Mucosal Delivery of ESX-1–Expressing BCG Strains Provides Superior Immunity Against Tuberculosis in Murine Type 2 Diabetes

Total Page:16

File Type:pdf, Size:1020Kb

Mucosal Delivery of ESX-1–Expressing BCG Strains Provides Superior Immunity Against Tuberculosis in Murine Type 2 Diabetes Mucosal delivery of ESX-1–expressing BCG strains provides superior immunity against tuberculosis in murine type 2 diabetes Harindra D. Sathkumaraa, Visai Muruganandaha,b, Martha M. Coopera,c, Matt A. Fielda,c, Md Abdul Alima,d, Roland Brosche, Natkunam Ketheesanf, Brenda Govana,g, Catherine M. Rusha,g, Lars Henningg, and Andreas Kupza,1 aCentre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns & Townsville, QLD 4878, Australia; bCollege of Medicine and Dentistry, James Cook University, Cairns & Townsville, QLD 4878, Australia; cCentre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; dFaculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; eInstitut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, 75015 Paris, France; fScience and Technology, University of New England, Armidale, NSW 2351, Australia; and gCollege of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia Edited by William R. Jacobs Jr, Albert Einstein College of Medicine, Bronx, NY, and approved July 14, 2020 (received for review February 26, 2020) Tuberculosis (TB) claims 1.5 million lives per year. This situation is (6) and delayed adaptive immune priming (7) relative to stan- largely due to the low efficacy of the only licensed TB vaccine, dard models. However, the majority of these animal models lack Bacillus Calmette–Guérin (BCG) against pulmonary TB. The meta- many features of T2D. We have recently described a robust diet- bolic disease type 2 diabetes (T2D) is a risk factor for TB and the induced animal model for T2D encompassing the cardinal features mechanisms underlying increased TB susceptibility in T2D are not of human T2D such as obesity, glucose intolerance, chronic in- well understood. Furthermore, it is unknown if new TB vaccines will flammation, hyperinsulinemia, progressive insulin resistance, and provide protection in the context of T2D. Here we used a diet-induced adipocyte and glomerular hypertrophy (8). Using this model, we murine model of T2D to investigate the underlying mechanisms of demonstrated increased bacterial burden, lung immunopathology, TB/T2D comorbidity and to evaluate the protective capacity of two and greater mortality following infections with Mycobacterium experimental TB vaccines in comparison to conventional BCG. Our fortuitum (6) and Mycobacterium bovis Bacillus Calmette–Guérin data reveal a distinct immune dysfunction that is associated with di- (BCG) (9). However, the precise defects that predispose the dia- minished recognition of mycobacterial antigens in T2D. More impor- tantly, we provide compelling evidence that mucosal delivery of betic lung to TB disease remain unknown. Mycobacterium tuberculosis While the immunological correlates of TB protection are not recombinant BCG strains expressing the + (Mtb) ESX-1 secretion system (BCG::RD1 and BCG::RD1 ESAT-6 well defined, the role of CD4 T cells in Mtb immunity is well Δ92–95) are safe and confer superior immunity against aerosol Mtb established in animal models and TB patients. Depletion of Th1 infection in the context of T2D. Our findings suggest that the remark- cells results in early disease reactivation from LTBI as seen in able anti-TB immunity by these recombinant BCG strains is achieved HIV patients (10). However, accumulating evidence suggests a + via augmenting the numbers and functional capacity of antigen pre- substantive role for CD4 T cell-independent protective immu- senting cells in the lungs of diabetic mice. nity (11). For example, we and others have recently shown that tuberculosis | type 2 diabetes | vaccines | immunity Significance uberculosis (TB) is caused by infection with Mycobacterium Tuberculosis (TB) susceptibility and disease are significantly Ttuberculosis (Mtb) and is the leading infectious cause of death exacerbated in people with type 2 diabetes. The underlying globally. Approximately 10 million new TB cases were reported in mechanisms are incompletely understood, and it is not known 2018 with a further 