530 terminal, the same on maps of the precise Zurbriggen was the first reproducible accuracy of a equipment as used on Kilimanjaro, elevation of America’s man to conquer Aconcagua few millimetres, it will be before him on the summit. highest peak, Mt Aconca- on 14 January 1897. In 2001 possible to precisely measu- gua, will have to be correc- it was with the most modern re the summits and record re-surveyed using the same ted and increased by two GPS measurement techno- their vertical and horizontal GPS equipment from Leica metres. This is the result of logy from Switzerland, that movements. Geosystems. an Italian-Argentinian the exact mountain height Scientific Expedition led by was re-determined. After Mt Everest and On Mt Everest, re-measured Geologist Giorgio Poretti. Mt Kilimanjaro now also in 1992 by an Italian- Previously -
The South American Indian As a Pioneer Alpinist
TI-lE SOUTH AMERICAN INDIAN AS A PIONEER ALPINIST 81 THE SOUTH AMERICAN INDIAN AS A PIONEER ALPINIST BY EVELIO ECHEVARRfA C. ECENTL Y it has become kno\vn that a number of very high Andean mountain tops had not only been ascended but also permanently occupied by the Indians, possibly as much as three centuries before de Saussure's ascent of Mont Blanc. They climbed peaks of up to 22,ooo ft., they constructed shelters on or near their tops, and they used the high places as watch-towers or as sacrificial shrines. Some authorities believe that this activity took place as early as the late four teenth century, though we cannot prove that some of it did not take place long after, possibly as late as the nineteenth century. These Indian accomplishments have been left unmentioned in practi cally all mountaineering history books. In this article, which may be the first to attempt a comprehensive survey,1 my purpose is to review briefly the location and the nature of each discovery. The area in which these Indian mountain ascents took place is what in physical geography is known as the Atacama desert (although this name is nowadays used in political and cultural geography for a much more restricted area). It is a treeless, sandy and volcanic waste-land seldom visited by mountaineers. It stretches from the neighbourhood of Arequipa, in Peru, as far south as Elqui in Chile; to the east it reaches the Andean slopes that face the jungles of Argentina and Bolivia, and to the west, the Pacific Ocean. -
NI 43-101 Technical Report
Independent Technical Report on the Carrizal Cu‐Co‐Au Property Carrizal Alto Mining District, III Region de Atacama, Chile Centred: 308750 mE and 6895000 mN (PSAD56 /UTM Zone 19 Southern Hemisphere) Prepared for: Red Metal Resources Ltd. Suite 102, 278 Bay Street Thunder Bay, Ontario, Canada P7B 1R8 Prepared by: Caracle Creek International Consulting Inc. Scott Jobin‐Bevans, Ph.D., PMP, P.Geo. Principal Geoscientist 2018‐1545 Maley Drive Sudbury, Ontario, Canada P3A 4R7 Effective Date: June 30, 2019 Report Date: November 28, 2020 1 Red Metal Resources Ltd: Carrizal Cu‐Co‐Au Property, Chile NI 43‐101 Technical Report DATE AND SIGNATURE PAGE The Report, “Independent Technical Report on the Carrizal Cu‐Co‐Au Property, Chile”, with an Effective Date of June 30, 2019, was authored by the following: “signed and sealed original on file” _______________________________________ Scott Jobin‐Bevans, P.Geo., Ph.D., PMP Caracle Creek International Consulting Inc. Dated: November 28, 2020 November 28, 2020 2 Red Metal Resources Ltd: Carrizal Cu‐Co‐Au Property, Chile NI 43‐101 Technical Report Table of Contents Table of Contents ........................................................................................................................................... 2 List of Figures ................................................................................................................................................. 4 List of Tables ................................................................................................................................................. -