1.7 billion people worldwide latently infected if new TB vaccine candidates will be safe and provide protec- and at risk for reactivation (1). Despite recent advances in diag- tion in the context of diabetes. Using a long-term diet-induced nostics, treatment options, and control measures, TB still kills an murine model of type 2 diabetes, we demonstrate that in- estimated 1.5 million people each year (1). Reactivation of latent creased susceptibility to TB is caused by impaired mycobacterial TB infection (LTBI) is strongly associated with comorbid immu- recognition and killing in the diabetic lung. Importantly, we nosuppressing conditions, most notably HIV coinfection/AIDS show that mucosal vaccination of diabetic mice with Bacillus and diabetes mellitus (DM) (2). It is now recognized that the in- Calmette–Guérin (BCG) strains expressing the ESX-1 secretion fluence of DM, particularly type 2 diabetes (T2D) on TB burden is system from Mycobacterium tuberculosis can overcome this greater than HIV coinfection, because of its higher prevalence defect and provide superior immunity against TB. Our data – (∼463 million people currently live with DM and the numbers are warrant a consideration of ESX-1 containing BCG strains as expected to escalate to 700 million by 2045) (3), with the majority effective TB vaccines in older individuals and diabetics. of diabetics living in TB endemic countries. Based on recent Author contributions: H.D.S., N.K., and A.K. designed research; H.D.S., V.M., M.A.A., and metaanalyses, individuals with DM have a three- to fourfold in- A.K. performed research; R.B. contributed new reagents/analytic tools; H.D.S., M.M.C., creased risk of developing TB while ∼10% of TB patients have M.A.F., N.K., B.G., C.M.R., L.H., and A.K. analyzed data; H.D.S. and A.K. wrote the paper; comorbid DM (4). Furthermore, the risk of reactivation of LTBI is and R.B., N.K., B.G., C.M.R. and L.H. provided intellectual input. significantly increased in TB/T2D comorbid patients (5). TB/T2D The authors declare no competing interest. comorbidity is not limited to low- to middle-income countries but This article is a PNAS Direct Submission. also exists in developed nations. As a result, TB/T2D comorbidity Published under the PNAS license. poses a significant challenge to the global eradication of TB. 1To whom correspondence may be addressed. Email: [email protected]. Although the mechanisms underlying this increased suscepti- This article contains supporting information online at https://www.pnas.org/lookup/suppl/ bility to TB are not well understood, multiple animal models of doi:10.1073/pnas.2003235117/-/DCSupplemental. DM, including T2D, show defective innate immune recognition First published August 10, 2020. 20848–20859 | PNAS | August 25, 2020 | vol. 117 | no. 34 www.pnas.org/cgi/doi/10.1073/pnas.2003235117 Downloaded by guest on September 27, 2021 vaccine-induced CD4+ T cells are not necessary to prevent the 2,203 ± 62.26, P < 0.0001; Fig. 1D), key metabolic features as- reactivation of LTBI in murine (12) and nonhuman primate sociated with the development of T2D. (NHP) models (11). Understanding which immune responses To determine if the EDD-fed T2D mice are more prone to truly correlate with protection will be critical for the develop- Mtb infection, we exposed T2D and control mice to a very-low ment of an effective TB vaccine. BCG, the only approved TB dose (10 to 20 colony-forming units [CFUs]) of Mtb H37Rv. vaccine to date does not provide sufficient protection against There was no difference in lung Mtb burden between control and pulmonary TB in adults (13). Current experimental TB vaccine T2D mice at 1 d after Mtb challenge (Fig. 1E), indicating that strategies include: boosting BCG with improved and more im- bacterial inhalation is not affected by T2D and all mice received munogenic recombinant BCG (rBCG) strains; live attenuated a comparable dose. At 45 d after Mtb challenge, however, T2D Mtb vaccines; and subunit vaccines that are safe to use in im- mice displayed significantly higher lung and spleen CFU loads munocompromised individuals (14). There is also renewed in- (Fig. 1F) accompanied by increased pathological damage to the terest in intravenous (i.v.) (15) and mucosal delivery of TB lung tissue (Fig. 1G and SI Appendix, Fig. S1). Collectively, these vaccines, including BCG, primarily due to the increased pro- data demonstrate that the diet-induced murine model of T2D tection afforded by pulmonary resident memory T cells (TRM) mimics the cardinal features of human T2D and the increased (16). rBCG strains engineered to incorporate immunodominant susceptibility to aerosol Mtb infection, further confirming the Mtb regions, such as the virulence-associated ESX-1 locus, cy- appropriateness of this model to study TB/T2D comorbidity. tokines, toxin-derived antigens, and genes important for antigen Mtb presentation enhance and broaden the vaccine-induced immune Compositional Changes in the Lung Microbiota following response (17). Furthermore, strategies that allow the vaccine Infection. The resident microbiota has a pivotal role in the on- strain to reach the cytosol via the incorporation of phagosome set of T2D and its plethora of complications while perturbed perforating molecules, such as the ESX-1 system (18) or lister-
Recommended publications
  • Tessaracoccus Arenae Sp. Nov., Isolated from Sea Sand
    TAXONOMIC DESCRIPTION Thongphrom et al., Int J Syst Evol Microbiol 2017;67:2008–2013 DOI 10.1099/ijsem.0.001907 Tessaracoccus arenae sp. nov., isolated from sea sand Chutimon Thongphrom,1 Jong-Hwa Kim,1 Nagamani Bora2,* and Wonyong Kim1,* Abstract A Gram-stain positive, non-spore-forming, non-motile, facultatively anaerobic bacterial strain, designated CAU 1319T, was isolated from sea sand and the strain’s taxonomic position was investigated using a polyphasic approach. Strain CAU 1319T grew optimally at 30 C and at pH 7.5 in the presence of 2 % (w/v) NaCl. Phylogenetic analysis, based on the 16S rRNA gene sequence, revealed that strain CAU 1319T belongs to the genus Tessaracoccus, and is closely related to Tessaracoccus lapidicaptus IPBSL-7T (similarity 97.69 %), Tessaracoccus bendigoensis Ben 106T (similarity 95.64 %) and Tessaracoccus T T flavescens SST-39 (similarity 95.84 %). Strain CAU 1319 had LL-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan, MK-9 (H4) as the predominant menaquinone, and anteiso-C15 : 0 as the major fatty acid. The polar lipids consisted of phosphatidylglycerol, phosphatidylinositol, two unidentified aminolipids, three unidentified phospholipids and one unidentified glycolipid. Predominant polyamines were spermine and spermidine. The DNA–DNA hybridization value between strain CAU 1319T and T. lapidicaptus IPBSL-7T was 24 %±0.2. The DNA G+C content of the novel strain was 69.5 mol %. On the basis of phenotypic and chemotaxonomic properties, as well as phylogenetic relatedness, strain CAU 1319Tshould be classified as a novel species of the genus Tessaracoccus, for which the name Tessaracoccus arenae sp.
    [Show full text]
  • Complete Genomic Sequences of Propionibacterium Freudenreichii
    UCLA UCLA Previously Published Works Title Complete genomic sequences of Propionibacterium freudenreichii phages from Swiss cheese reveal greater diversity than Cutibacterium (formerly Propionibacterium) acnes phages. Permalink https://escholarship.org/uc/item/7bf0f2q3 Journal BMC microbiology, 18(1) ISSN 1471-2180 Authors Cheng, Lucy Marinelli, Laura J Grosset, Noël et al. Publication Date 2018-03-01 DOI 10.1186/s12866-018-1159-y Peer reviewed eScholarship.org Powered by the California Digital Library University of California Cheng et al. BMC Microbiology (2018) 18:19 https://doi.org/10.1186/s12866-018-1159-y RESEARCH ARTICLE Open Access Complete genomic sequences of Propionibacterium freudenreichii phages from Swiss cheese reveal greater diversity than Cutibacterium (formerly Propionibacterium) acnes phages Lucy Cheng1,2†, Laura J. Marinelli1,2*†, Noël Grosset3, Sorel T. Fitz-Gibbon4, Charles A. Bowman5, Brian Q. Dang5, Daniel A. Russell5, Deborah Jacobs-Sera5, Baochen Shi6, Matteo Pellegrini4, Jeff F. Miller7,2, Michel Gautier3, Graham F. Hatfull5 and Robert L. Modlin1,2 Abstract Background: A remarkable exception to the large genetic diversity often observed for bacteriophages infecting a specific bacterial host was found for the Cutibacterium acnes (formerly Propionibacterium acnes) phages, which are highly homogeneous. Phages infecting the related species, which is also a member of the Propionibacteriaceae family, Propionibacterium freudenreichii, a bacterium used in production of Swiss-type cheeses, have also been described and are common contaminants of the cheese manufacturing process. However, little is known about their genetic composition and diversity. Results: We obtained seven independently isolated bacteriophages that infect P. freudenreichii from Swiss-type cheese samples, and determined their complete genome sequences.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Tessaracoccus Massiliensis Sp. Nov., a New Bacterial Species Isolated from the Human Gut