The Aconcagua Expedition
The Aconcagua Expedition Steve took some time recently to talk with us about what we could expect of the Aconcagua Expedition. Six people form the Expedition Team, flying in from around the country. They’ll gather in Mendoza Argentina, altitude about 2,500 feet at the base of the Andes Mountains. It is summer in South America and the temps may reach 90 degrees on Friday. A nice break from the snows of Alaska! From there on Day 3, they will take a taxi (or several taxis to hold the Team and all their gear) to Puente del Inca, altitude 8,900 feet. In the Andes, it will be cooler, maybe reaching the 60’s during the day. At this point, the Team will be at an elevation above all major cities in the US (Denver is only 5,900 feet, and your commercial plane is pressurized to simulate about 7,000 feet; individual mountains in a number of states do have higher elevations). And this is where the climb really begins. They will be taking the “Normal” route. Day 4 is an uphill hike, with mules to carry their gear, up to Confluencia (11,000 feet). Days 4-6 will be spent in the climb and adjusting to the higher elevation. The camp is almost luxurious, as nearby villagers know climbers are avid customers of pizza and Internet. From here on, Team members will carry their own gear as they climb. Each person has approximately 120 pounds. They can carry about 60 lbs at a time. To handle this situation, they practice a routine that adheres to the mountaineer wisdom of "Climb high, sleep low". -
Where Does the Chilean Aconcagua River Come From? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments
water Article Where Does the Chilean Aconcagua River Come from? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments Sebastián Andrés Crespo 1,* ,Céline Lavergne 2,3 , Francisco Fernandoy 4 , Ariel A. Muñoz 1, Leandro Cara 5 and Simón Olfos-Vargas 1 1 Instituto de Geografía, Facultad de Ciencias del Mar y Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile; [email protected] (A.A.M.); [email protected] (S.O.-V.) 2 Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2581782, Chile; [email protected] 3 HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso 234000, Chile 4 Laboratorio de Análisis Isotópico (LAI), Facultad de Ingeniería, Universidad Andrés Bello, Viña del Mar 2531015, Chile; [email protected] 5 Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA-CONICET), Mendoza 5500, Argentina; [email protected] * Correspondence: [email protected] Received: 1 August 2020; Accepted: 12 September 2020; Published: 21 September 2020 Abstract: The Aconcagua river basin (Chile, 32 ◦S) has suffered the effects of the megadrought over the last decade. The severe snowfall deficiency drastically modified the water supply to the catchment headwaters. Despite the recognized snowmelt contribution to the basin, an unknown streamflow buffering effect is produced by glacial, periglacial and groundwater inputs, especially in dry periods. Hence, each type of water source was characterized and quantified for each season, through the combination of stable isotope and ionic analyses as natural water tracers. The δ18O and electric conductivity were identified as the key parameters for the differentiation of each water source. -
Chile by Martin Nicholas and Ivan.Pdf
FLAG • The Chilean flag is also known in Spanish as La Estrella Solitaria (The Lone Star). • It was adopted on 18 October 1817. • The flag of Chile consists of two equal horizontal bands of white and red, with a blue square the same height as the white band in the canton, which bears a white five-pointed star in the centre. CAPITAL • The capital of Chile is called ‘Santiago’. • Santiago is the biggest city in Chile. • It sits in a valley surrounded by the snow- capped Andes and the Chilean Coast Range. • Plaza de Armas, the grand heart of the city’s old colonial core, is home to 2 neoclassical landmarks: the 1808 Palacio de la Real Audiencia, housing the National History Museum, and the 18th-century