    TAXONOGENOMICS: GENOME OF A NEW ORGANISM Tessaracoccus massiliensis sp. nov., a new bacterial species isolated from the human gut E. Seck1, S. I. Traore1, S. Khelaifia1, M. Beye1, C. Michelle1, C. Couderc1, S. Brah2, P.-E. Fournier1, D. Raoult1,3 and G. Dubourg1 1) Aix-Marseille Université, URMITE, UM63, CNRS7278, IRD198, INSERM 1095, Faculté de médecine, Marseille, France, 2) Hôpital National de Niamey, Niamey, Niger and 3) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Abstract A new Actinobacterium, designated Tessaracoccus massiliensis type strain SIT-7T (= CSUR P1301 = DSM 29060), have been isolated from a Nigerian child with kwashiorkor. It is a facultative aerobic, Gram positive, rod shaped, non spore-forming, and non motile bacterium. Here, we describe the genomic and phenotypic characteristics of this isolate. Its 3,212,234 bp long genome (1 chromosome, no plasmid) exhibits a G+C content of 67.81% and contains 3,058 protein-coding genes and 49 RNA genes. © 2016 The Author(s). Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. Keywords: culturomics, genome, human gut, taxono-genomics, Tessaracoccus massiliensis Original Submission: 23 February 2016; Revised Submission: 28 April 2016; Accepted: 3 May 2016 Article published online: 28 May 2016 development of new tools for the sequencing of DNA [5],we Corresponding author: G. Dubourg, Aix-Marseille Université, introduced a new way of describing the novel bacterial species URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Faculté de médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, [6]. This includes, among other features, their genomic [7–11] France and proteomic information obtained by matrix-assisted laser E-mail: [email protected] desorption-ionization time-of-flight (MALDI-TOF-MS) analysis [12].
    [Show full text]
  • The Microbiota Continuum Along the Female Reproductive Tract and Its Relation to Uterine-Related Diseases
    ARTICLE DOI: 10.1038/s41467-017-00901-0 OPEN The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases Chen Chen1,2, Xiaolei Song1,3, Weixia Wei4,5, Huanzi Zhong 1,2,6, Juanjuan Dai4,5, Zhou Lan1, Fei Li1,2,3, Xinlei Yu1,2, Qiang Feng1,7, Zirong Wang1, Hailiang Xie1, Xiaomin Chen1, Chunwei Zeng1, Bo Wen1,2, Liping Zeng4,5, Hui Du4,5, Huiru Tang4,5, Changlu Xu1,8, Yan Xia1,3, Huihua Xia1,2,9, Huanming Yang1,10, Jian Wang1,10, Jun Wang1,11, Lise Madsen 1,6,12, Susanne Brix 13, Karsten Kristiansen1,6, Xun Xu1,2, Junhua Li 1,2,9,14, Ruifang Wu4,5 & Huijue Jia 1,2,9,11 Reports on bacteria detected in maternal fluids during pregnancy are typically associated with adverse consequences, and whether the female reproductive tract harbours distinct microbial communities beyond the vagina has been a matter of debate. Here we systematically sample the microbiota within the female reproductive tract in 110 women of reproductive age, and examine the nature of colonisation by 16S rRNA gene amplicon sequencing and cultivation. We find distinct microbial communities in cervical canal, uterus, fallopian tubes and perito- neal fluid, differing from that of the vagina. The results reflect a microbiota continuum along the female reproductive tract, indicative of a non-sterile environment. We also identify microbial taxa and potential functions that correlate with the menstrual cycle or are over- represented in subjects with adenomyosis or infertility due to endometriosis. The study provides insight into the nature of the vagino-uterine microbiome, and suggests that sur- veying the vaginal or cervical microbiota might be useful for detection of common diseases in the upper reproductive tract.
    [Show full text]
  • Bacteria Isolated from Bengal Cat (Felis Catus
    bioRxiv preprint doi: https://doi.org/10.1101/625079; this version posted May 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 4 Bacteria isolated from bengal cat (Felis catus × 5 Prionailurus bengalensis) anal sac secretions produce 6 volatile compounds associated with animal signaling 7 8 9 Mei S. Yamaguchi 1, Holly H. Ganz 2 , Adrienne W. Cho 2, Thant H. Zaw2, Guillaume Jospin2, Mitchell 10 M. McCartney1, Cristina E. Davis1, Jonathan A. Eisen*2, 3, 4, David A. Coil2 11 12 13 14 1 Department of Mechanical and Aerospace Engineering, University of California, Davis, CA, United States 15 2 Genome Center, University of California, Davis, CA, United States 16 3 Department of Evolution and Ecology, University of California, Davis, CA, United States 17 4 Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, 18 United States 19 20 21 * Corresponding author 22 Email: [email protected] (JE) 23 24 bioRxiv preprint doi: https://doi.org/10.1101/625079; this version posted May 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 25 Abstract 26 Anal sacs are an important odor producing organ found across the mammalian Order Carnivora.
    [Show full text]
  • Downloaded from the NBCI FTP Server As Genbank files and Consisted of Two Strains of P
    G C A T T A C G G C A T genes Article A Pan-Genome Guided Metabolic Network Reconstruction of Five Propionibacterium Species Reveals Extensive Metabolic Diversity Tim McCubbin 1, R. Axayacatl Gonzalez-Garcia 1, Robin W. Palfreyman 1 , Chris Stowers 2, Lars K. Nielsen 1 and Esteban Marcellin 1,* 1 Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; [email protected] (T.M.); [email protected] (R.A.G.-G.); [email protected] (R.W.P.); [email protected] (L.K.N.) 2 Corteva Agriscience, Indianapolis, IN 46268, USA; [email protected] * Correspondence: [email protected] Received: 31 July 2020; Accepted: 10 September 2020; Published: 23 September 2020 Abstract: Propionibacteria have been studied extensively since the early 1930s due to their relevance to industry and importance as human pathogens. Still, their unique metabolism is far from fully understood. This is partly due to their signature high GC content, which has previously hampered the acquisition of quality sequence data, the accurate annotation of the available genomes, and the functional characterization of genes. The recent completion of the genome sequences for several species has led researchers to reassess the taxonomical classification of the genus Propionibacterium, which has been divided into several new genres. Such data also enable a comparative genomic approach to annotation and provide a new opportunity to revisit our understanding of their metabolism. Using pan-genome analysis combined with the reconstruction of the first high-quality Propionibacterium genome-scale metabolic model and a pan-metabolic model of current and former members of the genus Propionibacterium, we demonstrate that despite sharing unique metabolic traits, these organisms have an unexpected diversity in central carbon metabolism and a hidden layer of metabolic complexity.