Metropolitan Cathedral. POPULATION • The population of Chile is 18,183,803. • The population rate growth for Chile was decreasing in 1990. • By 2050 the population is expected to reach approximately 20.2 million people. • About 85% of the country's population lives in urban areas, with 40% living in Greater Santiago. FOOD • Pastel de Choclo: corn casserole with meat stuffing. • Empanadas: pastry filled with meat, cheese or mussels. • Cazuela: homemade stew with beef, chicken, corn, rice and potatoes. • Asado: barbeque of beef, pork or chicken. FESTIVALS • Viña del Mar International Song Festival: This festival the largest and best known music festival in Latin America. • Lollalpalooza Chile: this festival is the Chile based version of the popular music festival Lollapalooza. • Ultra Chile: this is an outdoor electronic music festival that is a part of Ultra Music Festival’s worldwide expansion, which has now spread to 20 different countries. -
Efectos De Las Alteraciones Antr Picas Sobre La Estructura Y Composici N De
AbrilEcología de 2008 Austral 18:13-25. ALTERACIONES Abril 2008 ANTRÓPICAS EN RODALES DE PILGERODENDRON UVIFERUM 13 Asociación Argentina de Ecología Efectos de las alteraciones antrópicas sobre la estructura y composición de rodales de Pilgerodendron uviferum en la Cordillera de la Costa de Chile * DANIEL P SOTO 1, & HERIBERTO FIGUEROA 2 1. Instituto de Silvicultura, Universidad Austral de Chile, Valdivia, Chile. 2. Instituto de Estadística, Universidad Austral de Chile, Valdivia, Chile. RESUMEN. Se estudió la inuencia de las alteraciones antrópicas sobre la estructura y composición de cuatro comunidades de Pilgerodendron uviferum del área norte de su distribución por la Cordillera de la Costa de Chile. Se establecieron tres parcelas de 400 m2 por comunidad donde se caracterizó la estructura y se cuanticó la regeneración y cobertura de la vegetación. Con los datos obtenidos se calcularon Valores de Importancia por rodal, separados por estratos (arbóreo y sotobosque) y se incorporaron a un Análisis de Correspondencia para su ordenamiento. Posteriormente, los datos ordenados se sometieron a un Análisis de Discriminante para clasicar la vegetación de acuerdo al grado de alteración de los sitios. Los resultados mostraron que la regeneración de P. uviferum se asoció a los rodales más alterados (con pérdida de estructura o abiertos). Los rodales sin alteración mostraron escasa regeneración y compartieron el espacio con especies menos tolerantes al anegamiento. Estos resultados sugieren que en estos rodales, la regeneración de P. uviferum necesitaría sitios abiertos y suelos húmedos para persistir en el ecosistema. [Palabras clave: comunidades vegetales, ordenamiento, anegamiento, clasicación de vegetación] ABSTRACT. Effect of anthropogenic disturbances on the structure and composition of Pilgerodendron uviferum stands of the Chilean Coastal Range: The inuence of anthropogenic disturbances on the structure and composition of four communities of Pilgerodendron uviferum in the northernmost portion of the Chilean Coastal range was studied. -
Mount Fuji Stromboli Is Located Mount Fuji Is Located in Italy
Stromboli Mount Fuji Stromboli is located Mount Fuji is located in Italy. in Japan. Its highest point is Its highest point is 924m high. Volcanoes Volcanoes 3776m high. The volcano has erupted Fuji last erupted in 1707. throughout the 20th century. This volcano is the highest volcano, it has the highest As long as there are peak in Japan and is historical records, considered one of the three Stromboli has been holy mountains. constantly active. Mount Fuji is an important It is famous for its element in Japanese art. normally small, but regular explosions. At night its eruptions Did You Know...? are visible from far More than 200 000 away so it is known as Did You Know...? Stromboli has an people climb to the the "Lighthouse of the eruption cycle of 20 top of the Mount Mediterranean". to 30 minutes. Fuji every year. Photo courtesy of giopuo, flrnt, island