    [Show full text]
  • INVESTIGATING the ACTINOMYCETE DIVERSITY INSIDE the HINDGUT of an INDIGENOUS TERMITE, Microhodotermes Viator
    INVESTIGATING THE ACTINOMYCETE DIVERSITY INSIDE THE HINDGUT OF AN INDIGENOUS TERMITE, Microhodotermes viator by Jeffrey Rohland Thesis presented for the degree of Doctor of Philosophy in the Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, South Africa. April 2010 ACKNOWLEDGEMENTS Firstly and most importantly, I would like to thank my supervisor, Dr Paul Meyers. I have been in his lab since my Honours year, and he has always been a constant source of guidance, help and encouragement during all my years at UCT. His serious discussion of project related matters and also his lighter side and sense of humour have made the work that I have done a growing and learning experience, but also one that has been really enjoyable. I look up to him as a role model and mentor and acknowledge his contribution to making me the best possible researcher that I can be. Thank-you to all the members of Lab 202, past and present (especially to Gareth Everest – who was with me from the start), for all their help and advice and for making the lab a home away from home and generally a great place to work. I would also like to thank Di James and Bruna Galvão for all their help with the vast quantities of sequencing done during this project, and Dr Bronwyn Kirby for her help with the statistical analyses. Also, I must acknowledge Miranda Waldron and Mohammed Jaffer of the Electron Microsope Unit at the University of Cape Town for their help with scanning electron microscopy and transmission electron microscopy related matters, respectively.
    [Show full text]
  • APUTS) Reporting Terminology and Codes Microbiology (V1.0
    AUSTRALIAN PATHOLOGY UNITS AND TERMINOLOGY (APUTS) Reporting Terminology and Codes Microbiology (v1.0) 1 12/02/2013 APUTS Report Information Model - Urine Microbiology Page 1 of 1 Specimen Type Specimen Macro Time Glucose Bilirubin Ketones Specific Gravity pH Chemistry Protein Urobilinogen Nitrites Haemoglobin Leucocyte Esterases White blood cell count Red blood cells Cells Epithelial cells Bacteria Microscopy Parasites Microorganisms Yeasts Casts Crystals Other elements Antibacterial Activity No growth Mixed growth Urine MCS No significant growth Klebsiella sp. Bacteria ESBL Klebsiella pneumoniae Identification Virus Fungi Growth of >10^8 org/L 10^7 to 10^8 organism/L of mixed Range or number Colony Count growth of 3 organisms 19090-0 Culture Organism 1 630-4 LOINC >10^8 organisms/L LOINC Significant growth e.g. Ampicillin 18864-9 LOINC Antibiotics Susceptibility Method Released/suppressed None Organism 2 Organism 3 Organism 4 None Consistent with UTI Probable contamination Growth unlikely to be significant Comment Please submit a repeat specimen for testing if clinically indicated Catheter comments Sterile pyuria Notification to infection control and public health departments PUTS Urine Microbiology Information Model v1.mmap - 12/02/2013 - Mindjet 12/02/2013 APUTS Report Terminology and Codes - Microbiology - Urine Page 1 of 3 RCPA Pathology Units and Terminology Standardisation Project - Terminology for Reporting Pathology: Microbiology : Urine Microbiology Report v1 LOINC LOINC LOINC LOINC LOINC LOINC LOINC Urine Microbiology Report
    [Show full text]
  • Nicotine Modulates Myd88-Dependent Signaling Pathway in Macrophages During Mycobacterial Infection
    microorganisms Article Nicotine Modulates MyD88-Dependent Signaling Pathway in Macrophages during Mycobacterial Infection Dania AlQasrawi and Saleh A. Naser * Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-407-823-0955; Fax: +1-407-823-0956 Received: 25 September 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Recently, we reported that cigarette smoking, and especially nicotine, increases susceptibility to mycobacterial infection and exacerbates inflammation in patients with Crohn’s disease (CD). The macrophagic response to Mycobacterium avium subspecies paratuberculosis (MAP) in CD and Mycobacteria tuberculosis (MTB) continues to be under investigation. The role of toll-like-receptors (TLRs) and cytoplasmic adaptor protein (MyD88) in proinflammatory response during Mycobacterial infection has been suggested. However, the mechanism of how nicotine modulates macrophage response during infection in CD and exacerbates inflammatory response remain unclear. In this study, we elucidated the mechanistic role of nicotine in modulating MyD88-dependent/TLR pathway signaling in a macrophage system during mycobacterial infection. The data demonstrated that MAP infection in THP-1 derived macrophages was mediated through TLR2 and MyD88 leading to increase in IL-8 in expression and production. On the other hand, LPS-representing, Gram-negative bacteria mediated macrophage response through TLR4. Blocking TLR2 and TLR4 with antagonists voided the effect of MAP, and LPS, respectively in macrophages and reversed response with decrease in expression of iNOS, TNF-α and IL-8. Interestingly, nicotine in infected macrophages significantly (1) downregulated TLR2 and TLR4 expression, (2) activated MyD88, (3) increased M1/M2 ratio, and (4) increased expression and secretion of proinflammatory cytokines especially IL-8, as seen in CD smokers.
    [Show full text]
  • Propionibacterium Acnes
    Host modulating properties of Propionibacterium acnes Inaugural – Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) Submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin Tim Nam, Mak from Kuala Lumpur, Malaysia 2012 千里之行,始于足下 - 老子 - A journey of a thousand miles begins with the first step - Laozi - 2 This thesis is based on research conducted from 2008 to 2012 at the Max Planck Institute for Infection Biology in Berlin, Germany, under the supervision of Prof. Dr. Thomas F Meyer and Prof. Dr. Holger Brüggemann Reviewers First Reviewer: Prof. Dr. Rupert Mutzel Institute für Biologie Freie Universität Berlin Second Reviewer: Prof. Dr. Thomas F Meyer Max Planck Institute for Infection Biology, Chariteplatz 1, Berlin Date of Defense: 15th July 2012 3 Declaration I hereby declare that the work presented in this thesis has been conducted independently and without any inappropriate support, and that all sources of content, experimental or intellectual, are suitably referenced and acknowledged. I further declare that this thesis has not been submitted before, either in the same or a different form, to this or any other university for a degree. Tim Nam, Mak Berlin, 14 February 2012 4 Acknowledgement First and foremost, I would like to thank Professor Thomas F. Meyer for providing me support, critical discussion to my project and the opportunity to work at this great laboratory. I am also grateful to Professor Rupert Mutzel who gave me good advices and being part of my thesis committee. My special thanks to my direct supervisor Holger Brüggemann. Thank you very much for your patience to guide me step by step from the beginning of my PhD.
    [Show full text]
  • ( 12 ) United States Patent
    US010398154B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 398 , 154 B2 Embree et al. ( 45 ) Date of Patent: * Sep . 3 , 2019 (54 ) MICROBIAL COMPOSITIONS AND ( 58 ) Field of Classification Search METHODS OF USE FOR IMPROVING MILK None PRODUCTION See application file for complete search history . (71 ) Applicant: ASCUS BIOSCIENCES , INC ., San Diego , CA (US ) (56 ) References Cited ( 72 ) Inventors: Mallory Embree, San Diego , CA (US ) ; U . S . PATENT DOCUMENTS Luke Picking , San Diego , CA ( US ) ; 3 , 484 , 243 A 12 / 1969 Anderson et al . Grant Gogul , Cardiff , CA (US ) ; Janna 4 ,559 , 298 A 12 / 1985 Fahy Tarasova , San Diego , CA (US ) (Continued ) (73 ) Assignee : Ascus Biosciences , Inc. , San Diego , FOREIGN PATENT DOCUMENTS CA (US ) CN 104814278 A 8 / 2015 ( * ) Notice : Subject to any disclaimer , the term of this EP 0553444 B1 3 / 1998 patent is extended or adjusted under 35 U .S . C . 154 (b ) by 0 days. (Continued ) This patent is subject to a terminal dis OTHER PUBLICATIONS claimer . Borling , J , Master' s thesis, 2010 . * (21 ) Appl. No .: 16 / 029, 398 ( Continued ) ( 22 ) Filed : Jul. 6 , 2018 Primary Examiner - David W Berke- Schlessel (65 ) Prior Publication Data ( 74 ) Attorney , Agent, or Firm — Cooley LLP US 2018 /0325966 A1 Nov . 15 , 2018 ( 57 ) ABSTRACT Related U . S . Application Data The disclosure relates to isolated microorganisms — includ (63 ) Continuation of application No. ing novel strains of the microorganisms - microbial consor PCT/ US2014 /012573 , filed on Jan . 6 , 2017 . tia , and compositions comprising the same . Furthermore , the disclosure teaches methods of utilizing the described micro (Continued ) organisms, microbial consortia , and compositions compris (51 ) Int.
    [Show full text]