of volcanoes (@flickr.com) - granted under creative commons licence - attribution Photo courtesy of Manish Prabhune, midorisyu (@flickr.com) - granted under creative commons licence - attribution visit twinkl.com visit twinkl.com Ojos del Mauna Loa Mauna Loa is one of five Salado volcanoes that form the Ojos del Salado Island of Hawaii (the US Volcanoes is located on the Volcanoes state) in the Pacific Ocean. Argentina-Chile border. Its highest point is Its highest point is 4170m high. 6893m high. Mauna Loa rises from Nevados Ojos del Salado is the sea floor, and its the world's highest active height from its base to its volcano. summit is 9170m. This is greater than the height of It has two summit peaks of Mount Everest. -
Simposio Nacional De La Ciencia Del Suelo
ISSN 0716-6192 BOLETIN Nº 27 6 201 - SIMPOSIO NACIONAL DE LA CIENCIA DEL SUELO SIMPOSIO NACIONAL DE LA CIENCIA DEL SUELO ORGANIZAN SOCIEDAD CHILENA DE LA CIENCIA DEL SUELO CENTRO DE INVESTIGACIÓN EN SUELOS VOLCÁNICOS (CISVo) UNIVERSIDAD AUSTRAL DE CHILE VALDIVIA, 28 al 30 SEPTIEMBRE, 2016 ISSN BOLETIN Nº 27 SIMPOSIO NACIONAL DE LA CIENCIA DEL SUELO ORGANIZAN SOCIEDAD CHILENA DE LA CIENCIA DEL SUELO CENTRO DE INVESTIGACIÓN EN SUELOS VOLCÁNICOS (CISVo) UNIVERSIDAD AUSTRAL DE CHILE VALDIVIA- 28 al 30 DE SEPTIEMBRE - 2016 Boletín Nº 27 de la Sociedad Chilena de la Ciencia del Suelo SIMPOSIO NACIONAL DE LA CIENCIA DEL SUELO 1er Encuentro de Jóvenes Investigadores en Ciencias del Suelo - EJICS Editor José Dörner Profesor Titular Universidad Austral de Chile Valdivia, Chile, 28 – 30 septiembre 2016 El contenido de los trabajos presentados en este Boletín es de exclusiva responsabilidad de los respectivos autores y coautores. Valdivia, Chile, 2016 2 Boletín Nº 27 de la Sociedad Chilena de la Ciencia del Suelo DIRECTORIO SOCIEDAD CHILENA DE LA CIENCIA DEL SUELO Presidente: Pablo Cornejo R. Vice-Presidente: José Dörner F. Secretario: Óscar Seguel S. Tesorero: Paula Cartes I. Directora: Marta Alfaro 3 Boletín Nº 27 de la Sociedad Chilena de la Ciencia del Suelo COMITÉ ORGANIZADOR UACh Dr. José Dörner Dr. Dante Pinochet Dra. Susana Valle Dra. Alejandra Zúñiga Dr. Oscar Thiers Dra. Dorota Dec Dr. Víctor Gerding Dr. Oscar Martínez COMITÉ CIENTÍFICO Prof. Dr. Rainer Horn Dr. Francisco Matus Prof. Dr. Winfried Blum Dr. Pablo Cornejo Dr. José Dörner Dr. Oscar Seguel Dra. Susana Valle Prof. Manuel Casanova Dr. -
16 Volcanoes As Landscape Forms
16 Volcanoes as landscape forms Ordinary, non-volcanic landforms are the results arid environments such as the Atacama Desert or of erosion by wind, water, and ice. Erosion is an the Moon's surface, erosion rates are indeed irreversible process which ultimately reduces immeasurably slow, but in others, such as the even the loftiest mountain range to a flat plain. humid tropics, they can be startlingly fast, even Volcanic landforms by contrast, are the results of by human standards. Catastrophic processes opposing constructive and destructive forces. such as avalanching accomplish in a few Constructive processes operate only while volca moments what it might take millennia to achieve noes arc active. This may be an extremely short otherwise. Whatever their rate, one thing is period-a matter of days or weeks-or rather certain: erosion starts work on a volcano as soon long, with activity continuing intermittently over as it starts growing, even before its lavas cool. tcns ofthousands of years. Paricutin, a common Erosion never ceases. A large volcano may or-garden basaltic scoria cone was born in a experience several phases of rapid construction Mexican cornfield on 20 February 1943. After a in its lifetime, during which the rate of construc year of activity it was 325 m high; when it finally tion exceeds the rate oferosion, but once eruptive simmered into silence in 1952 it w3s410 m high. activity wanes, erosion instantly gains the upper About 2 cubic kilometres of lava and tephra were hand. On a large volcanic massif, erosion may be erupted during its nine years of activity.